CN110343110B - 强极化分子及应用其制备的单分子场效应晶体管 - Google Patents

强极化分子及应用其制备的单分子场效应晶体管 Download PDF

Info

Publication number
CN110343110B
CN110343110B CN201810283361.XA CN201810283361A CN110343110B CN 110343110 B CN110343110 B CN 110343110B CN 201810283361 A CN201810283361 A CN 201810283361A CN 110343110 B CN110343110 B CN 110343110B
Authority
CN
China
Prior art keywords
molecule
field effect
graphene
compound
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810283361.XA
Other languages
English (en)
Other versions
CN110343110A (zh
Inventor
郭雪峰
辛娜
张为宁
孟利楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201810283361.XA priority Critical patent/CN110343110B/zh
Application filed by Peking University filed Critical Peking University
Priority to CN202011405289.7A priority patent/CN112538085B/zh
Priority to US17/042,800 priority patent/US20210024560A1/en
Priority to JP2020550619A priority patent/JP7083981B2/ja
Priority to EP19780897.5A priority patent/EP3778570B1/en
Priority to KR1020207031057A priority patent/KR102507357B1/ko
Priority to PCT/CN2019/080347 priority patent/WO2019192395A1/zh
Publication of CN110343110A publication Critical patent/CN110343110A/zh
Application granted granted Critical
Publication of CN110343110B publication Critical patent/CN110343110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/52Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of imines or imino-ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/30Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring the six-membered aromatic ring being part of a condensed ring system formed by two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/31Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring the six-membered aromatic ring being part of a condensed ring system formed by at least three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/52Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring condensed with a ring other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/78Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/03Sideramines; The corresponding desferri compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了下述通式的强极化分子:其中,A表示极化率大于2C·m2/V的基团;R1、R2分别表示氢、卤素、羟基、氨基、氰基、硝基、羧基、C1‑12烷基、C1‑12烷氧基、卤代C1‑12烷基、卤代C1‑12烷氧基、羟基C1‑12烷基、羟基C1‑12烷氧基或C1‑12烷基氨基;x1、x2分别表示0或不小于1的整数;y1、y2分别表示0或不小于1的整数。本发明还提供了一种强极化分子‑石墨烯分子异质结,及一种单分子场效应晶体管,其包括衬底、栅极、介电层及强极化分子‑石墨烯分子异质结;所述介电层位于所述栅极与强极化分子‑石墨烯分子异质结之间。本发明提供的单分子场效应晶体管能够实现高效的栅调控。
Figure DDA0001615317880000011

Description

强极化分子及应用其制备的单分子场效应晶体管
技术领域
本发明涉及单分子电子器件技术领域,特别是涉及强极化分子及应用其制备的单分子场效应晶体管。
背景技术
在目前的半导体工业中,晶体管构成了电子电路的核心,是当代数字革命的基石。自1947年第一个关于晶体管的模型提出以来,科研工作者们发展出了多种形式的晶体管,其基本原理是:通过在栅极施加适当的电压,由于介电层的电容作用可以改变绝缘层和半导体层界面处的载流子浓度,从而可以调控源漏电极之间的电流。因而,一方面,可以实现开关的逻辑功能;另一方面,由于输出功率高于输入功率,因而晶体管有放大器的功能。同样地,在单分子电子学领域,单分子场效应晶体管也引起了科研工作者们极大的兴趣。区别于传统的场效应晶体管,在单分子异质结中,施加栅压可以调控分子的静电势,从而改变分子的能级,一方面可以调控分子的导电特性,另一方面可以得到分子的振动模式、激发态以及和振动相关的一些信息。但是,在现有技术中,单分子场效应晶体管还仅停留在概念阶段,并未真正实现。
发明内容
本发明实施例的目的在于提供一种强极化分子及应用其制备的单分子场效应晶体管。具体技术方案如下:
本发明首先提供了通式(I)所示的强极化分子:
Figure BDA0001615317860000011
其中,A表示极化率大于2C·m2/V的基团;
R1、R2分别表示氢、卤素、羟基、氨基、氰基、硝基、羧基、C1-12烷基、C1-12烷氧基、卤代C1-12烷基、卤代C1-12烷氧基、羟基C1-12烷基、羟基C1-12烷氧基或C1-12烷基氨基中的任一种;
x1、x2分别表示0或正整数,优选地,0≤x1≤3;0≤x2≤3;更为具体地地,x1、x2分别表示0、1、2或3;
y1、y2分别表示0或正整数,优选地,0≤y1≤2,0≤y2≤2;更为具体地地,y1、y2分别表示0、1或2。
在本发明的一些实施方式中,x1、x2可以相同,也可以不相同;
类似地,在本发明的一些实施方式中,y1、y2可以相同,也可以不相同;
本发明的一些实施方式涉及前述的通式(I)所示的强极化分子,其中,A表示:
Figure BDA0001615317860000021
Figure BDA0001615317860000031
R3、R4、R5、R6、R7、R8、R9、R10、R11及R12分别表示氢、卤素、羟基、氨基、氰基、硝基、羧基、C1-12烷基、C1-12烷氧基、卤代C1-12烷基、卤代C1-12烷氧基、羟基C1-12烷基、羟基C1-12烷氧基或C1-12烷基氨基中的任一种;
M1、M2、M3、M4、M5及M6分别表示配合物的中心原子或中心离子,优选地,M1、M2、M3、M4、M5及M6分别选自Ru、Fe、Zn、Mn、Co、Ni,或其阳离子;
n1、n2、n3、n4、n5、n6、n7、n8、n9、n10、n11、n12、n13、n14、n15、n16及n17分别表示正整数,优选地,n1、n2、n3、n4、n5、n6、n7、n8、n9、n10、n11、n12、n13、n14、n15、n16及n17小于等于3。
本文中,缩写“Ph”表示苯基;
本文中,术语“卤素”是指氟、氯、溴或碘。
本文中,术语“C1-12烷基”是指含有1-12个碳原子的直链或支链的饱和烃基,包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、3-乙基庚烷和正十二烷基。
本文中,基团结构式中的
Figure BDA0001615317860000042
表示该基团与分子其它部分的连接点。
本文中,“配合物”也可以称为螯合物;当Ru、Fe、Zn、Mn、Co、Ni等为形成配合物而处于阳离子形式时,本领域技术人员根据现有技术容易地由配合物或配离子的结构式确定出该金属的化合价数,例如配合物中的心离子可以为Ru2+、Fe2+、Zn2+、Mn2+、Co2+、Ni2+等。
本发明的一些实施方式涉及前述的强极化分子,其具有以下通式中的一种:
Figure BDA0001615317860000041
Figure BDA0001615317860000051
Figure BDA0001615317860000061
其中,R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、M1、M2、M3、M4、M5、M6、n2、n6、n7、n8、n9、n10、n11、n12、n13、n14、n15、n16、n17、x1、x2、y1、y2如前述所定义。
在本发明的一些实施方式中,前述通式(I)-(XVI)所示的强极化分子具有以下结构式中的一种:
Figure BDA0001615317860000071
Figure BDA0001615317860000081
发明人通过深入地研究发现,不限于任何理论,前述的强极化分子,在施加电压时,尤其是-2V~+2V的栅极控制电压范围内时,容易发生极化使得分子轨道能级发生适合于栅调控的移动;因此能够有效地实现单分子场效应晶体管的栅调控。
本发明还提供了一种强极化分子-石墨烯分子异质结,其中该分子异质结包括通过酰胺共价键连接于具有纳米间隙的二维单层石墨烯的间隙之间的前述的强极化分子。
在本发明的一些实施方式中,所述具有纳米间隙的二维单层石墨烯为具有纳米间隙阵列的二维单层石墨烯。
本发明还提供了强极化分子-石墨烯分子异质结的制备方法,包括以下步骤:
(1)制备具有纳米间隙的二维单层石墨烯,该具有纳米间隙的二维单层石墨烯可以构建在载体上;
(2)将本发明提供的强极化分子、脱水剂(例如:1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸,EDCI)溶解于有机溶剂(例如:吡啶)中,得到待连接分子溶液;
(3)向该溶液中加入具有纳米间隙的二维单层石墨烯(可以连同其载体),在无光条件下反应1-4天,洗涤、干燥即可。
在本发明中,所说的“具有纳米间隙的二维单层石墨烯”可以采用文献(参考文献Angew.Chem.Int.Ed.2012,51,12228.)中所记载的方法来制备,该文献已通过引用其全文并入本文中,本发明在此不进行赘述。
本文中所说的“具有纳米间隙的二维单层石墨烯,或具有纳米间隙阵列的二维单层石墨烯”在现有技术中也称为石墨烯纳米间隙电极,或石墨烯纳米电极。
所说的“无光条件下”也可以理解为黑暗条件下,对于本领域普通技术人员来说,对无光条件或黑暗条件是明确其含义的。
在本发明的具体实施方式中,无光条件下反应结束后,从溶液中取出具有纳米间隙的二维单层石墨烯,用大量的丙酮和超纯水洗涤,在N2气流中干燥。在本发明中,所用的超纯水优选为电阻率大于18MΩ·cm。
本发明还提供了一种单分子场效应晶体管,其可以包括衬底、栅极、介电层及前述的强极化分子-石墨烯分子异质结;所述介电层位于所述栅极与强极化分子-石墨烯分子异质结之间。
在具体实施过程中,强极化分子-石墨烯分子异质结中的间隙两侧的二维单层石墨烯,可以作为单分子场效应晶体管的源极和漏极。
在本发明的一些实施方式中,栅极的材料选自石墨烯或金属铝中的一种。
在本发明的一些实施方式中,介电层的材料选自氧化铪、氧化锆、氧化钛、氧化铝中的一种或其组合。
在本发明一些实施方式中,本发明提供的单分子场效应晶体管,其:
介电层为氧化铪层,栅极为石墨烯层;或
介电层为氧化锆层,栅极为石墨烯层;或
介电层为氧化钛层,栅极为石墨烯层;或
介电层为氧化铝层,栅极为金属铝层;或
介电层为氧化铝与氧化铪的复合层,栅极为金属铝层。
发明人发现,采用上述的栅极材料、介电层材料以及采用上述的栅极与介电层的组合,所得到的单分子场效应晶体管的栅调控效率更高,同时晶体管的制备相对简易;更有应用前景。
本文中,“衬底”也可以称为基底;在本发明的一些具体实施方式中,所述衬底可以为具有氧化硅层的硅片,这种硅片可以从商业途径购得;在具体实施过程中,栅极或强极化分子-石墨烯分子异质结置于氧化硅层上;发明人发现,当氧化硅层的厚度为200-400nm,优选为300nm时,石墨烯的光学衬度更好。当然,本领域技术人员也可以采用其它的衬底来实现本发明的技术方案。
在本发明的一些实施方式中,介电层的厚度为3-10nm,优选为4-7nm,更优选为5nm。
对于栅极的厚度,由于其对晶体管本身的性能没有实质性地影响;因此本发明在此不进行特别地限定;本领域技术人员可以根据实际晶体管本身尺寸的要求来选择。本发明的一些实施方式中,当采用金属铝为栅极材料时,铝的厚度可以选择20-30nm;当采用石墨烯作为栅极材料时,单层石墨烯的厚度本身就是小于1nm。
在本发明的一些实施方式中,本发明提供的单分子场效应晶体管,其栅极置于衬底上,介电层置于栅极上,强极化分子-石墨烯分子异质结置于介电层上;形成底栅结构,如图1所示;
强极化分子-石墨烯分子异质结置于衬底上,介电层置于强极化分子-石墨烯分子异质结上,栅极置于介电层上;形成顶栅结构,如图2所示。
在本发明的一些具体实施方式中,当制备底栅结构的单分子场效应晶体管时,栅极与介电层可以采用下表1中的5种组合:
表1栅极与介电层的组合
组合编号 1 2 3 4 5
栅极 石墨烯 石墨烯 石墨烯
介电层 氧化铪 氧化锆 氧化钛 氧化铝 氧化铝+氧化铪
在具体实施过程中,底栅结构的单分子场效应晶体管可以通过以下方法制备得到:
对于组合1、组合2、组合3,可以将化学气相沉积法生长的单层石墨烯(参考文献Sci.Rep.2012,2,707.)转移至衬底上(例如具有300nm氧化层的硅片)上做栅极(称为底栅)(参考文献ACS Nano 2011,5,6916.);然后在底栅上形成介电层;三类介电层的厚度均可以为3-10nm。其中氧化铪可以采用原子层沉积和溶胶凝胶法(参考文献Adv.Mater.2015,27,2113.)制备得到,其中溶胶凝胶法相对廉价,因此更优选。氧化锆和氧化钛均可通过电子束蒸镀或原子层沉积制备得到。
对于组合4,可以在衬底上通过电子束蒸镀一定厚度(例如35nm)的金属铝层,然后在180℃条件下加热1小时,可以在金属铝层上制得一定厚度(例如5nm)的氧化铝层。
对于组合5,可以在衬底上通过电子束蒸镀一定厚度(例如35nm)的金属铝层,在大气中放置一段时间(例如24小时),自然氧化得到一定厚度(例如3nm)的氧化铝层,进一步通过原子层沉积一定厚度(例如2nm)的氧化铪层。
通过前面的方法制备好底栅和介电层后,在介电层上构建具有纳米间隙的二维单层石墨烯(参考文献Angew.Chem.Int.Ed.2012,51,12228.),然后通过化学自组装方法,具体可以为通过酰化反应,将前述通式(I)-(XVI)所示的强极化分子连接于石墨烯的纳米间隙之间,形成强极化分子-石墨烯分子异质结。
需要说明的是,本文中所说的“电子束蒸镀”及“原子层沉积”均是一种常规的微纳米加工技术,对于本领域技术人员来说,为实现本发明的技术方案,通过电子束蒸镀一定厚度的金属层或金属氧化物层、通过原子层沉积一定厚度的金属层或金属氧化物层是很容易实现的,本发明在此不进行赘述。
在本发明的一些具体实施方式中,当制备顶栅结构的单分子场效应晶体管时,栅极与介电层也可以采用表1中的5种组合,但从制备工艺简单的角度来考虑,优选采用前三种组合;在具体实施过程中,对于组合1、组合2、组合3,首先在衬底上构建具有纳米间隙阵列纳米间隙的二维单层石墨烯,通过化学自组装的方法形成强极化分子-石墨烯分子异质结之后,使用PMMA(聚甲基丙烯酸甲脂)做担载将介电层和栅极转移至单分子异质结的上面。介电层和栅极的转移过程具体可以包括:首先在硅片上制备得到介电层,可以采用上述底栅结构的制备方法中的介电层制备方法来实现,接着将化学气相沉积法生长的石墨烯转移其上,进一步在上面旋涂PMMA,最后使用氢氟酸将硅片刻蚀,将介电层/石墨烯/PMMA薄膜分别用去离子水和异丙醇冲洗三次后置于分子异质结之上(参见ACS Nano 2011,5,6916.)。本文中,“担载”指的是用于转移石墨烯栅极的载体。
本发明还提供了一种分子开关,其包含前述的单分子场效应晶体管。
本发明还提供了一种半导体芯片,其包含前述的单分子场效应晶体管。
本发明提供了如通式(I)所示的强极化分子,并通过这些分子首次、突破性地制备得到单分子场效应晶体管;由于使用石墨烯作为源电极和漏电极,石墨烯具有与分子相匹配的尺寸,使得分子与栅极的耦合效率大大提高,配合强极化性的分子结构,因而能够实现高效的栅调控。
而且,本发明提供的单分子场效应晶体管,其大小在分子尺寸范围内,有力地推动了场效应晶体管的微小化进程,因此应用本发明提供的单分子场效应晶体管制备的半导体芯片,可以极大地提高集成度。进一步地,本发明提供的单分子场效应晶体管的性能重现性好,更有利于单分子场效应晶体管的应用。
另外,由于强极化分子-石墨烯分子异质结可以实现批量制备,所以本发明提供的基于强极化分子-石墨烯分子异质结构建的单分子场效应晶体管器件,可以实现批量化生产。
综上,本发明提供的单分子场效应晶体管,在半导体领域中具有技术跨时代的意义。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为底栅结构的单分子场效应晶体管的结构示意图;
图2为顶栅结构的单分子场效应晶体管的结构示意图;
图3为实施例1制备的基于化合物1的单分子场效应晶体管的I-V特性曲线;
图4为实施例2制备的基于化合物2的单分子场效应晶体管在-2V~+2V的栅压范围内的I-V特性曲线;
图5为实施例3制备的基于化合物3的单分子场效应晶体管在-2V~+2V的栅压范围内的I-V特性曲线;
图6为实施例4制备的基于化合物4的单分子场效应晶体管在-2V~+2V的栅压范围内的I-V特性曲线;
图7为实施例5制备的基于化合物5的单分子场效应晶体管在-2V~+2V的栅压范围内的I-V特性曲线;
图8为实施例6制备的基于化合物6的单分子场效应晶体管在-2V~+2V的栅压范围内的I-V特性曲线;
图9为实施例7制备的基于化合物7的单分子场效应晶体管在-2V~+2V的栅压范围内的I-V特性曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
单分子场效应晶体管的制备实施例
实施例1:基于化合物1的单分子场效应晶体管的制备
(1)化合物1的合成:
合成路线如下:
Figure BDA0001615317860000151
根据文献中描述的方法(J.Am.Chem.Soc.,2010,132(44),pp 15547–15549)合成化合物A。
向100mL Schlenk瓶中依次加入化合物A(857mg,1.23mmol)、N-Boc-4-氨基苯硼酸频哪醇酯(865mg,2.71mmol)、双(二亚芐基丙酮)钯(22.6mg,24.6μmol)、三(邻甲苯基)膦(30.1mg,98.6μmol)、无水碳酸钾(1.60g,11.6mmol),在加入2滴aliquat 336(甲基三辛基氯化铵)后,注入甲苯24mL与蒸馏水6mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取。合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物B,呈紫色固体。1H NMR(400MHz,CDCl3,298K):δ7.87(d,J=8.5Hz,2H),7.65(ddd,J=8.7,1.3,0.4Hz,4H),7.39(m,6H),4.10(d,J=7.0Hz,4H),1.64(m,2H),1.45(s,18H),1.15-1.38(m,14H),0.76-0.91(m,16H).13C NMR(100MHz,CDCl3,298K):δ172.83,153.93,148.85,145.64,138.76,133.63,127.67,127.38,123.40,121.45,119.57,100.02,80.43,46.33,38.65,32.60,32.11,30.79,29.64,28.61,28.16,25.09,23.56,22.79,14.09,14.06,11.51.HRMS(TOF-ESI+)(m/z):C53H68N4O6S2计算值为:921.47[M+H+];实验值为:921.49。
向含有化合物B(0.120g,0.13mmol)的二氯甲烷(10mL)中逐滴添加三氟乙酸(1.0mL,0.34g,3.73mmol),在室温下搅拌2小时后,将反应混合物逐滴添加至饱和的碳酸氢钠水溶液(20mL)中。用二氯甲烷(50mL)萃取之,有机层以饱和的碳酸氢钠水溶液(30mL)和饱和氯化钠溶液洗涤,并用无水硫酸钠干燥。真空蒸发溶剂以得到目标化合物1,呈深紫色固体。1H NMR(400MHz,CDCl3,298K):δ7.80(d,J=8.5Hz,2H),7.38(ddd,J=8.2,1.6,0.4Hz,4H),7.26(d,J=8.5Hz,2H),7.02(ddd,J=8.7,1.2,0.4Hz,4H),4.12(d,J=7.0Hz,4H),1.64(m,2H),1.15-1.38(m,14H),0.76-0.91(m,16H).13C NMR(100MHz,CDCl3,298K):δ172.83,150.10,148.85,145.64,133.63,128.09,127.67,122.80,121.45,114.80,100.02,46.33,38.65,32.60,32.11,30.79,29.64,28.61,25.09,23.56,22.79,14.09,14.06,11.51.HRMS(TOF-ESI+)(m/z):C43H52N4O2S2计算值为:721.36[M+H+];实验值为:721.35。
(2)基于化合物1的单分子场效应晶体管的制备
以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,构建底栅结构的场效应晶体管:
首先,将化学气相沉积法生长的单层石墨烯转移至具有300nm氧化层的硅片上做底栅;
采用溶胶凝胶法在底栅上沉积5nm的氧化铪层;
在介电层上构建具有纳米间隙的二维单层石墨烯,得到待组装的分子器件;
在待组装的分子器件上构建强极化分子-石墨烯分子异质结,得到单分子场效应晶体管器件,具体过程如下:
首先,将分子化合物式1和碳二亚胺脱水剂-活化剂1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸(EDCI)溶于吡啶中,浓度分别为10-4mol/L和3×10-3mol/L;然后,向上述溶液中加入待组装的分子器件。黑暗条件下,氩气氛围中反应48h。之后,从溶液中取出器件,分别用丙酮和超纯水洗涤三次,用氮气流干燥。制备得到基于化合物1的单分子场效应晶体管器件。
需要说明的是,所述待组装的分子器件制备过程中的具体方法、条件、参数等,可以按照本文前面记载的相关文献中的方法实现;本发明在此不再进行赘述。
实施例2:基于化合物2的单分子场效应晶体管的制备
(1)化合物2的合成:
合成路线如下:
Figure BDA0001615317860000171
按实施例1的方法合成出化合物A;
向100mL Schlenk瓶中依次加入化合物A(697mg,1.00mmol)、4-(N-Boc-氨基甲基)苯基硼酸频哪醇酯(734mg,2.20mmol)、双(二亚芐基丙酮)钯(18.4mg,20μmol)、三(邻甲苯基)膦(24.5mg,80.2μmol)、无水碳酸钾(1.30g,9.43mmol),在加入2滴aliquat 336后,注入甲苯24mL与蒸馏水6mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取。合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物C,呈紫色固体。1H NMR(400MHz,CDCl3,298K):δ7.70(d,J=8.6Hz,2H),7.60-7.67(m,4H),7.40(ddd,J=8.5,1.5,0.5Hz,6H),4.32(s,4H),4.12(d,J=7.0Hz,4H),1.54-1.76(m,2H),1.44(s,18H),1.15-1.38(m,14H),0.76-0.91(m,16H).13C NMR(100MHz,CDCl3,298K):δ172.83,156.03,148.85,145.64,143.21,133.63,133.12,128.11,127.67,126.29,121.45,100.02,79.66,46.33,43.70,38.65,32.60,32.11,30.79,29.64,28.61,28.30,25.09,23.56,22.79,14.09,14.06,11.51.HRMS(TOF-ESI+)(m/z):C55H72N4O6S2计算值为:949.50[M+H+];实验值为:949.50。
按照实施例1的方法,将化合物B替换为化合物C(0.120g,0.13mmol)后进行反应,得到目标化合物2,呈深紫色固体。1H NMR(400MHz,CDCl3,298K):δ7.70(d,J=8.6Hz,2H),7.63(dd,J=6.5,1.3Hz,4H),7.38(ddd,J=6.5,1.3,0.5Hz,6H),4.10(d,J=7.0Hz,4H),3.67(s,4H),1.54-1.76(m,2H),1.15-1.38(m,14H),0.76-0.91(m,16H).13C NMR(100MHz,CDCl3,298K):δ172.83,148.85,145.64,141.15,133.63,133.34,128.28,127.67,126.74,121.45,100.02,46.33,45.58,38.65,32.60,32.11,30.79,29.64,28.61,25.09,23.56,22.79,14.09,14.06,11.51.HRMS(TOF-ESI+)(m/z):C45H56N4O2S2计算值为:749.39[M+H+];实验值为:749.35。
(2)基于化合物2的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物2替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物2的场效应晶体管。
实施例3:基于化合物3的单分子场效应晶体管的制备
(1)化合物3的合成:
合成路线如下:
Figure BDA0001615317860000191
按实施例1的方法合成出化合物A;
向100mL Schlenk瓶中依次加入化合物A(843mg,1.21mmol)、4-(N-Boc-氨基甲基)苯基硼酸频哪醇酯(924mg,2.66mmol)、双(二亚芐基丙酮)钯(22.3mg,24μmol)、三(邻甲苯基)膦(29.6mg,97.0μmol)、无水碳酸钾(1.57g,11.41mmol),在加入2滴aliquat 336后,注入甲苯24mL与蒸馏水6mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取。合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物3,呈紫色固体。1H NMR(400MHz,CDCl3,298K):δ7.72(d,J=8.6Hz,2H),7.64(ddd,J=8.5,1.5,0.5Hz,4H),7.39(d,J=8.6Hz,2H),7.19(ddd,J=8.2,1.5,0.5Hz,4H),4.13(d,J=7.0Hz,4H),3.50(t,J=5.3Hz,4H),2.55(t,J=5.3Hz,4H),1.54-1.76(m,2H),1.43(s,18H),1.15-1.38(m,14H),0.76-0.91(m,16H).13C NMR(100MHz,CDCl3,298K):δ172.83,156.24,148.85,145.64,136.73,133.63,132.41,128.18,127.67,126.64,121.45,100.02,79.52,46.33,42.33,38.65,35.31,32.60,32.11,30.79,29.64,28.61,28.30,25.09,23.56,22.79,14.09,14.06,11.51.HRMS(TOF-ESI+)(m/z):C57H76N4O6S2计算值为:977.53[M+H+];实验值为:977.50。
按照实施例1的方法,将化合物B替换为化合物D(0.127g,0.13mmol)后进行反应,得到目标化合物3,呈深紫色固体。1H NMR(400MHz,CDCl3,298K):δ7.72(d,J=8.6Hz,2H),7.63(ddd,J=8.5,1.5,0.5Hz,4H),7.38(d,J=8.6Hz,2H),7.17(ddd,J=8.1,1.5,0.5Hz,4H),4.10(d,J=7.0Hz,4H),2.76(t,J=6.6Hz,4H),2.49(t,J=6.6Hz,4H),1.54-1.76(m,2H),1.15-1.38(m,14H),0.76-0.91(m,16H).13C NMR(100MHz,CDCl3,298K):δ172.83,148.85,145.64,136.83,133.63,132.36,127.92,127.67,126.58,121.45,100.02,46.33,42.84,38.87,38.65,32.60,32.11,30.79,29.64,28.61,25.09,23.56,22.79,14.09,14.06,11.51.HRMS(TOF-ESI+)(m/z):C47H60N4O2S2计算值为:777.42[M+H+];实验值为:777.42。
(2)基于化合物3的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物3替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物3的场效应晶体管。
实施例4:基于化合物4的单分子场效应晶体管的制备
(1)化合物4的合成:
合成路线如下:
Figure BDA0001615317860000201
向氩气保护下的50mL反应瓶中加入二氯甲烷(15mL)、对溴苯丙胺(1.293g,6.04mmol)和三乙胺(944mg,1.3mL,9.33mmol),将反应瓶置于冰水浴中,搅拌下滴加二碳酸二叔丁酯(1.61g,1.7mL,7.40mmol),自然升温反应4h后,反应液倾入二氯甲烷(30mL)中,依次水洗(2×20mL)和饱和氯化钠溶液洗涤(20mL),然后以无水硫酸钠干燥,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物E,呈无色油状液体。1H NMR(400MHz,CDCl3,298K):δ7.45–7.39(m,2H),7.12–7.06(m,2H),3.24(t,J=5.0Hz,2H),2.61–2.53(m,2H),1.77(tt,J=8.0,5.0Hz,2H),1.44(s,9H).13C NMR(100MHz,CDCl3,298K):δ156.19,140.06,131.22,129.96,119.50,79.52,40.56,33.48,30.67,28.30.HRMS(TOF-ESI+)(m/z):C14H20BrNO2计算值为:314.07[M+H+];实验值为:314.01。
向100mL Schlenk瓶中依次加入化合物E(1.02g,3.26mmol)、联硼酸频那醇酯(993mg,3.91mmol)、四三苯基膦钯(151mg,0.13mmol)、乙酸钾(1.60g,16.30mmol),然后注入N,N-二甲基甲酰胺50mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应10h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取,有机相依次水洗(3×30mL)和饱和氯化钠溶液洗涤(30mL),并用无水硫酸钠干燥。在减压下去除溶剂,粗产物用硅胶柱色谱分析纯化,得到化合物F,呈无色油状液体。1HNMR(400MHz,CDCl3,298K):δ7.57–7.51(m,2H),7.08(dt,J=7.4,1.0Hz,2H),5.94(t,J=6.4Hz,2H),3.17(td,J=7.1,6.4Hz,2H),2.66(tt,J=7.1,1.0Hz,2H),1.83(p,J=7.1Hz,2H),1.42(s,9H),1.24(s,9H).13C NMR(100MHz,CDCl3,298K):δ156.63,143.39,134.66,134,61,126.72,84.02,79.63,39.62,33.32,29.09,29.05,24.82.HRMS(TOF-ESI+)(m/z):C20H32BNO4计算值为:362.25[M+H+];实验值为:362.29
向100mL Schlenk瓶中依次加入化合物A(843mg,1.21mmol)、化合物F(965mg,2.66mmol)、双(二亚芐基丙酮)钯(22.3mg,24μmol)、三(邻甲苯基)膦(29.6mg,97.0μmol)、无水碳酸钾(1.57g,11.41mmol),在加入2滴aliquat 336后,注入甲苯24mL与蒸馏水6mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取。合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物G,呈紫色固体。1H NMR(400MHz,CDCl3,298K):δ7.76(d,J=8.6Hz,2H),7.59-7.66(m,4H),7.39(dd,J=24.6,7.5Hz,2H),7.16(ddd,J=8.2,1.5,0.5Hz,4H),4.11(d,J=6.9Hz,4H),3.19(t,J=6.4Hz,4H),2.39(t,J=6.8Hz,4H),1.84-2.03(m,4H),1.54-1.76(m,2H),1.43(s,18H),1.15-1.38(m,14H),0.76-0.91(m,16H).13C NMR(100MHz,CDCl3,298K):δ172.83,156.19,148.85,145.64,141.66,133.63,132.81,128.37,127.67,126.29,121.45,100.02,79.52,46.33,40.56,38.65,33.48,32.60,32.11,30.79,30.67,29.64,28.61,28.30,25.09,23.56,22.79,14.09,14.06,11.51.HRMS(TOF-ESI+)(m/z):C59H80N4O6S2计算值为:1005.55[M+H+];实验值为:1005.55。
按照实施例1的方法,将化合物B替换为化合物G(0.131g,0.13mmol)后进行反应,得到目标化合物4,呈深紫色固体。1H NMR(400MHz,CDCl3,298K):δ7.72(d,J=8.6Hz,2H),7.63(ddd,J=J=8.5,1.5,0.5Hz,4H),7.40(d,J=8.6,2H),7.12-7.19(m,4H),4.07-4.15(m,4H),2.60-2.68(m,4H),2.29-2.37(t,J=6.6Hz,4H),1.54-1.94(m,6H),1.15-1.38(m,14H),0.76-0.91(m,16H).13C NMR(100MHz,CDCl3,298K):δ172.83,148.85,145.64,141.66,133.63,132.81,128.37,127.67,126.29,121.45,100.02,46.33,41.70,38.65,33.53,33.05,32.60,32.11,30.79,29.64,28.61,25.09,23.56,22.79,14.09,14.06,11.51.HRMS(TOF-ESI+)(m/z):C49H64N4O2S2计算值为:805.45[M+H+];实验值为:805.42。
(2)基于化合物4的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物4替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物4的场效应晶体管。
实施例5:基于化合物5的单分子场效应晶体管的制备
(1)化合物5的合成:
合成路线如下:
Figure BDA0001615317860000231
向50mL Schlenk瓶中加入二[1,2-双(二苯基膦)乙烷]二氯化钌(223mg,0.23mmol)、N-Boc-4-乙炔基苯胺(150mg,0.69mmol)、六氟磷酸钠(154mg,0.92mmol),后以干燥的二氯甲烷(15mL)溶解,氩气保护下,向上述反应液中滴加三乙胺(0.190mL),35℃下搅拌反应24h。停止反应后过滤,滤液减压除去溶剂,所得固体以正戊烷(25mL)清洗,粗产物用硅胶柱色谱分析纯化,得到化合物H,为黄色固体。31P NMR(162MHz,CDCl3,298K):δ53.4.1H NMR(400MHz,CDCl3,298K):δ6.98–7.55(m,48H),2.45(m,8H),1.50(s,18H).13CNMR(100MHz,CDCl3,298K):δ195.14,138.85,132.99,131.93,131.20,131.08,128.13,121.56,119.15,116.90,79.54,30.23,25.43,HRMS(TOF-ESI+)(m/z):C78H76N2O4P4Ru计算值为:1331.44[M+H+];实验值为:1331.39。
向于二氯甲烷(10mL)中的化合物H(0.173g,0.13mmol)逐滴添加三氟乙酸(1.0mL,0.34g,3.73mmol),在室温下搅拌20小时后,将反应混合物逐滴添加至饱和的碳酸氢钠水溶液(20mL)中。用二氯甲烷(50mL)萃取之,有机层以饱和的碳酸氢钠水溶液(30mL)和饱和氯化钠溶液洗涤,并用无水硫酸钠干燥。真空蒸发溶剂以得到目标化合物5,呈黄色固体。31PNMR(162MHz,CDCl3,298K):d=53.4 1H NMR(400MHz,CDCl3,298K):δ6.98–7.55(m,48H),2.45(m,8H).13C NMR(100MHz,CDCl3,298K):δ148.85,132.99,131.93,131.20,131.08,128.13,121.56,119.15,116.90,24.96.HRMS(TOF-ESI+)(m/z):C68H60N2P4Ru计算值为:1131.28[M+H+];实验值为:1131.29。
(2)基于化合物5的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物5替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物5的场效应晶体管。
实施例6:基于化合物6的单分子场效应晶体管的制备
(1)化合物6的合成:
合成路线如下:
Figure BDA0001615317860000241
根据文献中描述的方法(New J.Chem.,2011,35,2105–2113)合成化合物I。
向50mL Schlenk瓶中加入化合物I(527mg,0.23mmol)、N-Boc-4-乙炔基苯胺(150mg,0.69mmol)、六氟磷酸钠(154mg,0.92mmol),后以干燥的二氯甲烷(15mL)溶解,氩气保护下,向上述反应液中滴加三乙胺(0.190mL),35℃下搅拌反应48h。停止反应后过滤,滤液减压除去溶剂,所得固体以正戊烷(25mL)清洗,粗产物用硅胶柱色谱分析纯化,得到化合物J,为黄色固体。31P NMR(162MHz,CDCl3,298K):δ54.9.1H NMR(400MHz,CDCl3,298K):δ6.98–7.55(m,92H),2.45(m,16H),1.50(s,18H).13C NMR(100MHz,CDCl3,298K):δ195.14,138.85,137.24,132.99,131.93,131.20,131.08,128.13,125.60,121.56,119.15,116.90,79.54,30.23,25.43,HRMS(TOF-ESI+)(m/z):C140H128N2O4P8Ru2计算值为:2353.59[M+H+];实验值为:2353.50。
按照实施例5的方法,将化合物H替换为化合物J(0.306g,0.13mmol)后进行反应,得到目标化合物6,呈黄色固体。31P NMR(162MHz,CDCl3,298K):d=55.4 1H NMR(400MHz,CDCl3,298K):δ6.98–7.55(m,92H),2.45(m,16H).13C NMR(100MHz,CDCl3,298K):δ150.20,137.39,137.23,132.46,132.41,123.20,122.20,117.38,113.78,103.62,133.05,132.92,128.47,128.42,24.96;HRMS(TOF-ESI+)(m/z):C130H112N2P8Ru2计算值为:2153.48[M+H+];实验值为:2153.49。
(2)基于化合物6的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物6替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物6的场效应晶体管。
实施例7:基于化合物7的单分子场效应晶体管的制备
(1)化合物7的合成:
合成路线如下:
Figure BDA0001615317860000261
向100mL Schlenk瓶中加入二[1,2-双(二苯基膦)乙烷]氯化钌三氟甲磺酸盐(825mg,0.75mmol)和N-Boc-4-乙炔基苯胺(330mg,1.52mmol),以二氯甲烷40mL溶解,氩气保护下室温搅拌反应6h后,过滤,滤液减压除去溶剂后所得沉淀以乙醚(4×30mL)清洗,得到化合物K,呈深绿色固体。31P NMR(162MHz,CDCl3,298K):δ38.2.1H NMR(400MHz,CDCl3,298K):δ7.51–7.05(m,40H),6.55(d,J=7.8Hz,2H),5.64(d,J=8.0Hz,2H),4.10(s,1H),2.92(m,8H),1.50(s,18H).13C NMR(100MHz,CDCl3,298K):δ354.27,194.75,137.24,132.99,131.93,131.20,131.08,128.13,125.60,124.93,120.4,108.98,79.54,30.23,28.68.HRMS(TOF-ESI+)(m/z):C66H63ClF3NO5P4RuS计算值为:1300.21[M+H+];实验值为:1300.20。
根据文献中描述的方法(New J.Chem.,2011,35,2105–2113)合成化合物L。
向50mL Schlenk瓶中加入化合物K(338mg,0.26mmol),化合物L(149mg,0.13mmol),六氟磷酸钠(88mg,0.2mmol),后以干燥的二氯甲烷(30mL)溶解,氩气保护下,向上述反应液中滴加三乙胺(0.150mL),35℃下搅拌反应96h。停止反应后过滤,滤液减压除去溶剂,所得固体以正戊烷(25mL)清洗,粗产物用硅胶柱色谱分析纯化,得到化合物M,为黄色固体。31P NMR(162MHz,CDCl3,298K):δ54.89.1H NMR(400MHz,CDCl3,298K):δ6.98–7.55(m,136H),2.45(m,24H),1.50(s,18H).13C NMR(100MHz,CDCl3,298K):δ195.14,137.95–126.92,119.15,118,42,116.90,79.54,30.23,25.43,HRMS(TOF-ESI+)(m/z):C202H180N2O4P12Ru3计算值为:3375.79[M+H+];实验值为:3375.70。
按照实施例5的方法,将化合物H替换为化合物M(0.439g,0.13mmol)后进行反应,得到目标化合物7,呈黄色固体。31P NMR(162MHz,CDCl3,298K):d=55.00,1H NMR(400MHz,CDCl3,298K):δ6.98–7.55(m,136H),2.45(m,24H).13C NMR(100MHz,CDCl3,298K):δ195.14,137.95–126.92,119.15,118,42,116.90,25.43;HRMS(TOF-ESI+)(m/z):C192H164N2P12Ru3计算值为:3175.68[M+H+];实验值为:3175.68。
(2)基于化合物7的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物7替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物7的场效应晶体管。
实施例8:基于化合物8的单分子场效应晶体管的制备
(1)化合物8的合成:
合成路线如下:
Figure BDA0001615317860000281
向氩气保护下的50mL反应瓶中加入二氯甲烷(15mL)、3-溴-4’-氨基联苯(1.499g,6.04mmol)和三乙胺(944mg,1.3mL,9.33mmol),将反应瓶置于冰水浴中,搅拌下滴加二碳酸二叔丁酯(1.61g,1.7mL,7.40mmol),自然升温反应4h后,反应液倾入二氯甲烷(30mL)中,依次水洗(2×20mL)和饱和氯化钠溶液洗涤(20mL),然后以无水硫酸钠干燥,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物N,呈白色固体。1H NMR(400MHz,CDCl3,298K):δ7.78(t,J=2.0Hz,1H),7.72–7.65(m,2H),7.62(dt,J=7.5,2.0Hz,1H),7.53(dq,J=8.2,2.1Hz,3H),7.31(t,J=7.5Hz,1H),6.57(s,1H),1.50(s,9H).13C NMR(100MHz,CDCl3,298K):δ153.93,143.43,137.44,136.75,131.50,130.90,130.48,127.82,126.46,126.38,123.40,80.43,28.16.HRMS(TOF-ESI+)(m/z):C17H18BrNO2计算值为:348.06[M+H+];实验值为:348.06。
根据文献中描述的方法(J.Am.Chem.Soc.2014,136,8165-8168)合成化合物O。
向100mL Schlenk瓶中依次加入化合物N(428mg,1.23mmol)、化合物O(477mg,1.35mmol)、四三苯基膦钯(14.6mg,12.3μmol)、无水碳酸钾(1.60g,11.6mmol),注入四氢呋喃25mL与蒸馏水5mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取。合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物P,呈白色固体。1H NMR(400MHz,CDCl3,298K):δ8.58(dd,J=10.2,1.1Hz,2H),8.55–8.48(m,4H),8.08(t,J=2.0Hz,1H),8.01(t,J=2.0Hz,1H),7.80–7.55(m,10H),7.48(td,J=7.9,1.2Hz,2H),6.93(ddd,J=8.0,5.1,1.1Hz,2H),6.59(s,1H),1.50(s,9H).13C NMR(100MHz,CDCl3,298K):δ156.38,155.79,153.93,149.14,147.56,142.54,140.08,139.77,138.84,137.44,136.75,136.59,129.45,129.37,129.27,128.17,128.05,127.82,127.76,126.46,125.60,124.02,121.39,120.06,80.43,28.16.HRMS(TOF-ESI+)(m/z):C38H32N4O2计算值为:577.26[M+H+];实验值为:577.26。
向50mL反应瓶中加入甲醇(10mL)以溶解化合物P(182mg,0.316mmol),再滴加氯化亚铁(21mg,0.158mmol)的甲醇溶液(10mL),在氩气保护下搅拌回流反应4h。然后冷却至室温,滴加过量的饱和的六氟磷酸铵甲醇溶液直至沉淀析出完全并过滤,所得固体依次以蒸馏水(2×10mL)和乙醚(2×10mL)淋洗。粗产物以乙腈丙酮混合溶剂重结晶,得到化合物Q,呈紫色固体。1H NMR(400MHz,CDCl3,298K):δ8.85(dd,J=7.5,1.4Hz,4H),8.69(d,J=8.0Hz,8H),8.04(t,J=2.0Hz,4H),7.76(dd,J=8.1,6.7Hz,4H),7.71–7.49(m,20H),7.00(td,J=7.4,1.6Hz,4H),1.50(s,18H).13C NMR(100MHz,CDCl3,298K):δ195.12,155.16,153.93,152.39,150.10,149.69,142.54,140.08,139.77,138.84,138.67,137.44,136.75,129.45,129.37,129.27,128.17,128.05,127.82,127.76,126.46,125.60,125.08,122.82,80.43,28.16.HRMS(TOF-ESI+)(m/z):C76H64FeN8O4计算值为:1029.44[M-2PF6 +H+];实验值为:1029.44。
向于二氯甲烷(10mL)中的化合物Q(0.135g,0.13mmol)逐滴添加三氟乙酸(1.0mL,0.34g,3.73mmol),在室温下搅拌20小时后,将反应混合物逐滴添加至饱和的碳酸氢钠水溶液(20mL)中。用二氯甲烷(50mL)萃取之,有机层以饱和的碳酸氢钠水溶液(30mL)和饱和氯化钠溶液洗涤,并用无水硫酸钠干燥。真空蒸发溶剂以得到目标化合物8,呈紫色固体。1HNMR(400MHz,CDCl3,298K):δ8.43-8.52(m,12H),8.05(t,J=2.0Hz,2H),7.97(t,J=2.0Hz,2H),7.79–7.58(m,12H),7.48(td,J=8.0,1.3Hz,4H),7.31–7.25(m,4H),6.93(ddd,J=8.0,5.1,1.1Hz,4H),6.79–6.73(m,4H).13C NMR(100MHz,CDCl3,298K)δ156.38,155.79,149.14,148.03,147.56,142.54,140.08,139.77,138.84,136.59,134.36,129.45,129.37,129.27,128.17,128.15,128.05,127.76,125.60,124.02,121.39,120.06,115.37.HRMS(TOF-ESI+)(m/z):C66H48FeN8计算值为:1009.34[M-2PF6 +H+];实验值为:1009.34。
(2)基于化合物8的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物8替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物8的场效应晶体管。
实施例9:基于化合物9的单分子场效应晶体管的制备
(1)化合物9的合成:
合成路线如下:
Figure BDA0001615317860000301
向50mL反应瓶中加入甲醇(10mL)以溶解化合物P(182mg,0.316mmol),再滴加氯化锌(26mg,0.158mmol)的甲醇溶液(10mL),在氩气保护下搅拌回流反应4h。然后冷却至室温,滴加过量的饱和的六氟磷酸铵甲醇溶液直至沉淀析出完全并过滤,所得固体依次以蒸馏水(2×10mL)和乙醚(2×10mL)淋洗。粗产物以乙腈丙酮混合溶剂重结晶,得到化合物R。1HNMR(400MHz,CDCl3,298K):δ8.75(dd,J=7.5,1.4Hz,4H),8.59(d,J=8.0Hz,8H),7.94(t,J=2.0Hz,4H),7.66(dd,J=8.1,6.7Hz,4H),7.61-7.39(m,20H),7.00(td,J=7.4,1.6Hz,4H),1.50(s,18H).13C NMR(100MHz,CDCl3,298K):δ195.12,156.16,153.93,152.39,151.10,149.69,142.64,140.08,139.77,138.88,138.77,137.44,136.75,129.45,129.37,129.27,128.17,128.15,127.82,127.76,126.46,125.60,125.08,122.82,80.43,28.16.HRMS(TOF-ESI+)(m/z):C76H64ZnN8O4计算值为:1017.45[M-2PF6 +H+];实验值为:1017.45。
按照实施例8的方法,将化合物Q替换为化合物R(0.158g,0.13mmol)后进行反应,得到目标化合物9。1H NMR(400MHz,CDCl3,298K):δ8.43-8.52(m,12H),8.05(t,J=2.0Hz,2H),7.97(t,J=2.0Hz,2H),7.79–7.58(m,12H),7.48(td,J=8.0,1.3Hz,4H),7.31–7.25(m,4H),6.93(ddd,J=8.0,5.1,1.1Hz,4H),6.79–6.73(m,4H).13C NMR(100MHz,CDCl3,298K)δ156.38,155.79,149.14,148.03,147.56,142.54,140.08,139.77,138.84,136.59,134.36,129.45,129.37,129.27,128.17,128.15,128.05,127.76,125.60,124.02,121.39,120.06,115.37.HRMS(TOF-ESI+)(m/z):C66H48ZnN8计算值为:1017.33[M-2PF6 +H+];实验值为:1017.34。
(2)基于化合物9的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物9替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物9的场效应晶体管。
实施例10:基于化合物10的单分子场效应晶体管的制备
(1)化合物10的合成:
合成路线如下:
Figure BDA0001615317860000321
向50mL反应瓶中加入甲醇(10mL)以溶解化合物P(182mg,0.316mmol),再滴加氯化钌(33mg,0.158mmol)的甲醇溶液(10mL),在氩气保护下搅拌回流反应4h。然后冷却至室温,滴加过量的饱和的六氟磷酸铵甲醇溶液直至沉淀析出完全并过滤,所得固体依次以蒸馏水(2×10mL)和乙醚(2×10mL)淋洗。粗产物以乙腈丙酮混合溶剂重结晶,得到化合物S,呈红色固体。1H NMR(400MHz,CDCl3,298K):δ9.05(dd,J=7.5,1.4Hz,4H),8.79(d,J=8.0Hz,8H),8.14(t,J=2.0Hz,4H),7.76(dd,J=8.1,6.7Hz,4H),7.71-7.49(m,20H),7.10(td,J=7.4,1.6Hz,4H),1.50(s,18H).13C NMR(100MHz,CDCl3,298K):δ195.12,155.16,153.93,152.39,150.10,149.69,142.54,141.08,139.77,138.94,138.67,137.44,136.75,129.45,129.37,129.27,128.17,128.15,127.82,127.76,126.46,125.60,125.08,122.82,80.43,28.16.HRMS(TOF-ESI+)(m/z):C76H64RuN8O4计算值为:1255.40[M-2PF6 +H+];实验值为:1255.40。
按照实施例8的方法,将化合物Q替换为化合物S(0.164g,0.13mmol)进行反应,得到目标化合物10,呈红色固体。1H NMR(400MHz,CDCl3,298K):δ8.63-8.72(m,12H),8.25(t,J=2.0Hz,2H),8.17(t,J=2.0Hz,2H),7.89–7.68(m,12H),7.68(td,J=8.0,1.3Hz,4H),7.31–7.25(m,4H),6.93(ddd,J=8.0,5.1,1.1Hz,4H),6.79–6.73(m,4H).13C NMR(100MHz,CDCl3,298K)δ156.38,155.79,149.14,148.03,147.56,142.54,140.08,139.77,138.84,136.59,134.36,129.45,129.37,129.27,128.17,128.15,128.05,127.76,125.60,124.02,121.39,120.06,115.37.HRMS(TOF-ESI+)(m/z):C66H48RuN8计算值为:1055.31[M-2PF6 +H+];实验值为:1055.31。
(2)基于化合物10的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物10替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物10的场效应晶体管。
实施例11:基于化合物11的单分子场效应晶体管的制备
(1)化合物11的合成:
合成路线如下:
Figure BDA0001615317860000331
氩气保护下向反应瓶中加入4-(Boc-氨基)苯甲醛(2.212g,10mmol)和苯乙酮(2.403g,20mmol),搅拌下滴加三氟化硼乙醚(4.258g,30mmol),100℃下反应3h,后将反应液冷却至室温并倒入乙醚(200mL)中,过滤得到析出的固体,以无水乙醇重结晶后得到化合物T,为黄色固体。1H NMR(400MHz,CDCl3,298K):δ8.91–8.85(m,6H),7.80–7.72(m,4H),7.47–7.41(m,2H),7.23(tt,J=7.4,2.0Hz,2H),6.56–6.50(m,2H),1.50(s,9H).13C NMR(100MHz,CDCl3,298K)δ168.71,166.14,153.93,137.71,133.99,132.58,131.06,130.95,129.13,127.95,126.42,115.21,80.43,28.16.HRMS(TOF-ESI+)(m/z):C28H26NO3计算值为:425.19[M-BF4+H+];实验值为:425.19。
氩气保护下向反应瓶中加入化合物T(511mg,1mmol),以四氢呋喃(5mL)溶解然后加入对溴苯胺(172mg,1mmol),回流反应4h,后冷却至室温,加入乙醇进行重结晶,得到化合物U.1H NMR(400MHz,CDCl3,298K):δ7.89–7.81(m,4H),7.59–7.53(m,2H),7.52–7.46(m,6H),7.41(qd,J=3.8,1.5Hz,6H),7.19–7.13(m,2H),1.50(s,9H).13C NMR(100MHz,CDCl3,298K)δ156.07,153.93,140.59,137.71,136.23,134.01,132.14,130.72,129.94,129.48,128.57,128.09,127.95,126.43,126.40,120.79,80.43,28.16.HRMS(TOF-ESI+)(m/z):C34H30BrN2O2计算值为:578.16[M-BF4 +H+];实验为:578.16。
根据文献中描述的方法(J.Am.Chem.Soc.2012,134,7672-7675)合成化合物V。
向100mL Schlenk瓶中依次加入化合物U(710mg,1.23mmol)、化合物V(477mg,1.35mmol)、四三苯基膦钯(14.6mg,12.3μmol)、无水碳酸钾(1.60g,11.6mmol),注入四氢呋喃25mL与蒸馏水5mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取。合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物W。1H NMR(400MHz,CDCl3,298K)δ8.81(dd,J=8.0,1.0Hz,2H),8.58(s,2H),8.52(dd,J=5.0,1.3Hz,2H),7.90–7.81(m,10H),7.59–7.52(m,4H),7.52–7.45(m,6H),7.41(qd,J=3.8,1.5Hz,6H),6.93(ddd,J=8.0,5.1,1.1Hz,2H),1.50(s,9H).13C NMR(100MHz,CDCl3,298K)δ156.72,156.07,155.79,153.93,149.49,149.14,142.53,141.53,138.74,137.71,136.59,136.23,135.65,134.01,131.13,130.72,129.94,129.48,128.90,128.09,127.95,127.79,127.28,126.43,126.40,124.02,121.39,118.36,80.43,28.16.HRMS(TOF-ESI+)(m/z):C55H44N5O2计算值为:807.34[M-BF4 +H+];实验值为:807.34。
向50mL反应瓶中加入甲醇(10mL)以溶解化合物W(282mg,0.316mmol),再滴加氯化钌(33mg,0.158mmol)的甲醇溶液(10mL),在氩气保护下搅拌回流反应4h。然后冷却至室温,滴加过量的饱和的六氟磷酸铵甲醇溶液直至沉淀析出完全并过滤,所得固体依次以蒸馏水(2×10mL)和乙醚(2×10mL)淋洗。粗产物以乙腈丙酮混合溶剂重结晶,得到化合物X,呈红色固体。1H NMR(400MHz,CDCl3,298K):δ8.75(dd,J=7.5,1.4Hz,4H),8.59(d,J=8.0Hz,8H),7.90–7.81(m,20H),7.59–7.52(m,8H),7.51–7.37(m,25H),7.00(td,J=7.4,1.6Hz,4H),1.50(s,18H).13C NMR(100MHz,CDCl3,298K):δ156.07,154.69,153.93,151.96,150.33,149.96,142.53,141.53,138.80,138.75,137.71,136.23,135.65,134.01,131.13,130.72,129.94,129.67,129.48,128.90,128.09,127.95,127.79,127.28,126.43,126.40,125.48,124.07,80.43,28.16.HRMS(TOF-ESI+)(m/z):C110H88N10O4Ru计算值为:1715.61[M-2BF4 -2PF6 +H+];实验值为:1715.61。
按照实施例8的方法,将化合物Q替换为X(0.283g,0.13mmol)进行反应,得到目标化合物11,呈红色固体。1H NMR(400MHz,CDCl3,298K):δ8.75(dd,J=7.5,1.6Hz,4H),8.60–8.56(m,8H),7.90–7.81(m,20H),7.58–7.52(m,4H),7.48(s,4H),7.46–7.37(m,16H),7.21–7.15(m,4H),7.00(td,J=7.4,1.6Hz,4H),6.81–6.75(m,4H).13C NMR(100MHz,CDCl3,298K)δ156.07,154.69,151.96,150.33,149.96,148.03,142.53,141.53,138.80,138.74,136.23,135.65,134.01,131.13,130.72,129.94,129.67,129.48,128.90,128.22,128.09,127.79,127.28,125.48,125.32,124.07,115.05.HRMS(TOF-ESI+)(m/z):C100H72N10Ru计算值为:1515.50[M-2BF4 -2PF6 +H+];实验值为:1515.50。
(2)基于化合物11的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物11替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物11的场效应晶体管。
实施例12:基于化合物12的单分子场效应晶体管的制备
(1)化合物12的合成:
合成路线如下:
Figure BDA0001615317860000361
向250mL Schlenk瓶中依次加入1,3-二溴-5-碘苯(1.092g,3.02mmol),4-(Boc-氨基)苯硼酸(455mg,3.32mmol)、四三苯基膦钯(34.9mg,30.3μmol)、无水碳酸钾(3.93g,28.5mmol),注入四氢呋喃60mL与蒸馏水15mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(200mL)中,并用二氯甲烷(3×60mL)萃取。合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物Y。1H NMR(400MHz,CDCl3,298K):δ7.76(q,J=1.4Hz,3H),7.72–7.65(m,2H),7.56–7.50(m,2H),6.57(s,1H),1.50(s,9H).13C NMR(100MHz,CDCl3,298K)δ153.93,143.19,137.71,134.00,128.66,127.95,126.42,123.44,80.43,28.16.HRMS(TOF-ESI+)(m/z):C17H17Br2NO2计算值为:425.97[M+H+];实验值为:425.97。
向100mL Schlenk瓶中依次加入化合物Y(522mg,1.23mmol)、化合物O(477mg,1.35mmol)、四三苯基膦钯(14.6mg,12.3μmol)、无水碳酸钾(1.60g,11.6mmol),注入四氢呋喃25mL与蒸馏水5mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取。合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物Z。1H NMR(400MHz,CDCl3,298K):δ8.70-8.44(m,12H),8.31(dt,J=3.5,2.0Hz,2H),8.23(t,J=2.0Hz,1H),8.17(t,J=2.0Hz,1H),8.12(t,J=1.9Hz,1H),7.83–7.59(m,11H),7.48(td,J=8.0,1.3Hz,4H),6.93(ddd,J=8.0,5.1,1.1Hz,4H),1.50(s,9H).13C NMR(100MHz,CDCl3,298K)δ156.38,155.79,153.93,149.14,147.56,141.72,141.37,138.86,137.71,136.59,133.99,129.37,129.27,129.18,128.16,127.95,126.42,124.02,121.39,120.06,80.43,28.16.HRMS(TOF-ESI+)(m/z):C59H45N7O2计算值为:884.35[M+H+];实验值为:884.35。
向50mL反应瓶中加入甲醇(10mL)以溶解化合物Z(280mg,0.316mmol),再滴加氯化亚铁(21mg,0.158mmol)的甲醇溶液(10mL),在氩气保护下搅拌回流反应4h。然后冷却至室温,滴加过量的饱和的六氟磷酸铵甲醇溶液直至沉淀析出完全并过滤,所得固体依次以蒸馏水(2×10mL)和乙醚(2×10mL)淋洗。粗产物以乙腈丙酮混合溶剂重结晶,得到化合物Z2,呈紫色固体。1H NMR(400MHz,CDCl3,298K):δ8.75(dd,J=7.5,1.4Hz,8H),8.59(d,J=8.0Hz,15H),8.04(s,6H),7.94(t,J=2.0Hz,4H),7.66–7.42(m,28H),1.50(s,18H).13C NMR(100MHz,CDCl3,298K):δ155.16,153.93,152.39,150.10,149.69,141.72,141.37,138.86,138.67,137.71,133.99,129.45,129.37,129.27,129.18,128.16,127.95,126.42,125.08,122.82,80.43,28.16.HRMS(TOF-ESI+)(m/z):C118H90Fe2N14O4计算值为:1879.58[M-2PF6 +H+];实验值为:1879.58。
按照实施例8的方法,将化合物Q替换为Z2(0.282g,0.13mmol)反应,得到目标化合物12,呈紫色固体。1H NMR(400MHz,CDCl3,298K):δ8.75(dd,J=7.5,1.6Hz,8H),8.60–8.56(m,15H),8.04(s,6H),7.94(t,J=2.0Hz,4H),7.66(dd,J=8.0,6.7Hz,4H),7.58(dd,J=7.2,2.0Hz,8H),7.43(td,J=7.4,1.6Hz,8H),7.21–7.15(m,4H),7.00(td,J=7.4,1.6Hz,8H),6.81–6.75(m,4H).13C NMR(100MHz,CDCl3,298K)δ155.16,152.39,150.10,149.69,148.03,141.72,141.37,138.86,138.67,131.31,129.45,129.37,129.27,129.18,128.27,128.16,125.08,122.82,115.05.HRMS(TOF-ESI+)(m/z):C108H74Fe2N14计算值为:1679.50[M-2PF6 +H+];实验值为:1679.50。
(2)基于化合物12的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物12替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物12的场效应晶体管。
实施例13:基于化合物13的单分子场效应晶体管的制备
(1)化合物13的合成:
合成路线如下:
Figure BDA0001615317860000381
按照文献中的路线(European Journal of Medicinal Chemistry,102,277-287;2015),合成化合物Z3。
按照文献中的路线(Journal of the American Chemical Society,136(10),3972-3980;2014),合成化合物Z4。
向100mL Schlenk瓶中依次加入化合物Z3(0.279g,1mmol)、化合物Z4(0.878g,2.4mmol)、Pd(PPh3)4(83mg,0.072mmol)和K2CO3(1.0g,7.2mmol),注入THF/H2O(20mL/4mL),使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取。结合的有机层用Na2SO4干燥并在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物Z5,呈黄色固体。1H NMR(400MHz,CDCl3,298K):δ8.11–7.96(m,6H),7.92–7.80(m,6H),7.80–7.61(m,6H),3.92(s,4H),3.75(s,6H).13C NMR(100MHz,CDCl3,298K):δ172.68,137.95,133.76,132.68,131.30,129.89,129.08,128.51,128.06,127.35,127.06,125.89,123.71,123.64,51.97,40.77.HRMS(TOF-ESI+)(m/z):C36H28O4计算值为:525.21[M+H+];实验值为:525.21。
将化合物Z5(0.488g,0.93mmol)加入到5mL浓度为28%氨水中,室温下搅拌反应24h。后使用二氯甲烷(3×10mL)萃取,合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物Z6,呈黄色固体。1H NMR(400MHz,CDCl3,298K):δ8.12–7.96(m,6H),7.92–7.67(m,12H),3.63(s,4H).13C NMR(100MHz,CDCl3,298K):δ172.58,137.95,135.09,133.06,131.30,130.40,128.51,128.35,128.06,127.67,125.89,125.49,123.71,123.64,41.07.HRMS(TOF-ESI+)(m/z):C34H26N2O2计算值为:495.21[M+H+];实验值为:495.21。
将LiAlH4(0.152g,4mmol)和无水THF(5mL)加入到反应瓶后,向其中滴加化合物Z6(0.198g,0.4mmol)的无水THF(1mL)溶液,然后回流反应24h。后冷却至室温,加水淬灭,用二氯甲烷(3×10mL)萃取,合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物13,呈黄色固体。1H NMR(400MHz,CDCl3,298K):δ8.11–7.96(m,6H),7.92–7.80(m,6H),7.80–7.61(m,6H),2.53(s,4H),1.24(s,4H).13C NMR(100MHz,CDCl3,298K):δ137.95,133.79,131.30,130.12,128.64,128.51,128.06,126.36,125.89,125.43,123.71,123.64,43.70,39.10.HRMS(TOF-ESI+)(m/z):C34H30N2计算值为:467.25[M+H+];实验值为:467.25。
(2)基于化合物13的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物13替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物13的场效应晶体管。
实施例14:基于化合物14的单分子场效应晶体管的制备
(1)化合物14的合成:
合成路线如下:
Figure BDA0001615317860000401
按照文献中的路线(Chemistry-a European Journal,2001,7(22):4894-4901),合成化合物Z7。
向250mLSchlenk瓶中加入化合物Z7(1.00g,0.69mmol)、碘化铜(0.572g,0.30mmol)和四三苯基膦钯(0.182g,0.16mmol),丙炔酸甲酯(0.060g,0.71mmol)与哌啶(60mL)使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在80℃加热搅拌下反应24h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取。结合的有机层用Na2SO4干燥并在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物Z8,呈黄色固体.1H NMR(400MHz,CDCl3,298K):δ8.40(s,2H),8.13(s,2H),8.02(s,2H),7.99(s,2H),7.98(s,2H),7.86(s,2H),3.75(s,3H),1.26(m,88H),0.92–0.86(m,12H)13C NMR(100MHz,CDCl3,298K):δ173.44,139.29,139.13,139.10,129.83,129.02,128.96,128.81,128.45,123.60,123.21,122.48,122.29,120.92,120.65,120.53,120.45,119.08,118.94,118.68,118.17,89.82,82.48,51.06,37.29,37.20,34.02,32.45,32.39,32.05,31.98,30.31,30.27,30.10,30.04,29.96,29.88,29.54,29.45,29.41,25.09,22.88,20.15,14.19.
HRMS(TOF-ESI+)(m/z):C94H115BrO2计算值为:1355.81[M+H+];实验值为:1355.81。
向250mL Schlenk瓶中依次加入化合物Z8(1.10g,0.81mmol)、联硼酸频那醇酯(0.124g,0.49mmol)、四三苯基膦钯(0.038g,0.03mmol)、乙酸钾(0.40g,4.07mmol),然后注入N,N-二甲基甲酰胺50mL,使用冷冻解冻泵循环法循环3次以除氧,后在氩气保护下,反应物在90℃加热搅拌下反应10h。冷却后,将反应混合物倒入水(50mL)中,并用二氯甲烷(3×30mL)萃取,有机相依次水洗(3×30mL)和饱和氯化钠溶液洗(30mL),并用无水硫酸钠干燥。在减压下去除溶剂,粗产物用硅胶柱色谱分析纯化,得到化合物Z9,呈黄色固体。
1H NMR(400MHz,CDCl3,298K):δ8.50(s,4H),8.23(s,4H),8.18(s,4H),8.09(s,4H),7.98(s,4H),7.88(s,4H),3.75(s,6H),1.26(m,176H),0.92–0.86(m,24H).
13C NMR(100MHz,CDCl3,298K):δ175.49,149.45,139.93,138.10,129.81,129.02,128.96,128.81,128.45,124.60,124.21,124.48,123.39,121.92,121.65,121.53,120.45,119.28,118.94,118.68,118.27,89.87,82.58,51.06,37.29,37.20,34.02,32.45,32.39,32.05,31.98,30.31,30.27,30.10,30.04,29.96,29.88,29.54,29.45,29.41,25.09,22.88,20.15,14.19.
HRMS(TOF-ESI+)(m/z):C188H230O4计算值为:2552.78[M+H+];实验值为:2552.78。
将化合物Z9(663mg,0.26mmol)溶于THF(200mL)后,加入Pd/C(10%,285mg).室温下通入H2(1bar),搅拌反应16h。滤去催化剂后,在减压下去除溶剂,粗产物用硅胶柱色谱分析纯化,得到化合物Z10,呈黄色固体。1H NMR(400MHz,CDCl3,298K):δ8.50(s,4H),8.23(s,4H),8.18(s,4H),8.09(s,4H),7.98(s,4H),7.88(s,4H),3.75(s,6H),1.26(m,180H),2.28(t,J=7.5Hz,4H),0.92–0.86(m,24H).
13C NMR(100MHz,CDCl3,298K):δ173.53,139.42,129.36,122.91,120.78,119.15,52.15,37.29,33.99,32.51,32.37,32.04,30.21,30.05,30.01,29.93,29.85,29.76,29.53,29.48,29.31,25.02,22.86,14.18.
HRMS(TOF-ESI+)(m/z):C188H238O4计算值为:2560.84[M+H+];实验值为:2560.84。
将化合物Z10(0.589g,0.23mmol)加入到5mL浓度为28%氨水中,室温下搅拌反应24h。后使用二氯甲烷(3×10mL)萃取,合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物Z11,呈黄色固体。1H NMR(400MHz,CDCl3,298K):δ8.50(s,4H),8.23(s,4H),8.18(s,4H),8.07(s,4H),7.96(s,4H),7.86(s,4H),1.26(m,180H),2.28(t,J=7.5Hz,4H),0.92–0.86(m,24H)13C NMR(100MHz,CDCl3,298K):δ173.53,139.42,129.36,122.91,120.78,119.15,51.05,37.29,33.99,32.51,32.37,32.04,30.21,30.05,30.01,29.93,29.85,29.76,29.53,29.48,29.31,25.02,22.86,14.18.
HRMS(TOF-ESI+)(m/z):C186H236N2O2计算值为:2530.85[M+H+];实验值为:2530.85。
将LiAlH4(0.152g,4mmol)和无水THF(50mL)加入到反应瓶后,向其中滴加化合物Z11(0.506g,0.20mmol)的无水THF(50mL)溶液,然后回流反应24h。后冷却至室温,加水淬灭,用二氯甲烷(3×30mL)萃取,合并的有机相用无水硫酸钠干燥后,在减压下去除溶剂。粗产物用硅胶柱色谱分析纯化,得到化合物14,呈黄色固体。
1H NMR(400MHz,CDCl3,298K):δ8.50(s,4H),8.23(s,4H),8.18(s,4H),8.07(s,4H),7.96(s,4H),7.86(s,4H),1.26(m,192H),0.92–0.86(m,24H)13C NMR(100MHz,CDCl3,298K):δ173.53,139.42,129.36,122.91,120.78,119.15,54.05,48.67,38.29,33.89,32.51,32.35,31.84,30.61,30.05,30.01,29.93,29.85,29.76,29.53,29.48,29.31,25.01,22.84,14.19.HRMS(TOF-ESI+)(m/z):C186H240N2计算值为:2502.89[M+H+];实验值为:2502.89。
(2)基于化合物14的单分子场效应晶体管的制备
参照实施例1中晶体管的制备方法,以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,用化合物14替换化合物1构建强极化分子-石墨烯分子异质结,制备出底栅结构的基于化合物14的场效应晶体管。
实施例15基于化合物1的单分子场效应晶体管的制备
以石墨烯作为栅电极,以厚度为5nm的氧化锆作为介电层,构建底栅结构的场效应晶体管:
首先,按实施例1记载的方法在硅片上形成底栅;
采用电子束蒸镀的方法在底栅上镀5nm的氧化锆层;
按实施例1记载的方法在介电层上构建强极化分子-石墨烯分子异质结,得到单分子场效应晶体管器件。
实施例16基于化合物1的单分子场效应晶体管的制备
以石墨烯作为栅电极,以厚度为5nm的氧化钛作为介电层,构建底栅结构的场效应晶体管:
首先,按实施例1记载的方法在硅片上形成底栅;
采用电子束蒸镀的方法在底栅上镀5nm的氧化钛层;
按实施例1记载的方法在介电层上构建强极化分子-石墨烯分子异质结,得到单分子场效应晶体管器件。
实施例17基于化合物1的单分子场效应晶体管的制备
以铝作为栅电极,以厚度为5nm的氧化铝作为介电层,构建底栅结构的场效应晶体管:
首先,通过电子束蒸镀的方法在硅片上镀35nm的铝层;然后在180℃下加热1小时,制得5nm的氧化铝层。
按实施例1记载的方法在介电层上构建强极化分子-石墨烯分子异质结,得到单分子场效应晶体管器件。
实施例18基于化合物1的单分子场效应晶体管的制备
以铝作为栅电极,以厚度为3nm的氧化铝及2nm的氧化铪作为介电层,构建底栅结构的场效应晶体管:
首先,通过电子束蒸镀的方法在硅片上镀35nm的铝层;然后在大气中放置24小时,自然氧化得到3nm的氧化铝层,进一步通过原子层沉积2nm的氧化铪层。
按实施例1记载的方法在氧化铪层上构建强极化分子-石墨烯分子异质结,得到单分子场效应晶体管器件。
实施例19基于化合物1的单分子场效应晶体管的制备
实施例19与实施例15的区别在于氧化锆的厚度为3nm。
实施例20基于化合物1的单分子场效应晶体管的制备
实施例20与实施例15的区别在于氧化锆的厚度为10nm。
实施例21基于化合物2的单分子场效应晶体管的制备
以石墨烯作为栅电极,以厚度为5nm的氧化铪作为介电层,构建顶栅结构的场效应晶体管:
参照实施例1记载的方法,在具有300nm氧化层的硅片上构建强极化分子-石墨烯分子异质结;
在另一硅片上通过溶胶凝胶法制备得到厚度为5nm的氧化铪层,接着将化学气相沉积法生长的石墨烯转移其上,进一步在上面旋涂PMMA,最后使用氢氟酸将硅片刻蚀,将氧化铪/石墨烯/PMMA薄膜分别用去离子水和异丙醇冲洗三次后置于分子异质结之上,得到基于化合物2的顶栅结构的单分子场效应晶体管器件。
实施例22基于化合物2的单分子场效应晶体管的制备
实施例22与实施例21的区别在于:通过电子束蒸镀的方法制备得到厚度为5nm的氧化锆层,作为介电层。
实施例23基于化合物2的单分子场效应晶体管的制备
实施例23与实施例21的区别在于:通过原子层沉积的方法制备得到厚度为5nm的氧化钛层,作为介电层。
单分子场效应晶体管的性能测试实施例
实施例24
使用Agilent 4155C半导体测试仪和Karl Suss(PM5)手动探针台对实施例1-7制备的单分子场效应晶体的性能测试。
在室温大气条件下,改变栅压,范围:-2V~+2V。在固定的某一栅压下,施加源漏偏压(-1V~+1V),测得上述单分子场效应晶体管受栅压调控的I-V特性曲线(如图3-9所示),从图3-9中可以看出,实施例1-7制备的单分子场效应晶体管表现出了随栅压变化的电导特性;具体而言:不同栅压下的I-V曲线有明显的不同,随着栅压从负向到正向变化,电导特性发生了较大的改变,逐渐降低;这表明实施例1-7制备的单分子场效应晶体管具有高效的栅调控特性;同时也充分证明本发明提供的单分子场效应晶体管确实实现了工业界晶体管的特性,具有广泛的应用前景。
另外需要说明的是,虽然前述测试的栅压范围是-2V~+2V;但已经通过实验证实,在-4V~+4V的栅压范围内,同样可以得到与图3-9类似的I-V特性曲线,同样表现出了随栅压变化的电导特性。
需要说明的是,实施例8-23制备的单分子场效应晶体管也可以得到与实施例1-7制备的单分子场效应晶体管相类似的I-V特性曲线;因此具有与实施例1-7制备的单分子场效应晶体管相同的技术效果。
通过性能测试实验分析可知,含有极化率大于2C·m2/V的基团的强极化分子,由于分子的电子云丰富,施加电压,容易发生极化,进而使得分子轨道能级发生较大的移动;因此更容易有效地实现单分子场效应晶体管的栅调控。
需要说明的是,本文中所引用的文献,通过引用其全文并入本文中,本文再不进行赘述。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内,另外本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可。

Claims (13)

1.一种用于单分子场效应晶体管的强极化分子,所述强极化分子具有以下结构式中的一种:
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE020
2.一种强极化分子-石墨烯分子异质结,其中该分子异质结包括通过酰胺共价键连接于具有纳米间隙的二维单层石墨烯的间隙之间的用于单分子场效应晶体管的强极化分子,所述强极化分子具有以下结构中的一种:
Figure DEST_PATH_IMAGE021
Figure 194744DEST_PATH_IMAGE004
Figure 49568DEST_PATH_IMAGE006
Figure 829305DEST_PATH_IMAGE008
Figure 162197DEST_PATH_IMAGE010
Figure 976570DEST_PATH_IMAGE012
Figure 799032DEST_PATH_IMAGE014
Figure 3748DEST_PATH_IMAGE016
Figure 202649DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE022
3.如权利要求2所述的强极化分子-石墨烯分子异质结,其中所述具有纳米间隙的二维单层石墨烯为具有纳米间隙阵列的二维单层石墨烯。
4.一种单分子场效应晶体管,其包括衬底、栅极、介电层及权利要求2-3任一项所述的强极化分子-石墨烯分子异质结;所述介电层位于所述栅极与强极化分子-石墨烯分子异质结之间。
5.如权利要求4所述的单分子场效应晶体管,其中所述栅极的材料选自石墨烯或金属铝中的一种。
6.如权利要求4所述的单分子场效应晶体管,其中所述介电层的材料选自氧化铪、氧化锆、氧化钛、氧化铝中的一种或其组合。
7.如权利要求6所述的单分子场效应晶体管,其中:
所述介电层为氧化铪层,所述栅极为石墨烯层;或
所述介电层为氧化锆层,所述栅极为石墨烯层;或
所述介电层为氧化钛层,所述栅极为石墨烯层;或
所述介电层为氧化铝层,所述栅极为金属铝层;或
所述介电层为氧化铝与氧化铪的复合层,所述栅极为金属铝层。
8.如权利要求4所述的单分子场效应晶体管,其中所述衬底为具有氧化硅层的硅片,所述氧化硅层的厚度为200-400nm。
9.如权利要求4所述的单分子场效应晶体管,其中介电层的厚度为3-10nm。
10.如权利要求4所述的单分子场效应晶体管,其中所述介电层的厚度为4-7nm。
11.如权利要求4所述的单分子场效应晶体管,其中,所述栅极置于所述衬底上,所述介电层置于所述栅极上,所述强极化分子-石墨烯分子异质结置于所述介电层上;或
所述强极化分子-石墨烯分子异质结置于所述衬底上,所述介电层置于所述强极化分子-石墨烯分子异质结上,所述栅极置于所述介电层上。
12.一种分子开关,其包含权利要求4-11中任一项所述的单分子场效应晶体管。
13.一种半导体芯片,其包含权利要求4-11中任一项所述的单分子场效应晶体管。
CN201810283361.XA 2018-04-02 2018-04-02 强极化分子及应用其制备的单分子场效应晶体管 Active CN110343110B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202011405289.7A CN112538085B (zh) 2018-04-02 2018-04-02 分子异质结及单分子场效应晶体管
CN201810283361.XA CN110343110B (zh) 2018-04-02 2018-04-02 强极化分子及应用其制备的单分子场效应晶体管
JP2020550619A JP7083981B2 (ja) 2018-04-02 2019-03-29 強分極分子およびそれを用いて調製された単一分子電界効果トランジスタ
EP19780897.5A EP3778570B1 (en) 2018-04-02 2019-03-29 Strongly-polarized molecule, and single molecule field effect transistor prepared therefrom
US17/042,800 US20210024560A1 (en) 2018-04-02 2019-03-29 Strongly polarized molecule, and single molecule field effect transistor prepared therefrom
KR1020207031057A KR102507357B1 (ko) 2018-04-02 2019-03-29 강한 편극 분자, 및 그로부터 제조된 단일 분자 필드 이펙트 트랜지스터
PCT/CN2019/080347 WO2019192395A1 (zh) 2018-04-02 2019-03-29 强极化分子及应用其制备的单分子场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810283361.XA CN110343110B (zh) 2018-04-02 2018-04-02 强极化分子及应用其制备的单分子场效应晶体管

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202011405289.7A Division CN112538085B (zh) 2018-04-02 2018-04-02 分子异质结及单分子场效应晶体管

Publications (2)

Publication Number Publication Date
CN110343110A CN110343110A (zh) 2019-10-18
CN110343110B true CN110343110B (zh) 2021-05-28

Family

ID=68100050

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011405289.7A Active CN112538085B (zh) 2018-04-02 2018-04-02 分子异质结及单分子场效应晶体管
CN201810283361.XA Active CN110343110B (zh) 2018-04-02 2018-04-02 强极化分子及应用其制备的单分子场效应晶体管

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202011405289.7A Active CN112538085B (zh) 2018-04-02 2018-04-02 分子异质结及单分子场效应晶体管

Country Status (6)

Country Link
US (1) US20210024560A1 (zh)
EP (1) EP3778570B1 (zh)
JP (1) JP7083981B2 (zh)
KR (1) KR102507357B1 (zh)
CN (2) CN112538085B (zh)
WO (1) WO2019192395A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420708B (zh) * 2020-04-30 2021-08-20 林贤贵 一种石墨烯共价接枝的氨基苯三联吡啶-铁配合物芬顿催化剂及其制备方法
CN112582542B (zh) * 2020-12-06 2022-09-30 南开大学 一种基于二维范德华异质结构的单分子场效应晶体管及其制备方法
CN112582540B (zh) * 2020-12-06 2022-09-30 南开大学 具有量子干涉效应的化合物及包含其的垂直单分子场效应晶体管集成器件的制备方法
CN112582541B (zh) * 2020-12-06 2022-07-29 南开大学 一种基于二维叠层异质结构的垂直单分子膜场效应晶体管及其制备方法
US11390160B2 (en) * 2020-12-09 2022-07-19 Ford Global Technologies, Llc Wheel disconnect clutch
CN114031753B (zh) * 2020-12-31 2023-11-03 广东聚华印刷显示技术有限公司 有机聚合物及其应用
CN112898582B (zh) * 2021-01-19 2022-12-20 南开大学 一种基于超分子的单分子场效应晶体管及其制备方法
CN114213258B (zh) * 2021-12-13 2024-06-18 北京未名元上分子技术有限公司 一种平面共轭分子化合物及包含其的单分子场效应晶体管
CN114292201B (zh) * 2021-12-27 2024-05-28 北京未名元上分子技术有限公司 一种具有量子干涉效应的化合物及包含其的单分子场效应晶体管
CN114230378B (zh) * 2021-12-27 2022-11-15 复旦大学 一种氧化还原驱动的超组装智能门控系统的制备方法
CN118234253B (zh) * 2024-05-24 2024-09-10 南开大学 一种基于双栅调控的单分子场效应晶体管及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456702B (zh) * 2010-10-14 2014-03-19 北京大学 一种基于石墨烯电极的功能化分子电子器件及其制备方法与应用
CN102775273B (zh) * 2012-07-05 2014-09-10 北京大学 一种分叉烷基链及其制备和在有机共轭分子中的应用
CN104177366A (zh) * 2013-05-27 2014-12-03 海洋王照明科技股份有限公司 含吡咯并吡咯烷酮单元的有机半导体材料及其制备方法和太阳能电池器件
JP6158013B2 (ja) 2013-09-24 2017-07-05 株式会社東芝 有機分子メモリ
EP3083835B1 (de) * 2013-12-19 2018-09-26 Merck Patent GmbH Farbstoff-verbindungen
KR101608579B1 (ko) * 2014-04-22 2016-04-04 한국생산기술연구원 전자 수송 재료 및 이를 이용한 유기 전기 발광 소자
CN104744268B (zh) * 2015-03-04 2017-03-29 湖南工业大学 具有高平面性的含萘结构功能二胺单体及其合成方法和应用
KR101703118B1 (ko) * 2015-10-14 2017-02-07 한국생산기술연구원 전자 수송 재료 및 이를 이용한 유기 전기 발광 소자
CN107011317B (zh) 2016-05-24 2020-03-20 北京大学 光致异构化合物及包含其的器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Combined spectroscopic and quantum chemical study of [trans-Ru(C≡CC6H4R1-4)2(dppe)2]n+ and [trans-Ru(C≡CC6H4R1-4)(C≡CC6H4R2-4)(dppe)2]n+ (n = 0, 1) complexes: Interpretations beyond the lowest energy conformer paradigm(Article);Santiago Marqués-González,等;《Organometallics》;20140703;第33卷(第18期);第4949页图3 *

Also Published As

Publication number Publication date
JP2021516868A (ja) 2021-07-08
CN110343110A (zh) 2019-10-18
KR20200138784A (ko) 2020-12-10
CN112538085B (zh) 2022-04-05
CN112538085A (zh) 2021-03-23
KR102507357B1 (ko) 2023-03-08
US20210024560A1 (en) 2021-01-28
EP3778570A1 (en) 2021-02-17
EP3778570B1 (en) 2023-10-04
EP3778570A4 (en) 2021-09-15
WO2019192395A1 (zh) 2019-10-10
JP7083981B2 (ja) 2022-06-14

Similar Documents

Publication Publication Date Title
CN110343110B (zh) 强极化分子及应用其制备的单分子场效应晶体管
Yang et al. High performance organic field-effect transistors based on single-crystal microribbons and microsheets of solution-processed dithieno [3, 2-b: 2′, 3′-d] thiophene derivatives
US7932463B2 (en) Quinacridine derivatives and organic electronic devices using the same
WO2015145315A1 (en) Azaazene analogues and their use as semiconductor
Chen et al. Asymmetric fused thiophenes for field-effect transistors: crystal structure–film microstructure–transistor performance correlations
Ma et al. The first solution-processable n-type phthalocyaninato copper semiconductor: tuning the semiconducting nature via peripheral electron-withdrawing octyloxycarbonyl substituents
JP2022532554A (ja) ダイヤモンドイド化合物
TW201441211A (zh) 含有氧族元素的有機化合物、其製造方法及其用途
He et al. Molecular phase engineering of organic semiconductors based on a [1] benzothieno [3, 2-b][1] benzothiophene core
CN108155290B (zh) 一种基于离子液体栅的单分子场效应晶体管
Yan et al. Influence of heteroatoms on the charge mobility of anthracene derivatives
CN112582540B (zh) 具有量子干涉效应的化合物及包含其的垂直单分子场效应晶体管集成器件的制备方法
Ma et al. Helical nano-structures self-assembled from dimethylaminoethyloxy-containing unsymmetrical octakis-substituted phthalocyanine derivatives
Cheng et al. Novel self-assembled phosphonic acids monolayers applied in N-channel perylene diimide (PDI) organic field effect transistors
Kojima et al. Organic field-effect transistors based on novel organic semiconductors containing diazaboroles
Wang et al. Fused-ring pyrazine derivatives for n-type field-effect transistors
CN107011317B (zh) 光致异构化合物及包含其的器件
TWI659958B (zh) 用於有機電子裝置之雜并苯(heteroacenes)
US8546796B2 (en) Semiconductor device, method of manufacturing the same, and method of forming multilayer semiconductor thin film
Boobalan et al. Luminescent one-dimensional nanostructures of perylene bisimides
Hoang et al. New π-extended triphenylene-based organic semiconductors in field-effect transistors
Garg et al. Stable negative differential resistance in porphyrin based σ–π–σ monolayers grafted on silicon
Li et al. Application of phosphonic acid self-assembled monolayer in organic field-effect transistors
Shoji et al. Synthesis and FET characteristics of phenylene-vinylene and anthracene-vinylene compounds containing cyano groups
Ji et al. Water-controlled synthesis of low-dimensional molecular crystals and the fabrication of a new water and moisture indicator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant