CN110436576A - 除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置 - Google Patents

除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置 Download PDF

Info

Publication number
CN110436576A
CN110436576A CN201910778061.3A CN201910778061A CN110436576A CN 110436576 A CN110436576 A CN 110436576A CN 201910778061 A CN201910778061 A CN 201910778061A CN 110436576 A CN110436576 A CN 110436576A
Authority
CN
China
Prior art keywords
cyanide
cyanogen
containing wastewater
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910778061.3A
Other languages
English (en)
Inventor
吴志宇
黎建平
王怡璇
帅和平
陈福明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shi Qing Environmental Protection Technology Co Ltd Of Shenzhen
Original Assignee
Shi Qing Environmental Protection Technology Co Ltd Of Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shi Qing Environmental Protection Technology Co Ltd Of Shenzhen filed Critical Shi Qing Environmental Protection Technology Co Ltd Of Shenzhen
Priority to CN201910778061.3A priority Critical patent/CN110436576A/zh
Publication of CN110436576A publication Critical patent/CN110436576A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4619Supplying gas to the electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种适用于处理高浓度含氰废水且除氰彻底的除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置。除氰粒子电极由泡沫金属、金属盐和粘合剂组成。处理高浓度含氰废水的方法可对氰根离子浓度为2000‑3000mg/L的含氰废水进行破氰处理。处理装置包括臭氧‑三维电解主反应器。该主反应器可以在较短时间内使高浓度含氰废水经处理达标。除氰粒子电极电化学性能优异,制备方法简单可大规模生产,空间利用率高,将其填充在传统的二维电解的阴阳极板之间形成第三个电极,构建了一个质量轻、占地面积少、效率高和能耗低的除氰根离子装置。

Description

除氰粒子电极及制备方法和处理高浓度含氰废水的方法及 装置
技术领域
本发明涉及一种高浓度含氰废水的处理,特别涉及该处理使用的粒子电极及其制备方法和该处理使用的处理装置。
背景技术
氰化电镀是常用的镀种之一,主要用于镀锌、镀铅、镀铜、镀银、镀金。在这类含氰废水中处理含有剧毒的游离氰化物外,还有铜氰、铬氰、银氰等络合离子存在,所含氰浓度较高。另外,氰化物属于剧毒物质,氰会与生物体内高铁细胞色素相结合,生成氰化高铁细胞色素氧化酶而失去传递氧的功能,在动物体内引起组织缺氧,所以含氰废水的排放问题会直接威胁周围水体环境安全。
电化学氧化法具有无二次污染、可控性较强、能耗低、反应设备及其操作简单等优点,被誉为环境友好的绿色技术,正越来越受到重视。其可利用阳极反应或利用电极表面产生的强氧化剂如羟基自由基等达到破氰的目的。
三维电解技术是基于传统的平板二维电极,增加粒子电极,使电解槽的面体比增加,另外填充的粒子电极间距小使得物质的传质速度增大,可提高电流效率和处理能力。三维粒子电极的性能决定了三维电解的处理效率,目前在应用上存在着出现短流现象(由于粒子电极之间过于紧密,整个电极又处于静止状态,所以填充在阳极与阴极之间的粒子电极整体电阻过小,导致这些粒子电极形成的众多微电场非常弱小,起不到对废水的氧化作用)及电流效率低等问题影响处理效果。
近年来,用臭氧处理氰化物方法的研究,开展得相当普遍。臭氧在水溶液中可释放出原子氧参加反应,表现出很强的氧化性,能彻底氧化游离状态的氰化物。该方法在整个过程中不增加其他污染物质,无二次污染,污泥量少,但其存在电力费用高昂的缺点,另外,单独使用臭氧不能使氰化物彻底氧化。
发明内容
本发明要解决的技术问题是提供一种适用于处理高浓度含氰废水且除氰彻底的除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置。
为了解决上述技术问题,本发明采用的技术方案为:
本发明的除氰粒子电极,其特征在于:由作为基体的泡沫金属、作为催化剂的金属盐和粘合剂组成,粘合剂将金属盐均匀粘结在所述泡沫金属的表面和三维网络孔洞中,所述泡沫金属为泡沫镍、泡沫铜或泡沫钛;所述金属盐为铜的氧化物、铁的氧化物、锰的氧化物、锌的氧化物、锆的氧化物、钴的氧化物、锡的氧化物和铈的氧化物中的多种组合;所述粘合剂为聚丙烯酰胺或木质素磺酸钙。
所述泡沫金属、金属盐和粘合剂组分的重量百分比分别为:50%-70%、25%-40%和5%-10%。
所述泡沫金属的三维网络孔洞的孔隙率达95%-98%,该除氰粒子电极的粒径为5mm-10mm。
本发明的制备所述除氰粒子电极的方法,其特征在于该方法包括以下步骤:
步骤1、泡沫金属预处理
1)将泡沫金属用0.5-1mol/L的氢氧化钠溶液浸泡1-2h,过滤后用去离子水洗至中性;
2)将洗净后的泡沫金属超声清洗5-10min,过滤后于105-110℃条件下干燥12-24h;
步骤2、金属盐的制备
取Cu(NO3)2、Fe(NO3)3、Mn(NO3)2、Zn(NO3)2·6H2O、Zr(NO3)4·5H2O、Co(NO3)2·6H2O、Sn(NO3)4、Ce(NO3)3·6H2O加入水中,在磁力搅拌器作用下使其充分溶解、混合后得到混合溶液;
其中Cu(NO3)2、Fe(NO3)3、Mn(NO3)2、Zn(NO3)2·6H2O、Zr(NO3)4·5H2O、Co(NO3)2·6H2O、Sn(NO3)4、Ce(NO3)3·6H2O的总质量为所述泡沫金属质量的25%-40%;
步骤3、浸渍
将步骤1和步骤2得到的泡沫金属和金属盐加入盛放有聚丙烯酰胺或木质素磺酸钙溶液的器皿中进行混合3-6h,经过滤,得到粘结有金属盐的泡沫金属;
步骤4、干燥
将上步所得的泡沫金属置于干燥箱中,在85-105℃下干燥12-24h;
步骤5、焙烧活化
将上步所得干燥后的泡沫金属放入马弗炉,在550-600℃的温度下烧制2-4h,冷却至室温,得到焙烧活化后的除氰粒子电极。
所述的制备所述除氰粒子电极的方法中,在所述混合溶液中,
Cu元素与Fe元素的摩尔比为0.2-0.5:1;
Cu元素与Mn元素的摩尔比为0.5-1:1;
Cu元素与Zn元素的摩尔比为1-4:1;
Cu元素与Zr元素的摩尔比为2-5:1;
Cu元素与Co元素的摩尔比为1-5:1;
Cu元素与Sn元素的摩尔比为15-20:1;
Cu元素与Ce元素的摩尔比为15-25:1。
本发明的处理高浓度含氰废水的方法,步骤如下:
步骤1、调节含氰废水原液的pH值
将氰根离子浓度为2000-3000mg/L的含氰废水注入pH调节池中,调节其pH值至8-10;
步骤2、破氰
将调节pH值后的含氰废水泵入臭氧-三维电解装置中进行催化电解破氰反应,在该臭氧-三维电解装置内的阳极与阴极之间填充有权利要求1-3中任一项所述的除氰粒子电极;
步骤3、絮凝沉淀
待含氰废水原液中的氰根离子浓度降至0.1-0.5mg/L后,将氰根离子分解后的废水通入絮凝池,加入适量絮凝剂絮凝沉淀;
步骤4、排放
对经步骤3处理后的废水进行过滤,将达标滤液直接排放。
所述的处理高浓度含氰废水的方法中,在所述阳极与阴极之间施加的直流电压为20-50V,电流密度40-60mA/cm2
所述的处理高浓度含氰废水的方法中,在臭氧-三维电解装置中,填充的所述除氰粒子电极与含氰废水原液的质量比为1:1-1:1.5;所述催化电解破氰反应时间为60-120min。
本发明的处理高浓度含氰废水的装置,包括壳体,其特征在于:所述壳体分上下两个腔体,上腔体为催化电解反应系统,下腔体为臭氧曝气系统,在上腔体与下腔体之间设有通气隔板;其中,
催化电解反应系统由阳极、阴极和填充在阳极与阴极之间且为所述的除氰粒子电极组成;
所述臭氧曝气系统由曝气管,曝气管的一端穿过壳体侧壁与外设的臭氧发生器相接;
在上腔体对应的壳体一侧的底部设有含氰废水原液的进水口,在上腔体对应的壳体另一侧的顶部设有将破氰后的废水排出该装置的溢流口。
所述的处理高浓度含氰废水的装置中,所述阳极为石墨阳极,所述阴极为石墨阴极,所述臭氧通气量控制在5-10g/h。
本发明的臭氧-三维电解装置可以在较短时间内使高浓度含氰废水经处理达标。本发明的除氰粒子电极电化学性能优异,制备方法简单可大规模生产,空间利用率高,将其填充在传统的二维电解的阴阳极板之间形成第三个电极,构建了一个质量轻、占地面积少、效率高和能耗低的除氰根离子装置。
附图说明
图1为本发明的装置中的臭氧-三维电解主反应器1的示意图。
附图标记如下:
臭氧-三维电解主反应器1、上腔体2、下腔体3、通气隔板4、除氰粒子电极5、进水口6、溢流口7、电源8、阳极81、阴极82、壳体9、曝气管91、臭氧发生器92。
具体实施方式
一、除氰粒子电极
本发明提供一种新的能有效去除氰根离子浓度为2000-3000mg/L(行业内属于高浓度的含氰废水)的工业废水中的氰根离子的除氰粒子电极。
该除氰粒子电极由泡沫金属、金属盐和粘合剂构成。
泡沫金属作为该除氰粒子电极的基体,在其上均匀分布有众多个三维网络孔洞。金属盐作为催化剂,粘合剂将金属盐均匀固结在泡沫金属的表面及所述的三维网络孔洞的内表面上。
所述泡沫金属可以为泡沫镍、泡沫铜或泡沫钛,这些泡沫金属不仅具有众多三维网络孔洞,而且在生产方制作时,针对三维网络孔洞的尺寸大小而言,其可根据客户所需生产符合尺寸要求的泡沫金属,即三维网络孔洞的尺寸大小可以根据需求来设计的。
所述金属盐为铜的氧化物、铁的氧化物、锰的氧化物、锌的氧化物、锆的氧化物、钴的氧化物、锡的氧化物和铈的氧化物中的多种组合。
所述粘合剂为聚丙烯酰胺或木质素磺酸钙(木质素磺酸钙是一种多组分高分子聚合物阴离子表面活性剂,具有很强的分散性、粘结性、螯合性)。
本发明的除氰粒子电极中的泡沫金属、金属盐和粘合剂各组分的重量百分比优选为:50%-70%、25%-40%和5%-10%。其中,泡沫金属的三维网络孔洞的孔隙率达95%-98%,该除氰粒子电极的粒径为5mm-10mm。
上述除氰粒子电极将具有催化功能的金属氧化物等活性组分负载于泡沫金属基体表面和基体内的三维网络孔洞中,大大提高了催化剂的比表面,同时也避免了活性组分的流失,延长了该除氰粒子电极的使用寿命。
二、上述除氰粒子电极的制作方法
步骤1、泡沫金属预处理
1)将泡沫金属用0.5-1mol/L的氢氧化钠溶液浸泡1-2h,去除泡沫金属表面和三维网络孔洞中的污垢(以利于后续金属氧化物的结合),过滤后用去离子水洗至中性;
2)将洗净后的泡沫金属超声清洗5-10min,去除粘附在三维网络孔洞中的细小污垢,采用100-300目的pp滤布过滤,后于105-110℃条件下干燥12-24h;
步骤2、金属盐的制备
取Cu(NO3)2、Fe(NO3)3、Mn(NO3)2、Zn(NO3)2·6H2O、Zr(NO3)4·5H2O、Co(NO3)2·6H2O、Sn(NO3)4、Ce(NO3)3·6H2O加入水中,在磁力搅拌器作用下使其充分溶解、混合后得到混合溶液;
其中,Cu(NO3)2、Fe(NO3)3、Mn(NO3)2、Zn(NO3)2·6H2O、Zr(NO3)4·5H2O、Co(NO3)2·6H2O、Sn(NO3)4和Ce(NO3)3·6H2O的总质量为所述泡沫金属质量的25%-40%;
Cu元素与Fe元素的摩尔比为0.2-0.5:1;
Cu元素与Mn元素的摩尔比为0.5-1:1;
Cu元素与Zn元素的摩尔比为1-4:1;
Cu元素与Zr元素的摩尔比为2-5:1;
Cu元素与Co元素的摩尔比为1-5:1;
Cu元素与Sn元素的摩尔比为15-20:1;
Cu元素与Ce元素的摩尔比为15-25:1。
步骤3、浸渍
将步骤1和步骤2得到的泡沫金属和金属盐加入盛放有聚丙烯酰胺或木质素磺酸钙溶液的器皿中进行混合3-6h,经过滤收集粘结有金属盐的泡沫金属,去掉未反应完的金属盐溶液。
步骤4、干燥
将上步所得的泡沫金属置于干燥箱中,在85-105℃下干燥12-24h,将金属盐与泡沫金属紧密的结合在一起,
步骤5、焙烧活化
将上步所得干燥后的泡沫金属放入马弗炉,在550-600℃的温度下烧制2-4h,冷却至室温,得到焙烧活化后的除氰粒子电极。
三、本发明的处理高浓度含氰废水的方法
步骤如下:
步骤1、调节含氰废水原液的pH值
将氰根离子浓度为2000-3000mg/L的含氰废水注入pH调节池中,调节其pH值至8-10,避免酸性条件下含氰废水形成氰化氢有毒气体。
步骤2、破氰
将调节pH值后的含氰废水泵入臭氧-三维电解装置(以下也称电解装置)中进行催化电解破氰反应,在该臭氧-三维电解装置内的阳极与阴极之间填充有前述本发明的除氰粒子电极。
电解时,在臭氧-三维电解装置中的阳极与阴极之间施加脉冲直流电压为20-50V,电流密度40-60mA/cm2
在臭氧-三维电解装置中,填充的除氰粒子电极与含氰废水原液的质量比为1:1-1:1.5;催化电解破氰反应时间为60-120min。
除氰粒子电极填充在电解装置中时,可使电解装置中的废水在泡沫金属的三维网络孔洞之间自由流动,极大的加速了废水与除氰粒子电极之间的对流,大大提高了废水的传质效率,凸现“大比表面积+高效的传质效率”的协同效应,由于泡沫金属所负载的金属氧化物在电场的激发下产生的电子与氰根离子发生氧化作用。同时,通入的臭氧作为氧化剂,也可以对氰根离子进一步进行氧化。
上述过程在阳极上发生如下反应:
CN-+20H--2e→CNO-+H20
CNO-+40H--6e→2C02↑+N2↑+2H20
上述破氰过程可使废水中的氰根离子直接被氧化为二氧化碳和氮气,从而可以有效去除氰根离子,极大地提高了氰根离子的去除率。
步骤3、絮凝沉淀
经上步处理后,对废水进行取样检测,当含氰废水中的氰根离子浓度降至0.1-0.5mg/L时,将其通入絮凝池,加入适量絮凝剂(絮凝剂可采用聚丙烯酰胺)絮凝沉淀,进一步将这部分废水中的氰根离子以二氧化碳和氮气的形式去除,;
步骤4、排放
对经步骤3处理后的废水进行过滤,将达标滤液直接排放。
四、本发明的处理高浓度含氰废水的装置
如图1所示,该装置包括高浓度含氰废水收集池(图中未示出)、pH调节池(图中未示出)、臭氧-三维电解主反应器1、沉淀池(图中未示出)和袋式过滤器(图中未示出)。
臭氧-三维电解主反应器1(也称臭氧-三维电解装置)由壳体9,臭氧曝气系统构成。壳体9内分上下两个腔体,上腔体2为催化电解反应系统所在腔,下腔体3为臭氧曝气系统所在腔,在上腔体2与下腔体3之间设有通气隔板4。
1、含氰废水收集池用于收集浓度为2000-3000mg/L的含氰根离子的工业废水原液,该收集池的出水口与pH调节池的进水口6通过管路连接。
2、pH调节池出水口与臭氧-三维电解主反应器1的进水口6相连接,中间设有废水提升泵。
3、臭氧-三维电解主反应器1的进水口6设置在上腔体2对应的壳体9一侧的底部,所述含氰废水原液由该进水口6进入上腔体2并由该上腔体2的底部向上漫流升高,此时,含氰废水原液与由下腔体3送入的臭氧混合后,该废水原液中的部分氰根离子被氧化分解。在含氰废水原液向上流动的电解过程中,与填充于上腔体2内的除氰粒子电极5发生充分的氧化反应,进一步使废水中未分解的氰根离子被分解。
4、在上腔体2对应的壳体9另一侧的顶部设有将破氰后的废水排出该装置的溢流口7。
5、催化电解反应系统,由阳极81、阴极82和填充在阳极81与阴极82之间的本发明的除氰粒子电极5组成。
所述阳极81为石墨阳极81,所述阴极82为石墨阴极82,阳极81和阴极82分别与外置的电源8的正负极相接。
6、臭氧曝气系统,由曝气管91和臭氧发生器92构成,曝气管91的一端穿过壳体9侧壁与外设的臭氧发生器92相接。
所述臭氧通气量控制在5-10g/h。
7、臭氧—三维电解主反应器出水口与沉淀池相连接。
8、沉淀池出水口与袋式过滤器相接。

Claims (10)

1.一种除氰粒子电极,其特征在于:由作为基体的泡沫金属、作为催化剂的金属盐和粘合剂组成,粘合剂将金属盐均匀粘结在所述泡沫金属的表面和三维网络孔洞中,所述泡沫金属为泡沫镍、泡沫铜或泡沫钛;所述金属盐为铜的氧化物、铁的氧化物、锰的氧化物、锌的氧化物、锆的氧化物、钴的氧化物、锡的氧化物和铈的氧化物中的多种组合;所述粘合剂为聚丙烯酰胺或木质素磺酸钙。
2.根据权利要求1所述的除氰粒子电极,其特征在于:所述泡沫金属、金属盐和粘合剂组分的重量百分比分别为:50%-70%、25%-40%和5%-10%。
3.根据权利要求2所述的除氰粒子电极,其特征在于:所述泡沫金属的三维网络孔洞的孔隙率达95%-98%,该除氰粒子电极的粒径为5mm-10mm。
4.一种制备权利要求1-3中任一项所述除氰粒子电极的方法,其特征在于该方法包括以下步骤:
步骤1、泡沫金属预处理
1)将泡沫金属用0.5-1mol/L的氢氧化钠溶液浸泡1-2h,过滤后用去离子水洗至中性;
2)将洗净后的泡沫金属超声清洗5-10min,过滤后于105-110℃条件下干燥12-24h;
步骤2、金属盐的制备
取Cu(NO3)2、Fe(NO3)3、Mn(NO3)2、Zn(NO3)2·6H2O、Zr(NO3)4·5H2O、Co(NO3)2·6H2O、Sn(NO3)4、Ce(NO3)3·6H2O加入水中,在磁力搅拌器作用下使其充分溶解、混合后得到混合溶液;
其中Cu(NO3)2、Fe(NO3)3、Mn(NO3)2、Zn(NO3)2·6H2O、Zr(NO3)4·5H2O、Co(NO3)2·6H2O、Sn(NO3)4、Ce(NO3)3·6H2O的总质量为所述泡沫金属质量的25%-40%;
步骤3、浸渍
将步骤1和步骤2得到的泡沫金属和金属盐加入盛放有聚丙烯酰胺或木质素磺酸钙溶液的器皿中进行混合3-6h,经过滤,得到粘结有金属盐的泡沫金属;
步骤4、干燥
将上步所得的泡沫金属置于干燥箱中,在85-105℃下干燥12-24h;
步骤5、焙烧活化
将上步所得干燥后的泡沫金属放入马弗炉,在550-600℃的温度下烧制2-4h,冷却至室温,得到焙烧活化后的除氰粒子电极。
5.根据权利要求4所述的制备所述除氰粒子电极的方法,其特征在于:在所述混合溶液中,
Cu元素与Fe元素的摩尔比为0.2-0.5:1;
Cu元素与Mn元素的摩尔比为0.5-1:1;
Cu元素与Zn元素的摩尔比为1-4:1;
Cu元素与Zr元素的摩尔比为2-5:1;
Cu元素与Co元素的摩尔比为1-5:1;
Cu元素与Sn元素的摩尔比为15-20:1;
Cu元素与Ce元素的摩尔比为15-25:1。
6.一种处理高浓度含氰废水的方法,步骤如下:
步骤1、调节含氰废水原液的pH值
将氰根离子浓度为2000-3000mg/L的含氰废水注入pH调节池中,调节其pH值至8-10;
步骤2、破氰
将调节pH值后的含氰废水泵入臭氧-三维电解装置中进行催化电解破氰反应,在该臭氧-三维电解装置内的阳极与阴极之间填充有权利要求1-3中任一项所述的除氰粒子电极;
步骤3、絮凝沉淀
待含氰废水原液中的氰根离子浓度降至0.1-0.5mg/L后,将氰根离子分解后的废水通入絮凝池,加入适量絮凝剂絮凝沉淀;
步骤4、排放
对经步骤3处理后的废水进行过滤,将达标滤液直接排放。
7.根据权利要求6所述的处理高浓度含氰废水的方法,其特征在于:在所述阳极与阴极之间施加的直流电压为20-50V,电流密度40-60mA/cm2
8.根据权利要求7所述的处理高浓度含氰废水的方法,其特征在于:在臭氧-三维电解装置中,填充的所述除氰粒子电极与含氰废水原液的质量比为1:1-1:1.5;所述催化电解破氰反应时间为60-120min。
9.一种处理高浓度含氰废水的装置,包括壳体(9),其特征在于:所述壳体(9)分上下两个腔体,上腔体(2)为催化电解反应系统,下腔体(3)为臭氧曝气系统,在上腔体(2)与下腔体(3)之间设有通气隔板(4);其中,
催化电解反应系统由阳极(81)、阴极(82)和填充在阳极(81)与阴极(82)之间且为权利要求1-3中所述的除氰粒子电极组成;
所述臭氧曝气系统由曝气管(91),曝气管(91)的一端穿过壳体(9)侧壁与外设的臭氧发生器(92)相接;
在上腔体(2)对应的壳体(9)一侧的底部设有含氰废水原液的进水口(6),在上腔体(2)对应的壳体(9)另一侧的顶部设有将破氰后的废水排出该装置的溢流口(7)。
10.根据权利要求9所述的处理高浓度含氰废水的装置,其特征在于:所述阳极(81)为石墨阳极(81),所述阴极(82)为石墨阴极(82),所述臭氧通气量控制在5-10g/h。
CN201910778061.3A 2019-08-22 2019-08-22 除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置 Pending CN110436576A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910778061.3A CN110436576A (zh) 2019-08-22 2019-08-22 除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910778061.3A CN110436576A (zh) 2019-08-22 2019-08-22 除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置

Publications (1)

Publication Number Publication Date
CN110436576A true CN110436576A (zh) 2019-11-12

Family

ID=68437086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910778061.3A Pending CN110436576A (zh) 2019-08-22 2019-08-22 除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置

Country Status (1)

Country Link
CN (1) CN110436576A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723621A (zh) * 2020-12-28 2021-04-30 华南理工大学 处理环丙沙星废水的Co-Ce-Zr/γ-Al2O3复合粒子电极及其制备方法与应用
CN114314762A (zh) * 2021-10-11 2022-04-12 西南石油大学 一种纳米ZnO/软锰矿复合粒子电极及制备方法
CN114477377A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 用于三维电极的电极材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965428A (zh) * 2004-08-26 2007-05-16 松下电器产业株式会社 电极用复合粒子及其制造方法以及二次电池
CN101781002A (zh) * 2010-03-10 2010-07-21 南京赛佳环保实业有限公司 扩展阳极电解破氰废水处理设备
CN102001737A (zh) * 2010-10-26 2011-04-06 中山大学 一种用于处理含氰废水的电催化粒及用于处理含氰废水的方法
CN104961199A (zh) * 2015-06-23 2015-10-07 广西大学 一种Pd-Fe/泡沫镍三维粒子电极的制备方法
CN105481063A (zh) * 2016-01-19 2016-04-13 武汉大学 一种用于处理难降解有机废水的粒子电极及其制备方法
WO2017088534A1 (zh) * 2015-11-23 2017-06-01 雅本化学股份有限公司 一种废水处理装置及通过该装置处理废水的方法
CN210710884U (zh) * 2019-08-22 2020-06-09 深圳市世清环保科技有限公司 处理高浓度含氰废水的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965428A (zh) * 2004-08-26 2007-05-16 松下电器产业株式会社 电极用复合粒子及其制造方法以及二次电池
CN101781002A (zh) * 2010-03-10 2010-07-21 南京赛佳环保实业有限公司 扩展阳极电解破氰废水处理设备
CN102001737A (zh) * 2010-10-26 2011-04-06 中山大学 一种用于处理含氰废水的电催化粒及用于处理含氰废水的方法
CN104961199A (zh) * 2015-06-23 2015-10-07 广西大学 一种Pd-Fe/泡沫镍三维粒子电极的制备方法
WO2017088534A1 (zh) * 2015-11-23 2017-06-01 雅本化学股份有限公司 一种废水处理装置及通过该装置处理废水的方法
CN105481063A (zh) * 2016-01-19 2016-04-13 武汉大学 一种用于处理难降解有机废水的粒子电极及其制备方法
CN210710884U (zh) * 2019-08-22 2020-06-09 深圳市世清环保科技有限公司 处理高浓度含氰废水的装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477377A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 用于三维电极的电极材料及其制备方法和应用
CN114477377B (zh) * 2020-10-27 2023-07-21 中国石油化工股份有限公司 用于三维电极的电极材料及其制备方法和应用
CN112723621A (zh) * 2020-12-28 2021-04-30 华南理工大学 处理环丙沙星废水的Co-Ce-Zr/γ-Al2O3复合粒子电极及其制备方法与应用
CN114314762A (zh) * 2021-10-11 2022-04-12 西南石油大学 一种纳米ZnO/软锰矿复合粒子电极及制备方法

Similar Documents

Publication Publication Date Title
CN108928890B (zh) 一种三维电极耦合氧化剂处理难降解废水的方法
CN102211830B (zh) 电催化氧化处理切削液废水的方法
CN110436576A (zh) 除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置
CN103693788B (zh) 一种工业污水处理一体机装置
CN106830449A (zh) 有效降低化学镀镍废水污染物的方法及其处理系统
CN210710884U (zh) 处理高浓度含氰废水的装置
CN109437446A (zh) 一种锌-镍合金电镀废水处理工艺
CN109928553A (zh) 一种化学镀镍废液处理装置和方法
CN111039363A (zh) 一种基于电化学耦合膜分离自诱导类芬顿的铜破络与强化去除装置及其应用
CN210367231U (zh) 一种edta类强络合重金属废水的处理系统
CN109879489A (zh) 一种化学镍废水的处理系统及处理工艺
CN106396029A (zh) 一种scr催化剂的除砷方法
CN102992527A (zh) 一种预处理高浓度难降解有机废水的方法
CN103641207A (zh) 一种含锌电镀废水复合电解槽处理方法
CN113620389B (zh) 一种电协同氧化反应处理废水的方法及装置
CN113493237B (zh) 一种改性纳米铁的制备及其处理高浓度硝酸盐废水的方法
CN103803682A (zh) 一种制备负载碳纳米管的铁复合填料的方法
CN108178370A (zh) 一种过硫酸盐和催化陶粒参与的高级氧化破除含镍络合物的方法
CN109293074A (zh) 一种去除化学镀镍废水中次亚磷的装置及方法
CN108751378B (zh) 一种Fe3O4/Ag@Si三维复合电极及其制备方法和高级氧化集成技术系统
CN107200422A (zh) 一种电化学预处理金矿选冶残留有机物及含氰废水的方法
CN103922442A (zh) 一种基于膜及电极高效富集水中氨氮离子的方法
CN215327462U (zh) 一种处理高浓度有机废水的三维电极反应装置
CN111499086B (zh) 一种化学镀铜废液的在线资源化处理方法
CN111807573B (zh) 一种含铊废水的处理装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination