CN110375775A - 电磁感应式编码器 - Google Patents

电磁感应式编码器 Download PDF

Info

Publication number
CN110375775A
CN110375775A CN201910292772.XA CN201910292772A CN110375775A CN 110375775 A CN110375775 A CN 110375775A CN 201910292772 A CN201910292772 A CN 201910292772A CN 110375775 A CN110375775 A CN 110375775A
Authority
CN
China
Prior art keywords
coil
magnetic flux
multiple connection
scale
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910292772.XA
Other languages
English (en)
Other versions
CN110375775B (zh
Inventor
森洋笃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanpo Co Ltd
Original Assignee
Sanpo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanpo Co Ltd filed Critical Sanpo Co Ltd
Publication of CN110375775A publication Critical patent/CN110375775A/zh
Application granted granted Critical
Publication of CN110375775B publication Critical patent/CN110375775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2086Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of two or more coils with respect to two or more other coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • G01D5/206Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element constituting a short-circuiting element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种电磁感应式编码器,其中,检测头具有产生磁通量的驱动线圈,其中标尺具有多个连接线圈,所述多个连接线圈在测量轴方向上以基础周期λ排列,并且与驱动线圈产生的磁通量电磁耦合,并且产生在测量轴方向上以预定空间周期波动的磁通量,其中,检测头具有多个接收线圈,所述多个接收线圈在测量轴方向上以基础周期λ排列,并且与通过所述多个连接线圈产生的磁通量电磁耦合,且检测磁通量的相位,其中,当所述多个连接线圈的线宽中心之间的距离为“L”且所述多个连接线圈的线宽为“d”时,满足λ/2–2d<L<λ/2。

Description

电磁感应式编码器
技术领域
在此描述的实施例的某方面涉及电磁感应式编码器。
背景技术
在检测头和标尺之间使用电磁连接的电磁感应式编码器是已知的,(例如,参见日本专利申请公开No.H10-318781,日本专利申请公开No.2001-255106和日本专利申请公开No.2016-206086)。当电流在检测头的驱动线圈中流动时,产生磁通量。因此,标尺的连接线圈产生电动电流。接下来,由于连接线圈的电动电流产生的磁通量,检测头的接收线圈产生电动电流。线圈之间的每个电磁连接根据检测头和标尺之间的相对位移量而波动。由此,获得具有与连接线圈的间距相同的间距的正弦波信号。当电插值(interpolate)正弦波信号时,可以使用正弦波信号作为最小分辨率的数字量。而且,可以测量检测头的相对位移量。
发明内容
据认为加宽连接线圈的线宽能确保电磁感应式编码器中的信号强度。然而,当连接线圈的线宽被加宽时,插值精度可能降低并且测量精度可能降低。
在本发明的一个方面,一个目的在于提供一种电磁感应式编码器,其能够实现高测量精度并确保信号强度。
根据本发明的一方面,提供一种电磁感应式编码器,包括:检测头,其具有矩形形状;以及标尺,其具有矩形形状,其中,检测头面对标尺,并且配置为相对于标尺在测量轴方向上相对移动,其中,检测头具有配置为产生磁通量的驱动线圈,其中,标尺具有多个连接线圈,所述多个连接线圈在测量轴方向上以基础周期λ排列,并且配置为与驱动线圈产生的磁通量电磁耦合,并且产生在测量轴方向上以预定空间周期波动的磁通量,其中,检测头具有多个接收线圈,所述多个接收线圈在测量轴方向上以基础周期λ排列,并且配置为与通过所述多个连接线圈产生的磁通量电磁耦合,且检测磁通量的相位,其中,当所述多个连接线圈的一个线宽中心和另一个线宽中心之间的距离为“L”且所述多个连接线圈的线宽为“d”时,满足λ/2–2d<L<λ/2。
附图说明
图1A示出电磁感应式编码器的结构;
图1B示出接收线圈;
图2A示出彼此相邻的连接线圈之间的磁场;
图2B示出接收线圈的基础周期;
图2C示出接收信号的输出信号;
图3示出连接线圈的尺寸;
图4示出连接线圈的线宽变宽的情况;
图5示出连接线圈的电流密度的模拟结果;
图6示出在外周中流动的电流产生的磁场;
图7A和图7B示出连接线圈的线宽和λ/2之间的关系;
图8A至图8C示出连接线圈的线宽和λ/2之间的关系;
图9A和图9B示出连接线圈的另一形状;
图10A和图10B示出连接线圈的宽度和驱动线圈的宽度之间的关系;
图11A和图11B示出连接线圈的宽度和驱动线圈的宽度之间的关系;
图12示出修改实施例;以及
图13A和图13B示出连接线圈的线宽和λ/2之间的关系。
具体实施方式
以下是参考附图对实施例的说明。
图1A示出了使用检测头和标尺之间的电磁连接的电磁感应式编码器100的结构。图1B示出下面描述的接收线圈。
电磁感应式编码器100具有检测头10和标尺20。检测头10相对于标尺20在测量轴方向上相对移动。检测头10和标尺20具有平板形状,并且通过预定的间隙彼此面对。电磁感应式编码器100具有驱动信号发生器30和位移量测量器40等。在图1A和图1B中,X轴表示检测头10的位移方向(测量轴)。在标尺20所形成的平面中,Y轴垂直于X轴。
检测头10具有驱动线圈11、接收线圈12等。驱动线圈11是矩形线圈,其纵向方向为X轴。如图1B所示,在驱动线圈11内部,接收线圈12沿X轴方向形成检测头10的以基础周期λ重复的检测环圈(detection loop),其为具有基础周期λ的正正弦波图案和负正弦波图案,其由在检测头10的两面上形成的两个图案13a和13b以及连接图案13a和图案13b的贯通配线14形成。在该实施例中,例如,接收线圈12包括三相接收线圈12a至12c,其空间相位在X轴方向上彼此偏移。接收线圈12a至12c通过星形连接方式(star connection)连接。
在标尺20中,具有矩形形状的多个连接线圈21沿着X轴以基础周期λ排列。每个连接线圈21是封闭的环形线圈。连接线圈21与驱动线圈11电磁耦合,并且与接收线圈12电磁耦合。
驱动信号发生器30产生单相AC驱动信号,并将产生的驱动信号提供至驱动线圈11。在这一情况下,磁通量在驱动线圈11中产生。由此,在多个连接线圈21中产生电动电流。多个连接线圈21与驱动线圈11产生的磁通量电磁耦合,并且产生沿X轴方向以预定的空间周期波动的磁通量。连接线圈21产生的磁通量在接收线圈12a至12c中产生电动电流。每个线圈之间的电磁耦合根据检测头10的位移量波动。由此,获得具有与基础周期λ相同的周期的正弦波信号。因此,接收线圈12检测由多个连接线圈21产生的磁通量的相位。位移量测量器40可以通过电内插正弦波信号将正弦波信号用作具有最小分辨率的数字量。由此,位移量测量器40测量检测头10的位移量。
一个轨道由驱动线圈11、接收线圈12和连接线圈21构成,它们彼此电磁耦合。在实施例中,电磁感应式编码器100具有多个轨道Tr1至Tr3。多个轨道Tr1至Tr3在Y轴方向上以预定间隔排列。轨道Tr1至Tr3中的基础周期λ彼此不同。由此,电磁感应式编码器100用作绝对型编码器。
图2A示出彼此相邻的连接线圈21之间的磁场。如图2A所示,在彼此相邻的连接线圈21之间产生磁场。连接线圈21之间的磁场的方向与连接线圈21内的磁场的方向相反。如上文所述,连接线圈21以基础周期λ排列。如图2B所示,接收线圈12a至12c也以基础周期λ排列。因此,如图2C所示,接收线圈12a至12c的每个输出信号是正弦波信号,其周期为基础周期λ。基础周期λ是在X轴方向上彼此相邻的连接线圈21的中心之间的距离。换句话说,基础周期λ是连接线圈21中的一个在X轴上的正侧边缘与紧邻其的另一个连接线圈21的在X轴上的正侧边缘之间的距离。接收线圈12的基础周期λ是构成接收线圈12的正弦波图案的周期。
例如,如图3所示,连接线圈21具有这样的尺寸,其中,彼此相邻的两个连接线圈21的线宽中心之间的间隔是λ/2。由电磁感应式编码器的结构确定的信号周期比光电式编码器的信号周期更粗糙。因此,电磁感应式编码器对插值精度的要求不高。然而,最近,对高精度的要求有所提高。对于电磁感应式编码器,需要与光电式编码器相当的插值精度。重要的是,由检测头的移动引起的信号是否具有正弦波形状而没有失真,信号的强度是否合适,信号强度的波动是否被抑制,以满足需求。然而,这一点并没有被严格地考虑。
因此,例如,如图4所示,连接线圈21的线宽变宽。由此,线圈的电阻分量降低。并且,可以增强信号强度。另外,可以对由在其制造中可能发生的线圈的缺陷引起的信号强度的波动进行抑制。然而,已经确认,当线宽变宽时,难以校正的基础周期λ的1/3周期误差(λ/3误差)会增加,并且插值精度降低。因此,难以同时实现高测量精度和并确保信号强度。确保信号强度包括信号绝对值应大且应抑制信号波动。
本发明人发现,连接线圈21中的电流密度在线圈的内周侧较低,并且在线圈的外周侧较高。图5示出连接线圈21的电流密度的模拟结果。在图5中,图案越深,电流密度越高。数值单位为A/m2。从图5的结果可见,可以理解,连接线圈21的内周侧的电流密度低,并且连接线圈21的外周侧的电流密度高。以这种方式,沿着连接线圈21的线宽方向,电流密度发生变化。
当连接线圈21的线宽变宽以确保信号强度时,对于由在线圈的外周中流动的电流产生的磁场,正侧区域和负侧区域相变得不平衡,如图6所示。并且,正弦波和理论正弦波不同。由此,会降低插值精度。当线宽窄时,电流密度的分布是可忽略的。然而,已经确认,当线宽增大时,电流密度的分布是显著的。例如,在线宽为200μm或更大的连接线圈21中的电流分布是显著的。
因此,如图7A所示,当彼此相邻的两个连接线圈21的线宽中心之间的间隔L是λ/2时,可能不必实现高插值精度。并且因此,如图7B所示,为了抑制电流密度分布的影响,优选的是,电流密度高的线圈边缘部分之间的间隔(>L)是λ/2。例如,优选的是,以基础周期λ排列的接收线圈12的边缘部分位于电流密度高的连接线圈21的边缘部分附近。并且因此,如图8A至图8C所示,当连接线圈21的一个线宽中心与另一线宽中心之间的距离为“L”,且连接线圈的线宽为“d”时,在接收线圈的周期=连接线圈的间隔=信号周期(基本周期λ)的情况下,满足λ/2-2d<L<λ/2。利用该结构,电流密度高的线圈边缘部分之间的间距是λ/2或接近λ/2。在这种情况下,插值精度的恶化被抑制。并且实现了高测量精度。另外,可以拓宽连接线圈21的线宽。因此可以增强信号强度。相应地,可以同时实现高测量精度且确保信号强度。优选地,为了实现更高的插值精度,满足λ/2–3d/2<L<λ/2–d/2。
在该实施例中,连接线圈21具有矩形形状。然而,连接线圈21可具有其他形状。例如,如图9A所示,连接线圈21可以是具有图8的形状的闭合线圈。替代地,如图9B所示,连接线圈21可以是具有环形形状的闭合线圈。在闭合的环状线圈中,线圈的外周侧上的电流密度比线圈的内周侧上的电流密度更高。并且因此,在与接收线圈12电磁耦合的连接线圈21的一部分中,当X轴方向上的线宽中心之间的最大距离为“L”,且连接线圈21的线宽为“d”时,满足λ/2–2d<L<λ/2。利用该结构,电流密度高的线圈边缘部分之间的间距是λ/2或接近λ/2。因此,插值精度的恶化被抑制,且实现了高测量精度。优选地,为了实现更高的插值精度,满足λ/2–3d/2<L<λ/2–d/2。优选地,连接线圈21具有相对于Y轴线性对称的形状。
接下来,将描述检测头10的驱动线圈11的位置和标尺20的连接线圈21的位置之间的关系。有利地是,为了增大检测头10的位置和标尺20的位置之间的相对横向波动的允许量,如图10A所示,当考虑接收线圈12的位置波动时,连接线圈21在Y轴方向上的宽度尽可能地加宽,如图10B所示。然而,如图11A所示,当连接线圈21延伸到驱动线圈11外侧时,延伸部分抵消驱动线圈11的磁场。因此,信号强度降低。并且因此,如图11B所示,优选地,为了确保信号强度,连接线圈21在Y轴方向上的宽度等于或小于驱动线圈11在Y轴方向上的宽度。
(修改实施例)在图1的示例中,接收线圈21在驱动线圈11的内侧。然而,该结构不是限制性的。图12示出接收线圈12不在驱动线圈11的内侧的另一示例。例如,如图12所示,驱动线圈11具有一对驱动线圈11a和驱动线圈11b。接收线圈12在驱动线圈11a和驱动线圈11b之间布置。
驱动线圈11a和11b是在X轴方向延伸的矩形样式。例如,驱动线圈11a和11b连接,使得在驱动线圈11a中流动的电流与在驱动线圈11b中流动的电流相反。例如,电流在驱动线圈11a中逆时针流动,且电流在驱动线圈11b中顺时针流动。
在标尺20中,连接线圈21a和连接线圈21b交替排列。连接线圈21a是闭合的环状线圈,其以基础周期λ排列。并且,连接线圈21a具有第一环状部分22a和第二环状部分23a,第一环状部分22a与驱动线圈11a电磁耦合,第二环状部分23a与接收线圈12电磁耦合。连接线圈21b是闭合的环状线圈,连接线圈21b的相位和连接线圈21a的相位相差180度。并且,连接线圈21b具有第一环状部分22b和第二环状部分23b,第一环状部分22b与驱动线圈11b电磁耦合,第二环状部分23b与接收线圈12电磁耦合。在该修改实施例中,连接线圈21a和连接线圈21b以基础周期λ/2排列。
在该结构中,当满足L=λ/2时,连接线圈21a的边缘和连接线圈21b的边缘彼此接触。在这一情况下,在与接收线圈12电磁耦合的连接线圈21a和21b的一些部分中,X轴方向上的线宽中心之间的最大距离为“L”,且连接线圈21a和21b的线宽为“d”。并且因此,在该修改实施例中,如图13A所示,连接线圈21a和连接线圈21b之间的间隔t被考虑。且,满足L<λ/2。具体地,满足L+d+t=λ/2。且,当“L”尽可能宽时,t为0。当满足t=d时,“L”变为最小,如图13B所示。因此,满足λ/2-2d<L<λ/2–d。在该结构中,电流密度高的线圈边缘部分之间的间距是λ/2或接近λ/2。因此,插值精度的恶化被抑制。并且实现了高测量精度。另外,为了实现更高的插值精度,优选的是,满足λ/2–3d/2<L<λ/2–d。
本发明不限于具体公开的实施例和变型,而是可以包括其他实施例和变型而不脱离本发明的范围。

Claims (5)

1.一种电磁感应式编码器,包括:
检测头,其具有矩形形状;以及
标尺,其具有矩形形状,
其中,检测头面对标尺,并且配置为相对于标尺在测量轴方向上相对移动,
其中,检测头具有配置为产生磁通量的驱动线圈,
其中,标尺具有多个连接线圈,所述多个连接线圈在测量轴方向上以基础周期λ排列,并且配置为与驱动线圈产生的磁通量电磁耦合,并且产生在测量轴方向上以预定空间周期波动的磁通量,
其中,检测头具有多个接收线圈,所述多个接收线圈在测量轴方向上以基础周期λ排列,并且配置为与通过所述多个连接线圈产生的磁通量电磁耦合,且检测磁通量的相位,
其中,当在测量轴方向上的所述多个连接线圈中的一个线宽中心和另一线宽中心之间的距离为“L”,且所述多个连接线圈的线宽为“d”时,满足λ/2–2d<L<λ/2。
2.根据权利要求1所述的电磁感应式编码器,其中,在标尺所形成的平面中的垂直于测量轴方向的方向上的所述多个连接线圈的宽度等于或小于垂直于测量轴方向的方向上的驱动线圈的宽度。
3.根据权利要求1或2所述的电磁感应式编码器,其中,在标尺所形成的平面中,所述多个连接线圈具有相对于与测量轴方向垂直的轴线性对称的形状。
4.根据权利要求3所述的电磁感应式编码器,其中,所述多个连接线圈具有矩形形状。
5.根据权利要求1或2所述的电磁感应式编码器,其中,所述多个连接线圈的线宽“d”是200μm或更大。
CN201910292772.XA 2018-04-13 2019-04-12 电磁感应式编码器 Active CN110375775B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018077297A JP6970640B2 (ja) 2018-04-13 2018-04-13 電磁誘導式エンコーダ
JP2018-077297 2018-04-13

Publications (2)

Publication Number Publication Date
CN110375775A true CN110375775A (zh) 2019-10-25
CN110375775B CN110375775B (zh) 2022-07-12

Family

ID=68053161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910292772.XA Active CN110375775B (zh) 2018-04-13 2019-04-12 电磁感应式编码器

Country Status (4)

Country Link
US (1) US10809100B2 (zh)
JP (1) JP6970640B2 (zh)
CN (1) CN110375775B (zh)
DE (1) DE102019001496A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985466A (zh) * 2019-12-17 2021-06-18 株式会社三丰 标尺和编码器
CN113091778A (zh) * 2019-12-23 2021-07-09 株式会社三丰 电磁感应型编码器及其使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487162B (zh) * 2019-09-29 2020-09-08 桂林广陆数字测控有限公司 混合定位电磁感应式位移传感器
JP7328121B2 (ja) * 2019-11-07 2023-08-16 株式会社ミツトヨ スケール
JP7106591B2 (ja) 2020-03-18 2022-07-26 Tdk株式会社 磁場検出装置および電流検出装置
DE102020205398A1 (de) * 2020-04-29 2021-11-04 Dr. Johannes Heidenhain Gesellschaft Mit Beschränkter Haftung Induktive Positionsmesseinrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213408A (ja) * 1997-01-29 1998-08-11 Mitsutoyo Corp 誘導型絶対位置測定装置
EP0872712A2 (en) * 1997-04-16 1998-10-21 Mitutoyo Corporation Inductive position transducer having high accuracy and reduced offset
US20020030484A1 (en) * 2000-03-13 2002-03-14 Mitutoyo Corporation Position measuring device and error detecting method for the same, and electromagentic induction position detecting device
CN1367370A (zh) * 2001-01-22 2002-09-04 株式会社三丰 电磁感应式绝对位置传感器
JP2009168701A (ja) * 2008-01-18 2009-07-30 Mitsutoyo Corp 電磁誘導式エンコーダ
CN102889899A (zh) * 2011-07-22 2013-01-23 株式会社三丰 电磁感应式绝对位置测量用编码器
CN102914245A (zh) * 2011-08-03 2013-02-06 株式会社三丰 电磁感应式绝对位置测量用编码器
JP2017138171A (ja) * 2016-02-03 2017-08-10 三菱重工工作機械株式会社 電磁誘導式位置検出器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654626B2 (ja) 2000-03-13 2005-06-02 株式会社ミツトヨ 電磁誘導型位置検出装置
US6720760B2 (en) * 2001-11-14 2004-04-13 Mitutoyo Corporation Induced current position transducers having improved scale loop structures
JP4249529B2 (ja) 2003-04-10 2009-04-02 株式会社ミツトヨ 電磁誘導型トランスジューサ
DE102013218768A1 (de) 2013-09-19 2015-03-19 Dr. Johannes Heidenhain Gmbh Induktive Positionsmesseinrichtung
DE102014221967A1 (de) 2014-10-28 2016-04-28 Horst Siedle Gmbh & Co. Kg Positionsgeber, Positionsmesseinrichtung und Betriebsverfahren hierfür
JP6475072B2 (ja) * 2015-04-27 2019-02-27 株式会社ミツトヨ 電磁誘導式エンコーダおよびスケール
US9877042B1 (en) * 2017-05-26 2018-01-23 Mitutoyo Corporation Position encoder sample timing system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213408A (ja) * 1997-01-29 1998-08-11 Mitsutoyo Corp 誘導型絶対位置測定装置
EP0872712A2 (en) * 1997-04-16 1998-10-21 Mitutoyo Corporation Inductive position transducer having high accuracy and reduced offset
CN1200480A (zh) * 1997-04-16 1998-12-02 株式会社三丰 减少偏差的高精度感应电流位置传感器
US20020030484A1 (en) * 2000-03-13 2002-03-14 Mitutoyo Corporation Position measuring device and error detecting method for the same, and electromagentic induction position detecting device
CN1367370A (zh) * 2001-01-22 2002-09-04 株式会社三丰 电磁感应式绝对位置传感器
JP2009168701A (ja) * 2008-01-18 2009-07-30 Mitsutoyo Corp 電磁誘導式エンコーダ
CN102889899A (zh) * 2011-07-22 2013-01-23 株式会社三丰 电磁感应式绝对位置测量用编码器
CN102914245A (zh) * 2011-08-03 2013-02-06 株式会社三丰 电磁感应式绝对位置测量用编码器
JP2017138171A (ja) * 2016-02-03 2017-08-10 三菱重工工作機械株式会社 電磁誘導式位置検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
那少聃: "用于EPS的非接触电磁感应式角度传感器研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985466A (zh) * 2019-12-17 2021-06-18 株式会社三丰 标尺和编码器
CN113091778A (zh) * 2019-12-23 2021-07-09 株式会社三丰 电磁感应型编码器及其使用方法
CN113091778B (zh) * 2019-12-23 2023-09-22 株式会社三丰 电磁感应型编码器及其使用方法

Also Published As

Publication number Publication date
US10809100B2 (en) 2020-10-20
JP2019184477A (ja) 2019-10-24
DE102019001496A1 (de) 2019-10-17
CN110375775B (zh) 2022-07-12
US20190316936A1 (en) 2019-10-17
JP6970640B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
CN110375775A (zh) 电磁感应式编码器
US11287286B2 (en) Winding and scale configuration for inductive position encoder
JP7016572B2 (ja) 電磁誘導式エンコーダの巻線構成
JP7300320B2 (ja) 電磁誘導式エンコーダにおける受信線間隔
JP4476717B2 (ja) 電磁誘導型位置センサ
JP6400385B2 (ja) 誘導式エンコーダ
CN110657826B (zh) 用于感应位置编码器的标尺构造
US9013192B2 (en) Inductive measuring device for detecting lengths and angles
KR102551010B1 (ko) 유도 이동센서
JP2019078754A (ja) エンコーダ
JP6538984B2 (ja) 線形変位センサ
JP2009186200A (ja) 電磁誘導式エンコーダ
JP2008286667A (ja) 電磁誘導型位置センサ
US20170292858A1 (en) Inductive position detector
BR112017014933B1 (pt) Transdutor para um sensor de deslocamento indutivo
JP2019143991A (ja) 磁気センサシステムおよび磁気スケール
US20220205815A1 (en) Sensing winding configuration for inductive position encoder
CN109959398A (zh) 用于感应式位置编码器的绕组和刻度构造
JP6475072B2 (ja) 電磁誘導式エンコーダおよびスケール
JP6373717B2 (ja) エンコーダ
US12031815B2 (en) Magnetic linear sensor
JP2005134247A (ja) 誘導型変位検出装置及びマイクロメータ
US11713983B2 (en) Sensing winding configuration for inductive position encoder
JP4924825B2 (ja) 電磁誘導式リニアスケール
JP2015190882A (ja) 位置検出装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant