WO2017088534A1 - 一种废水处理装置及通过该装置处理废水的方法 - Google Patents
一种废水处理装置及通过该装置处理废水的方法 Download PDFInfo
- Publication number
- WO2017088534A1 WO2017088534A1 PCT/CN2016/095954 CN2016095954W WO2017088534A1 WO 2017088534 A1 WO2017088534 A1 WO 2017088534A1 CN 2016095954 W CN2016095954 W CN 2016095954W WO 2017088534 A1 WO2017088534 A1 WO 2017088534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ozone
- electrode
- wastewater
- wastewater treatment
- reactor
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
Definitions
- the invention relates to a wastewater treatment device, in particular to an ozone-three-dimensional electrode combined wastewater treatment device for treating high-concentration and high-salt wastewater, and to a method for treating high-concentration and high-salt wastewater by the wastewater treatment device.
- pesticide wastewater As a typical high-concentration organic industrial wastewater, pesticide wastewater has the characteristics of high concentration of organic pollutants, poor biodegradability, complex composition, many difficult-to-degrade substances, and high concentration of inorganic salts. It is not suitable for treatment by traditional physicochemical and biological treatment methods. Using appropriate pretreatment methods to improve the biodegradability of pesticide wastewater, reducing toxicity is the key to pesticide wastewater treatment.
- the advanced oxidation method has a fast reaction and is a green treatment technology, so it has a great advantage in the pretreatment of pesticide wastewater compared with the prior art.
- the principle of the advanced oxidation method is to generate hydroxyl radicals in water.
- the hydroxyl radical ⁇ OH has a high oxidation-reduction potential of up to 2.8V, has a rapid reaction with organic substances, has a small oxidation selectivity, is widely applicable, and can oxidize a series of The advantage of one or more double bonds of organics.
- advanced oxidation processes can oxidize refractory organics, their complex processing, high chemical consumption, and processing costs hamper their large-scale applications.
- the electrochemical oxidation method refers to a method of directly degrading an organic substance by an anodic reaction or degrading an organic substance by using a strong oxidizing agent such as a hydroxyl radical, H 2 O 2 or the like generated on the surface of the electrode.
- a strong oxidizing agent such as a hydroxyl radical, H 2 O 2 or the like generated on the surface of the electrode.
- the three-dimensional electrode can improve the current efficiency by loading the particle electrode between the main electrode plates and charging the surface thereof, and has the advantages of small footprint and strong processing capability.
- a strong oxidant ozone can directly oxidize and decompose organic matter, but its reaction with organic matter has strong selectivity, which can only transform macromolecular organic matter in wastewater into small molecular organic matter, and the efficiency of generating hydroxyl radicals is also low. .
- the present invention proposes to use ozone in combination with a three-dimensional electrode, which can improve the solubility and decomposition rate of ozone in the solution, and can also increase the yield of hydroxyl radicals in the electrochemical reactor, thereby realizing more ideal wastewater. Processing effect.
- the ozone-three-dimensional electrode combination process is an important advanced oxidation method.
- the synergistic effect of ozone and electrochemistry can greatly improve the yield of hydroxyl radicals with extremely strong oxidation, and some organic substances can also be directly oxidized at the anode.
- the oxygen in the ozonized air generates H 2 O 2 at the cathode, and the ozone reacts with ozone to generate hydroxyl radicals to decompose the ozone.
- the reaction is as follows:
- Hydroxyl radicals can react with organic substances as follows:
- the present invention has achieved the present invention by the following technical means in accordance with the above reaction principle:
- a wastewater treatment apparatus including an ozone generator, a three-dimensional electrode reactor, and a regulated power source, wherein the three-dimensional electrode reactor is preferably a square body, and a volume 1.5L, which is provided with an ozone cloth bottoming, and an ozone aeration head is arranged below the ozone cloth bottom, and a particle electrode and a main electrode are arranged above the main electrode, wherein the main electrode is The anode and the main electrode are cathodes, and a waste liquid feed port and a sampling port are arranged through the cavity wall of the three-dimensional electrode reactor 2.
- a wastewater treatment apparatus in which an ozone generator 1 and a three-dimensional electrode reactor 2 are connected by a rubber hose, and since the density of ozone is greater than air, the ozone generator 1 and the rubber
- the interface position of the hose is preferably at the lower part of the ozone generator, and the generated ozone is sent to the ozone aeration head via the rubber hose, and the three-dimensional electrode reactor 2 and the regulated power source are connected by wires,
- the sewage treatment device of the invention is convenient to disassemble and assemble, and has a small occupied area.
- a wastewater treatment apparatus and further, the cavity wall of the three-dimensional electrode reactor 2 is made of an engineering plastic.
- the main electrode in the three-dimensional electrode reactor 2 comprises an anode electrode and a cathode electrode, wherein the anode electrode is a titanium-based ruthenium oxide anode and the cathode electrode is a graphite cathode.
- the electrodes all have good chemical stability, electrochemical stability, electrical conductivity, mechanical properties, and are inexpensive.
- a wastewater treatment device is provided. Further, the filler of the particle electrode in the three-dimensional electrode reactor is activated carbon, which has good chemical stability, is resistant to strong acid and alkali, and can withstand water immersion and high temperature. The specific gravity is less than water.
- a wastewater treatment apparatus is provided, and further, the wire is a copper wire.
- the wastewater flows through the waste liquid feed port 6 of the three-dimensional electrode reactor 2, to the submerged main electrode, preferably, the treatment capacity is 1L;
- the ozonized air produced by the ozone generator is uniformly aerated at the cathode portion through the ozone aeration head;
- a wastewater treatment method is provided, further, three-dimensional
- the sewage treated in the electrode reactor is high-concentration and high-salt wastewater, and its pH range is 9-12, and the TDS content range is 5-15 g/L.
- a wastewater treatment method is provided. Further, the ozone generation amount is set to 10 to 30 ml/min, and if the ozone generation amount exceeds 30 ml/min, the cost is increased and cannot be fully utilized, resulting in The cost increases, but the ozone generation amount is less than 10 ml/min, resulting in a decrease in the treatment speed and a poor effect.
- the ozone generation amount is preferably set to 25 ml/min; the electrode plate spacing is 2 to 5 cm, and the main electrode plate area is 80 to 120cm 2 , the area is less than 80cm 2 , the processing speed is slow, but if it is higher than 120cm 2 , the treatment effect is not good, so the main electrode plate area is preferably 100cm 2 ; the particle filler electrode amount is 40 ⁇ 60g, the treatment effect is less than 40g Poor, higher than 60 g not only increases the cost, but also reduces the processing speed.
- the particle electrode filler amount is 50 g; the current density is 30 to 45 mA/cm 2 , and the reaction contact time is 1 to 5 h.
- the treatment technology provided by the invention Compared with the single electrochemical oxidation, the treatment technology provided by the invention has high degradation rate of COD (chemical oxygen demand), remarkable biodegradability, and significant synergistic effect between ozone and electrochemical oxidation.
- COD chemical oxygen demand
- the activated carbon particles are in a flowing, dispersed state, and a repolarized particle electrode is induced to form under a high gradient electric field, and the mass transfer in the solution can be increased.
- the treatment process of the invention does not require the use of chemicals and electrolytes in the treatment process, has simple post-treatment, small floor space, strong processing capability and convenient management, and is convenient for scale expansion.
- the aspect ratio of the electrodes in the electrochemical reactor used in the present invention is greatly increased, and has higher current efficiency and processing efficiency per unit time.
- the treatment method provided by the invention is particularly suitable for treating pesticide wastewater treatment with high salt and COD content, and can be used as a pretreatment technology or as an advanced treatment technology.
- FIG. 1 is a schematic view of a wastewater treatment device of the present invention
- 3 is a COD degradation process of chemical wastewater (mainly containing N,N-dimethylformamide, accounting for about 60 to 70% by mass of the organic component in the wastewater) by electrochemical oxidation alone and ozone-electrochemical combination of the present invention.
- Fig. 4 is a graph showing the COD degradation rate of chemical wastewater alone (mainly containing phenol, accounting for about 65 mass% of the organic components in the wastewater) by electrochemical oxidation alone and in the present invention.
- a waste water treatment device as shown in FIG. 1 which comprises an ozone generator 1, a three-dimensional electrode reactor 2 and a DC stabilized power supply 9, wherein the three-dimensional electrode reactor 2 is a square body having a volume of 1.5 L and is made of engineering plastics.
- the three-dimensional electrode reactor 2 is a square body having a volume of 1.5 L and is made of engineering plastics.
- the cathode 4 is provided with a waste liquid feed port 6 through the cavity wall of the three-dimensional electrode reactor 2 And sampling port 5.
- the ozone generator 1 and the three-dimensional electrode reactor 2 are connected by a rubber hose, and the ozone generated by the ozone generator 1 is sent to the ozone aeration head 8 via the rubber hose, and the copper between the three-dimensional electrode reactor 2 and the regulated power source 9 is made of copper. Thread connection.
- the ozone generator was turned on, and the amount of ozone generated was set to 25 mg/min, and the timing was started.
- a certain amount of water sample was taken from the sampling port 5 every 1 hour to analyze and detect the COD and BOD 5 (biochemical oxygen demand).
- the change of COD removal rate with treatment time is shown in Fig. 2 (water sample 1), and the change of BOD 5 /COD before and after water sample treatment is shown in Table 1.
- Comparative Example 1 The operations of Comparative Example 1 were the same as in Example 1 except that the ozone generator 1 was not turned on.
- the ozone generator is turned on, the ozone generation amount is set to 25 mg/min, and the timing is started, and a certain amount of water sample is taken from the sampling port 5 at the beginning of the timing and every 1 hour after the start to analyze and detect the COD and BOD 5 .
- the change of COD removal rate with treatment time is shown in Fig. 3.
- the change of BOD 5 /COD before and after water sample treatment is shown in Table 1 (water sample 2).
- Comparative Example 2 The operations of Comparative Example 2 were the same as in Example 2 except that the ozone generator 1 was not turned on.
- the ozone generator is turned on, the ozone generation amount is 25 mg/min, and the start of the meter is started.
- a certain amount of water sample is taken from the sampling port 5 to analyze and detect the COD and BOD 5 .
- the change of COD removal rate with treatment time is shown in Fig. 4.
- the change of BOD 5 /COD before and after water sample treatment is shown in Table 1 (water sample 3).
- Comparative Example 3 Each operation of Comparative Example 3 was the same as that of Example 3 except that the ozone generator 1 was not turned on.
- Table 1 Treatment of wastewater by separate electrochemical oxidation and ozone-electrochemical combination of the present invention, respectively, with changes in BOD 5 /COD values before and after treatment.
- the device and method of the invention can be widely applied to high-concentration and high-salt waste represented by pesticide wastewater
- the treatment of water can effectively improve the biodegradability of pesticide wastewater, reduce its toxicity, and the reaction is fast, does not require complicated treatment process, high chemical consumption, and the treatment cost is effectively controlled, so it can be applied on a large scale and has a wide range. prospect.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
一种废水处理装置以及采用该装置处理废水的方法。该装置采用了臭氧-三维电极联用技术来处理高浓高盐废水,其包括臭氧发生装置(1)、三维电极反应器(2)以及直流稳压电源(9)。采用该装置,通过在三维电极反应器(2)的阴极部(4)附近进行臭氧曝气的方式,不仅可通过臭氧进行氧化、同时能使臭氧化空气中的氧气在阴极反应生成双氧水,从而与臭氧发生协同作用来进一步改善降解效果。废水通过在电解过程中产生的H2O2和氧化性极强的羟基自由基作用下,迅速氧化降解为可生化处理的小分子有机物。
Description
本发明涉及一种废水处理装置,特别涉及一种用于处理高浓高盐废水的臭氧-三维电极联用废水处理装置,本发明还涉及通过该废水处理装置处理高浓高盐废水的方法。
农药废水作为典型的高浓有机工业废水,具有有机污染物浓度高、可生化性差、成分复杂、难降解物质多、无机盐浓度高等特点,不适用于采用传统的物化和生物处理方法进行处理。采用适当的预处理手段提高农药废水的可生化性,降低毒性是农药废水处理的关键。高级氧化法反应快速,是一种绿色处理技术,因而与现有技术相比,在农药废水预处理方面具有较大优势。
高级氧化法的原理是在水中产生羟基自由基,该羟基自由基·OH氧化还原电位高,可达2.8V,具有可以与有机物快速反应,氧化选择性小,适用范围广,能够氧化一系列含一个或多个双键的有机物的优点。尽管高级氧化过程能氧化难降解有机物,但其复杂的处理工艺、较高的化学消耗和处理成本阻碍了其大规模应用。
电化学氧化法是指通过阳极反应直接降解有机物或利用电极表面产生的强氧化剂如羟基自由基、H2O2等使有机物降解的方法。与常规的二维电极相比,三维电极通过向主电极板间装填粒子电极并使其表面带电,可提高电流效率,具有占地面积小、处理能力强等优势。臭氧作为一种强氧化剂可直接将有机物氧化分解,但其与有机物的反应具有较强的选择性,往往只能使废水中大分子有机物转变为小分子有机物,产生羟基自由基的
效率也较低。
发明内容
鉴于以上所述,本发明提出将臭氧与三维电极联用,既可提高溶液中臭氧的溶解度与分解速率,同时也能够提高电化学反应器中羟基自由基的产率,从而实现更加理想的废水处理效果。
本发明的技术原理如下:
臭氧-三维电极联用工艺是一种重要的高级氧化方法,臭氧和电化学的协同作用可使具有极强氧化作用的羟基自由基产率有较大提高,部分有机物也可在阳极直接氧化。从反应机理角度分析,首先臭氧化空气中的氧气在阴极产生H2O2,与臭氧作用产生羟基自由基而使臭氧分解,反应如下:
O2+H2O+2e-→HO2
-+OH-
HO2
-+H2O→H2O2+OH-
O3+HO2
-→·OH+O2
-+O2
羟基自由基可与有机物发生如下反应:
RH+·OH→H2O+·R
·OH+RH→·RH++OH-
可见,臭氧与电化学氧化具有明显的协同作用,可促进羟基自由基的生成,另外,反应过程中的pH、电流密度等也是影响有机污染物去除效果的因素。
具体地,本发明根据上述反应原理,通过以下技术手段,实现了本发明:
根据本发明的一个实施方式,如图1所示,提供了一种废水处理装置,其包括臭氧发生器、三维电极反应器和稳压电源,其中,所述三维电极反应器优选为正方体,容积1.5L,其内设有臭氧布气底托,在所述臭氧布气底托下方设有臭氧曝气头,其上方设有粒子电极、主电极,其中主电极为
阳极、主电极为阴极,在所述三维电极反应器2的腔体壁上贯通设置有废液进料口和取样口。
根据本发明的一个实施例,提供了一种废水处理装置,臭氧发生器1与三维电极反应器2之间以橡胶软管连接,由于臭氧的密度大于空气,因此臭氧发生器1与所述橡胶软管的接口位置优选地在臭氧发生器下部,其所产生的臭氧经由该橡胶软管输送至臭氧曝气头,所述三维电极反应器2与所述稳压电源之间以导线连接,本发明的污水处理装置拆装方便,占地面积小。
根据本发明的一个实施例,提供了一种废水处理装置,进一步,三维电极反应器2腔体壁是由工程塑料制造的。
根据本发明的一个实施例,提供了一种废水处理装置,进一步,三维电极反应器2中的主电极包含阳电极和阴电极,其中阳电极为钛基氧化铱阳极,阴电极为石墨阴极。所述电极均具有良好的化学稳定性、电化学稳定性、导电性、机械性能,且价格便宜。
根据本发明的一个实施例,提供了一种废水处理装置,进一步,三维电极反应器中粒子电极的填料为活性炭,其化学稳定性好,可耐强酸和强碱,能经受水浸、高温,比重小于水。
根据本发明的一个实施例,提供了一种废水处理装置,进一步,导线为铜质导线。
根据本发明的一个实施方式,提供了一种废水处理方法,其采用如上所述的装置,并具体包括下列步骤:
a)废水经三维电极反应器2的废液进料口6流入,至浸没主电极,优选地,处理容量为1L;
b)由臭氧发生器制得的臭氧化空气经臭氧曝气头在阴极部均匀曝气;
c)接通稳压电源,调节电流至处理所需。
根据本发明的一个实施例,提供了一种废水处理方法,进一步,三维
电极反应器内所处理的污水为高浓高盐废水,其pH范围是9~12,TDS含量范围是5~15g/L。
根据本发明的一个实施例,提供了一种废水处理方法,进一步,臭氧产生量被设置为10~30ml/min,若臭氧产生量超过30ml/min,导致成本上升,且不能得到充分利用,造成成本上升,但臭氧产生量低于10ml/min,导致处理速度下降且效果不佳,因此,臭氧产生量优选设置为25ml/min;极板间距为2~5cm,主电极极板面积为80~120cm2,面积小于80cm2则处理速度慢,但若高于120cm2则处理效果不佳,因此主电极极板面积优选为100cm2;粒子填料电极量为40~60g,低于40g则处理效果不佳,高于60g不仅成本提高,而且处理速度降低,优选地,粒子电极填料量为50g;电流密度为30~45mA/cm2,反应接触时间为1~5h。
本发明所提供的处理技术与单独电化学氧化相比,废水COD(化学需氧量)降解率高,可生化性明显提高,臭氧与电化学氧化之间实现了明显的协同效应。
通过在三维电极反应器中阴极部曝臭氧化空气,使活性炭颗粒处于流动、分散态,在高梯度电场下感应形成复极化粒子电极,同时可增加在溶液中的传质。
本发明的处理工艺在处理过程中无需使用化学药品和电解质、后期处理简单、占地面积小、处理能力强且管理方便,便于规模扩大。
本发明使用的电化学反应器中电极的面体比大幅增加,具有较高电流效率和单位时间处理效率。
本发明所提供的处理方法特别适用于处理盐和COD含量高的农药废水处理,既可作为预处理技术,也可作为深度处理技术。
图1为本发明的废水处理装置示意图
图2为单独电化学氧化和本发明的臭氧-电化学联用处理化学污水(主要为氯乙酸甲酯,约占废水中有机组分的70质量%)的COD降解率对比
的曲线图。
图3为单独电化学氧化和本发明的臭氧-电化学联用处理化学废水(主要含N,N-二甲基甲酰胺,约占废水中有机组分的60~70质量%)的COD降解率的对比的曲线图。
图4为单独电化学氧化和本发明的臭氧-电化学联用处理化学废水(主要含苯酚,约占废水中有机组分的65质量%)的COD降解率对比的曲线图。
附图标记说明
1 臭氧发生器
2 三维电极反应器
3 阴极
4 阳极
5 取样口
6 废液进料口
7 粒子电极
8 臭氧曝气头
9 直流稳压电源
10 臭氧布气底托
实施例1
采用如图1所示的废水处理装置,其包括臭氧发生器1、三维电极反应器2和直流稳压电源9,其中,该三维电极反应器2为正方体,容积1.5L,由工程塑料制成,其内设有臭氧布气底托10,在臭氧布气底托下方设有臭氧曝气头8,其上方设有粒子电极7、主电极3和4,即钛基氧化铱阳极3和石墨阴极4,在三维电极反应器2的腔体壁上贯通设置有废液进料口6
和取样口5。臭氧发生器1与三维电极反应器2之间以橡胶软管连接,其所产生的臭氧经由该橡胶软管输送至臭氧曝气头8,三维电极反应器2与稳压电源9之间以铜质导线连接。
称取50g经过预处理的活性炭(5.0mm柱炭,长径比为1.2,比表面积为500~600m2/g)置于三维电极反应器2中臭氧布气底托10上方,然后由废液进料口6处注入1L综合污水(主要为氯乙酸甲酯,约占废水中有机组分的70质量%),该水样pH为12、TDS(总溶解固体)含量为5.53g/L,将固定极板间距设为2cm,接通稳压电源并调节至极板上电流密度为40mA/cm2。随后,打开臭氧发生器,设臭氧生成量为25mg/min,并开始计时。计时开始时及计时开始后每隔1h从取样口5处取一定量水样分析检测其COD、BOD5(生化需氧量)。COD去除率随处理时间的变化如图2(水样1)所示,水样处理前后BOD5/COD变化如表1所示。
对比例1
对比例1的各项操作除不打开臭氧发生器1以外,与实施例1相同。
实施例2
采用如图1所示的装置,称取50g经过预处理的活性炭(5.0mm柱炭,长径比为1.2,比表面积为500~600m2/g)置于三维电极反应器2中臭氧布气底托10上方,由废液进料口6处接入1L废水(主要含N,N-二甲基甲酰胺,约占废水中有机组分的60~70质量%),该水样pH为9,TDS含量为11.82g/L,将固定极板间距设为2cm,接通稳压电源并调节至极板上电流密度为40mA/cm2。随后打开臭氧发生器,设置臭氧生成量为25mg/min,并开始计时,且计时开始时及开始后每隔1h从取样口5处取一定量水样分析检测其COD、BOD5。COD去除率随处理时间的变化如图3所示,水样处理前后BOD5/COD变化如表1(水样2)所示。
对比例2
对比例2的各项操作除不打开臭氧发生器1以外,与实施例2相同。
实施例3
采用如图1所示的装置,称取50g经过预处理的活性炭(5.0mm柱炭,长径比为1.2,比表面积为500~600m2/g)置于三维电极反应器2中臭氧布气底托10上方,由废液进料口6处接入1L废水(主要含苯酚,约占废水中有机组分的80质量%),该水样pH为10,TDS含量为9.07g/L,将固定极板间距设为2cm,接通稳压电源并调节至极板上电流密度为40mA/cm2。随后打开臭氧发生器,将臭氧生成量为25mg/min,并开始计,计时开始时及开始后每隔1h从取样口5处取一定量水样分析检测其COD、BOD5。COD去除率随处理时间的变化如图4所示,水样处理前后BOD5/COD变化如表1(水样3)所示。
对比例3
对比例3的各项操作除不打开臭氧发生器1以外,与实施例3相同。
表1:分别通过单独电化学氧化和本发明的臭氧-电化学联用处理废水,其BOD5/COD值在处理前后的变化。
关于以上所述的仪器及操作步骤和参数,应理解的是,其为描述性而非限定性的,可通过等价置换的方式在以上说明书及权利要求所述的范围内做出修改。即,本发明的范围应参照所附权利要求的全部范围而确定,而不是参照上面的说明而确定。总之,应理解的是本发明能够进行多种修正和变化。
产业上的实用性
本发明的装置和方法可广泛应用于以农药废水为代表的高浓高盐废
水的处理,能够有效提高农药废水的可生化性,降低其毒性,且反应快速,不需要复杂的处理工艺、高化学消耗,处理成本得到了有效的控制,因此能够大规模应用,具有广阔的前景。
Claims (10)
- 一种废水处理装置,其特征在于,包括臭氧发生器(1)、三维电极反应器(2)和直流稳压电源(9),其中,在所述三维电极反应器(2)内设有臭氧布气底托(10),在所述臭氧布气底托下方设有臭氧曝气头(8),在所述臭氧曝气头(8)上方设有粒子电极(7)、主电极,在所述三维电极反应器(2)的腔体壁上贯通设置有废液进料口(6)和取样口(5)。
- 根据权利要求1所述的废水处理装置,其特征在于,所述臭氧发生器(1)与所述三维电极反应器(2)之间以橡胶软管连接,所述三维电极反应器(2)与所述直流稳压电源(9)之间以导线连接。
- 根据权利要求1所述的废水处理装置,其特征在于,所述三维电极反应器(2)腔体壁是由工程塑料制造的。
- 根据权利要求书1所述的废水处理装置,其特征在于,所述所述主电极包含阳电极和阴电极,所述阳电极为钛基氧化铱阳极,所述阴电极为石墨阴极。
- 根据权利要求书1所述的废水处理装置,其特征在于,所述所述粒子电极填料(7)为活性炭。
- 根据权利要求书2所述的废水处理装置,其特征在于,所述导线为铜质导线。
- 一种废水处理方法,其特征在于,采用如权利要求1~6的任一项所述的装置,并包括下列步骤:a)废水经所述三维电极反应器(2)的所述废液进料口(6)流入,至浸没所述主电极;b)由所述臭氧发生器(1)制得的臭氧化空气经所述臭氧曝气头(8)在所述阴极部(4)均匀曝气;c)接通所述直流稳压电源(9),调节电流至处理所需。
- 根据权利要求书7所述的废水处理方法,其特征在于,所述三维电 极反应器(2)内所处理的污水为高浓高盐废水,其pH范围是9~12,TDS含量范围是5~15g/L。
- 根据权利要求书7或8所述的废水处理方法,其特征在于,臭氧产生量被设置为10~30ml/min,所述主电极极板间距为2~5cm,面积为80~120cm2,所述粒子电极的填料量为40~60g,电流密度为30~45mA/cm2,反应接触时间为1~5h。
- 根据权利要求书6或7所述的废水处理方法,其特征在于:臭氧产生量被设置为25ml/min,所述主电极极板面积为100cm2,所述粒子电极填料量为50g。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510816139.8 | 2015-11-23 | ||
CN201510816139.8A CN105253960A (zh) | 2015-11-23 | 2015-11-23 | 一种废水处理装置及通过该装置处理废水的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017088534A1 true WO2017088534A1 (zh) | 2017-06-01 |
Family
ID=55093964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/095954 WO2017088534A1 (zh) | 2015-11-23 | 2016-08-19 | 一种废水处理装置及通过该装置处理废水的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105253960A (zh) |
WO (1) | WO2017088534A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110436576A (zh) * | 2019-08-22 | 2019-11-12 | 深圳市世清环保科技有限公司 | 除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置 |
CN112321037A (zh) * | 2020-11-17 | 2021-02-05 | 连云港华禹环保科技有限公司 | 一种臭氧耦合三维电催化氧化的废水处理装置和方法 |
CN112724460A (zh) * | 2020-12-25 | 2021-04-30 | 华东师范大学 | 一种三维电化学降解聚对苯二甲酸乙二醇酯的方法 |
CN113493238A (zh) * | 2021-07-15 | 2021-10-12 | 浙江大学 | 一种三维电极协同过硫酸盐高级氧化技术处理垃圾渗滤液生化尾水的方法 |
CN113666545A (zh) * | 2021-07-22 | 2021-11-19 | 中国大唐集团科学技术研究院有限公司中南电力试验研究院 | 一种以edta作为清洗介质酸洗有机废液的处理方法 |
CN115092993A (zh) * | 2022-07-04 | 2022-09-23 | 科盛环保科技股份有限公司 | 一种电催化耦合臭氧催化反应器 |
CN115893709A (zh) * | 2022-10-19 | 2023-04-04 | 燕山大学 | 一种基于电场诱导的臭氧高级氧化法处理苯胺废水的方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105253960A (zh) * | 2015-11-23 | 2016-01-20 | 雅本化学股份有限公司 | 一种废水处理装置及通过该装置处理废水的方法 |
CN107200393A (zh) * | 2017-06-16 | 2017-09-26 | 扬州大学 | 一种处理高浓度难降解有机废水的高级氧化装置 |
CN108840404A (zh) * | 2018-07-04 | 2018-11-20 | 北京林业大学 | 一种用于反渗透高盐浓水的单极性三维电极耦合臭氧一体式反应装置及应用 |
CN108928890B (zh) * | 2018-08-20 | 2021-12-17 | 四川大学 | 一种三维电极耦合氧化剂处理难降解废水的方法 |
CN111115916A (zh) * | 2018-10-31 | 2020-05-08 | 中石化节能环保工程科技有限公司 | 一种处理油气田压裂返排液的装置及方法 |
CN110078269A (zh) * | 2019-04-23 | 2019-08-02 | 江苏大学 | 一种三维电极协同臭氧处理洗衣废水的处理系统及工艺 |
CN110156120B (zh) * | 2019-06-26 | 2023-04-25 | 中南大学 | 污水处理装置及处理方法 |
CN111138057B (zh) * | 2020-01-07 | 2022-04-26 | 上海交通大学 | E+-微纳米气泡臭氧深度处理含油污泥的装置及方法 |
CN111646625B (zh) * | 2020-06-19 | 2023-04-18 | 见嘉环境科技(苏州)有限公司 | 一种多级电催化蒸发的水处理装置及使用方法 |
CN113173626A (zh) * | 2021-04-21 | 2021-07-27 | 中国石油大学(华东) | 一种难处理废水三维电化学-过臭氧耦合处理装置与废水处理方法 |
CN113461114A (zh) * | 2021-07-08 | 2021-10-01 | 中国科学技术大学 | 一种处理含铜有机废水并回收铜的三维电化学方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2928876Y (zh) * | 2005-07-21 | 2007-08-01 | 上海市政工程设计研究院 | 一种三维过电位电极电解装置 |
WO2008056337A1 (en) * | 2006-11-10 | 2008-05-15 | Element Six Limited | Electrochemical apparatus having a forced flow arrangement |
CN101514040A (zh) * | 2009-04-03 | 2009-08-26 | 中南大学 | 一种三维电极反应器及其在难降解有机废水处理中的应用 |
CN103539234A (zh) * | 2013-11-06 | 2014-01-29 | 中国海洋石油总公司 | 一种压裂返排液的集成处理方法 |
CN103754990A (zh) * | 2013-12-19 | 2014-04-30 | 天津工业大学 | 一种用于难生物降解有机废水治理的复极性三维电极耦合处理装置 |
CN105253960A (zh) * | 2015-11-23 | 2016-01-20 | 雅本化学股份有限公司 | 一种废水处理装置及通过该装置处理废水的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2564547Y (zh) * | 2002-01-21 | 2003-08-06 | 中山大学 | 三维电极反应器 |
JP4662327B2 (ja) * | 2003-09-29 | 2011-03-30 | 三菱重工環境・化学エンジニアリング株式会社 | 排水処理方法及び装置 |
CN201296697Y (zh) * | 2008-11-24 | 2009-08-26 | 浙江大学 | 有机废水的臭氧/电化学一体化处理装置 |
CN103304018B (zh) * | 2013-06-14 | 2015-02-25 | 北京赛科康仑环保科技有限公司 | 一种臭氧尾气强化臭氧氧化废水处理的方法及装置 |
-
2015
- 2015-11-23 CN CN201510816139.8A patent/CN105253960A/zh active Pending
-
2016
- 2016-08-19 WO PCT/CN2016/095954 patent/WO2017088534A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2928876Y (zh) * | 2005-07-21 | 2007-08-01 | 上海市政工程设计研究院 | 一种三维过电位电极电解装置 |
WO2008056337A1 (en) * | 2006-11-10 | 2008-05-15 | Element Six Limited | Electrochemical apparatus having a forced flow arrangement |
CN101514040A (zh) * | 2009-04-03 | 2009-08-26 | 中南大学 | 一种三维电极反应器及其在难降解有机废水处理中的应用 |
CN103539234A (zh) * | 2013-11-06 | 2014-01-29 | 中国海洋石油总公司 | 一种压裂返排液的集成处理方法 |
CN103754990A (zh) * | 2013-12-19 | 2014-04-30 | 天津工业大学 | 一种用于难生物降解有机废水治理的复极性三维电极耦合处理装置 |
CN105253960A (zh) * | 2015-11-23 | 2016-01-20 | 雅本化学股份有限公司 | 一种废水处理装置及通过该装置处理废水的方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110436576A (zh) * | 2019-08-22 | 2019-11-12 | 深圳市世清环保科技有限公司 | 除氰粒子电极及制备方法和处理高浓度含氰废水的方法及装置 |
CN112321037A (zh) * | 2020-11-17 | 2021-02-05 | 连云港华禹环保科技有限公司 | 一种臭氧耦合三维电催化氧化的废水处理装置和方法 |
CN112724460A (zh) * | 2020-12-25 | 2021-04-30 | 华东师范大学 | 一种三维电化学降解聚对苯二甲酸乙二醇酯的方法 |
CN112724460B (zh) * | 2020-12-25 | 2022-02-11 | 华东师范大学 | 一种三维电化学降解聚对苯二甲酸乙二醇酯的方法 |
CN113493238A (zh) * | 2021-07-15 | 2021-10-12 | 浙江大学 | 一种三维电极协同过硫酸盐高级氧化技术处理垃圾渗滤液生化尾水的方法 |
CN113666545A (zh) * | 2021-07-22 | 2021-11-19 | 中国大唐集团科学技术研究院有限公司中南电力试验研究院 | 一种以edta作为清洗介质酸洗有机废液的处理方法 |
CN115092993A (zh) * | 2022-07-04 | 2022-09-23 | 科盛环保科技股份有限公司 | 一种电催化耦合臭氧催化反应器 |
CN115092993B (zh) * | 2022-07-04 | 2023-10-20 | 科盛环保科技股份有限公司 | 一种电催化耦合臭氧催化反应器 |
CN115893709A (zh) * | 2022-10-19 | 2023-04-04 | 燕山大学 | 一种基于电场诱导的臭氧高级氧化法处理苯胺废水的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105253960A (zh) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017088534A1 (zh) | 一种废水处理装置及通过该装置处理废水的方法 | |
CN107117690B (zh) | 电催化氧化处理难降解污染物的装置及方法 | |
Zhu et al. | A self-sufficient electro-Fenton system with enhanced oxygen transfer for decontamination of pharmaceutical wastewater | |
CN102976451A (zh) | 一种原位电产生h2o2协同o3氧化的废水处理装置及方法 | |
CN103693788B (zh) | 一种工业污水处理一体机装置 | |
CN102070230A (zh) | 一种三维电极电芬顿去除水中有机物的方法及装置 | |
CN106396030A (zh) | 利用三维电极—电芬顿耦合处理印染废水的方法 | |
JP2014504205A (ja) | 廃液処理用の炭素床電解槽及びそのプロセス | |
CN104609532B (zh) | 一种饮用水处理过程中去除PPCPs的方法 | |
CN105084648A (zh) | 一种难生物降解污水的处理方法 | |
CN101781001A (zh) | 一种两段式电解法处理废水的方法及其装置 | |
CN111517428B (zh) | 一种脱除pta废水中重金属离子的处理工艺及系统 | |
CN105152429A (zh) | 一种高效去除工业废水中有机污染物的方法 | |
Pahat | Optimization of cod and colour removal from landfill leachate by electro-fenton method | |
CN204848373U (zh) | 一种新型三维电芬顿水处理装置 | |
CN102942243A (zh) | 三维电极与电类Fenton联用的废水处理方法 | |
CN103288186B (zh) | 一种多电极共同作用处理含氯有机废水的电解装置 | |
CN101811758A (zh) | 一种三维电极与电类芬顿联用的废水处理方法 | |
CN201317696Y (zh) | 难降解有机废水电解氧化装置 | |
CN113697966A (zh) | 一种海水养殖废水的处理系统及其处理方法 | |
CN105198049A (zh) | 一种污水处理的方法 | |
CN110921980B (zh) | 一种电化学强化臭氧-生物活性炭水处理设备及利用其处理水的方法 | |
CN104803444A (zh) | 一种高级氧化治污技术及设备 | |
JP2009034625A (ja) | 排水処理装置及び方法 | |
JP4616594B2 (ja) | 水処理方法および水処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16867761 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16867761 Country of ref document: EP Kind code of ref document: A1 |