CN1103344C - 一种树脂组合物的制备方法 - Google Patents
一种树脂组合物的制备方法 Download PDFInfo
- Publication number
- CN1103344C CN1103344C CN98106457A CN98106457A CN1103344C CN 1103344 C CN1103344 C CN 1103344C CN 98106457 A CN98106457 A CN 98106457A CN 98106457 A CN98106457 A CN 98106457A CN 1103344 C CN1103344 C CN 1103344C
- Authority
- CN
- China
- Prior art keywords
- component
- thermoplastic resin
- resin
- input aperture
- volatile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
- C08L71/123—Polyphenylene oxides not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/005—Processes for mixing polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
- C08L71/126—Polyphenylene oxides modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
本发明涉及一种通过将热塑性树脂(A)与熔化温度或玻璃化转变点低于热塑性树脂(A)10℃或更多温度的热塑性树脂(B)和(C)熔融混合而制备热塑性树脂组合物的方法。该方法包括将含具有分子量是300或更低的500至30000ppm挥发性成分的热塑性树脂(A)和含有比组分A更少挥发性成分的热塑性树脂(B)从熔融捏合机的顶部输入口送入,在减压下排除挥发性成分,且将热塑性树脂(C)从侧面输入口送入。根据本发明,可以制备出一种热塑性树脂组合物,该组合物满足了相互矛盾的性质,即改善冲击强度和较少的挥发性成分,且同时有益于能耗的降低和操作。
Description
本发明涉及一种制备热塑性树脂组合物的方法。具体地说,它涉及通过混合彼此的熔化温度或玻璃化转变点相差10℃或更多的热塑性树脂而制造具有优秀冲击强度和较少挥发成份的一种热塑性树脂组合物的具有工业优势的方法。
虽然有良好的耐热性,但流动性和冲击强度差的热塑性树脂(A)通过与熔化温度或玻璃化转变点低于热塑性树脂(A)10℃或更多的一种热塑性树脂和/或弹性体等混合,使之得到了应用。对于混合具有熔化温度或玻璃化转变点低于热塑性树脂(A)至少10℃的树脂和/或弹性体等的常规方法,如下举例说明。
(1)一种方法,包括用转鼓将固体形式的两种树脂的粉末或丸粒混合,用例如单级融熔挤压机的捏合机,融熔混合所得的混合物,对其进行造粒,并注射或挤压模制所得丸粒,用以制造出模制品。
(2)一种方法,包括用转鼓将固体形式的两种树脂的粉末或丸粒混合,并接着注射或挤压模制得到的混合物,用以制造出模制品;且
(3)一种方法,包括固体形式的热塑性树脂(A)与熔化温度或玻璃化转变点低于热塑性树脂(A)至少10℃的少量的热塑性树脂(B)混合,用例如融熔挤压机的捏合机,对得到的混合物造粒,得到的丸粒与熔化温度或玻璃化转变点也低于热塑性树脂(A)至少10℃的固体形式的热塑性树脂(C)等进一步混合,且用例如第二融熔挤压机(日本专利申请公开No.117444/1992)的捏合机对上述混合物进行造粒。
但是根据方法(1),在用融熔挤压机捏合的步骤中,在将树脂混合均匀的情况下,为了熔化组分(A),树脂温度不利地增大,这样使得组分B等损坏。因此,所得的树脂组合物的冲击强度等性质变坏。如果树脂温度降低,以避免冲击强度等的损坏,则树脂不能很好地捏合,且也不能减少挥发成份的数量。如果增加弹性体的添加量,虽然冲击强度得到了改善,但挥发成份的量不能减少。
根据方法(2),由于组份A的未脱气,银纹等显露在得到的模制品上。当组分A没有脱气时,热塑性树脂(A)没有充分熔融混合,因为热塑性树脂(B)先于热塑性树脂(A)融化,且产生了未融化的热塑性树脂(A)颗粒,而且不能得到足够的冲击强度。
在上述的方法(3)(母炼胶方法)中,融溶混合分两步进行。因此,树脂被损坏,使得冲击强度减少。另外,这种方法具有例如不利的能量损耗和复杂的操作的缺点。
日本公开专利申请No.149917/1995公开了一种制备热塑性树脂组合物的方法,其中当100重量份的包括聚亚苯基醚和芳香链烯基化合物聚合物的组合物在1或多重量份的有机溶剂存在下,使用挤压机,融熔混合时,聚亚苯基醚,一部分芳香链烯基化合物聚合物和有机溶剂,从处于树脂流的上游点的原料输入口送入,且剩余部分的芳香链烯基化合物聚合物从处于树脂流的下游点的原料输入口送入。根据这个方法,有机溶剂与聚亚苯基醚和芳香链烯基化合物聚合物的混合物在挤压机中捏合,这样使得这些成份没有充分混合。当有机溶剂的量出于充分混合考虑增加时,有机溶剂的排除变得困难,而且由于朝向第一原料输入口的气体返流,挤压生产率降低,且树脂挤压量改变。
本发明的目的在于有效地制备热塑性树脂组合物,该组合物满足了相互矛盾的性质,即改善冲击强度和减少挥发性成份,而同时具有较少的工业能耗。
图1是说明本发明的附图。
1、第一原料输入口(顶送入口)
2、第二原料输入口(第一侧送入口)
3、第三原料输入口(第二侧送入口)
4、第四原料输入口
5、在减压下排除挥发性成份的第一开口
6、常压通气口
7、常压通气口
8、在减压下排除挥发性成份的第二开口
A:聚亚苯基醚树脂
B:通用聚苯乙烯
C:弹性体增强的苯乙烯树脂
D:填充剂
E:弹性体
F:挥发性阻燃剂
G:非挥发性阻燃剂
本发明涉及一种通过将热塑性树脂(A)与熔解温度或玻璃化转变点低于热塑性树脂(A)10℃或更多温度的热塑性树脂(B)和(C)熔融混合而制备热塑性树脂组合物的方法,包括将含具有分子量是300或更少的含量500至30000ppm挥发性成份的热塑性树脂(A)(下文有时称为组份A)和含有比组份A少的挥发性成份的热塑性树脂(B)(下文有时称为组分B)从融熔捏合机的第一输入口送入,在减压下排除挥发性成份,且将热塑性树脂(C)(下文有时称为组分C)从第二输入口送入,并在用于在减压条件下排除挥发性成分的系统(第二个开口)中排除挥发性成分,该系统设置于树脂组合物在第二输入口之后通过的位置,其中从第一输入口处加入的组分B与组分A的量的比为0.05至1,从第二输入口加入的组分C的量与组分B的量之比为0.5∶5。
热塑性树脂(A),(B)和(C)的组合包括:
作为热塑性树脂(A)的聚亚苯基醚树脂和作为热塑性树脂(B)和(C)的苯乙烯树脂的组合物;
作为热塑性树脂(A)的聚苯硫树脂和作为热塑性树脂(B)和(C)的改性聚亚苯基醚树脂和/或苯乙烯型树脂的组合物;
作为热塑性树脂(A)的聚碳酸酯树脂和作为热塑性树脂(B)和(C)的ABS树脂和/或苯乙烯树脂的组合物;
作为热塑性树脂(A)的聚亚苯基醚树脂,作为热塑性树脂(B)的通用聚苯乙烯;和作为热塑性树脂(C)的通过弹性体增强的苯乙烯树脂的组合物,等等。
在本发明中使用的聚亚苯基醚树脂是具有下式(1)和/或(2)表示的重复单元的均聚物或共聚物:
其中R1、R2、R3、R4、R5和R6分别表示具有1-4个碳原子的烷基、芳基、卤素和氢;且其中R5和R6不能同时是氢。
这些树脂可以组合使用。
聚亚苯基醚树脂均聚物的代表例子包括聚(2、,6-二甲基-1,4-亚苯基)醚,聚(2-甲基-6-乙基-1,4-亚苯基)醚,聚(2,6-二乙基-1,4-亚苯基)醚,聚(2-乙基-6-正丙基-1,4-亚苯基)醚,聚(2,6-二正丙基-1;4-亚苯基)醚,聚(2-甲基-6-正丁基-1,4-亚苯基)醚,聚(2-乙基-6-异丙基-1,4-亚苯基)醚,聚(2-甲基-6-羟乙基-1,4-亚苯基)醚,聚(2-甲基-6-氯乙基-1,4-亚苯基)醚等,其中聚(2,6-二甲基-1,4亚芳基)醚是特别优选的。
聚亚苯基醚共聚物是具有例如亚苯基醚结构作为主单体单元的共聚物。例如,这样的例子有2,6-二甲基苯酚和2,3,6-三甲基苯酚的共聚物、2,6-二甲基苯酚和邻甲酚的共聚物、2,6-二甲基苯酚、2,3,6-三甲基苯酚和邻甲酚的共聚物等。
用于本发明的聚亚苯基醚树脂可以有利地含有作为部分结构的,推荐存在于常规聚亚苯基醚树脂中的多种其它亚苯基醚单元。这些被推荐以少量共存的亚苯基醚单元包括2-(二烷基氨基甲基)-6-甲基亚苯基醚单元,2-(N-烷基-N-苯基氨基甲基)-6-甲基亚苯基醚单元等,它们公开于日本公开专利申请No.297428/1989和301222/1988。
而且,用于本发明的聚亚苯基醚树脂包括其中有连接在主链上的少量联苯酚合苯醌等的树脂。
而且,聚亚苯基醚树脂包括,例如,公开于日本专利No.276823/1990,108095/1988和59724/1984的通过用碳-碳双键化合物改性的聚亚苯基醚。
用于本发明的聚亚苯基醚树脂,可以通过例如根据公开于日本专利公开No.13966/1993的方法,在二丁基胺存在条件下,使2,6-二甲苯酚经受氧化偶联聚合。分子量和分子量分布没有特别的限制。
用于本发明的苯乙烯树脂包括通用聚苯乙烯和通过弹性体增强的苯乙烯树脂。
通用聚苯乙烯包括,除苯乙烯聚合物外,还有像邻-甲基苯乙烯,对-甲基苯乙烯、间甲基苯乙烯、2,4-二甲基苯乙烯、乙基苯乙烯和对叔丁基苯乙烯的环上烷基取代的苯乙烯和象α-甲基苯乙烯和α-甲基-对乙苯乙烯的α-烷基取代的苯乙烯的聚合物;包括上述乙烯基芳香化合物的一种或多种和至少一种其它乙烯基化合物的共聚物;和包括两种或更多种上述化合物的共聚物。与乙烯基芳香化合物可共聚合的化合物包括异丁烯酸酯,例如异丁烯酸甲酯和异丁烯酸乙酯;不饱和腈化合物例如丙烯腈和甲基丙烯腈,酸酐例如马来酐等。用于制备这些树脂的聚合方法不仅包括游离基聚合反应也包括离子聚合反应。在上述聚合物中特别优选的聚合物是聚苯乙烯和苯乙烯-丙烯腈共聚物(AS树脂)。这些树脂可以组合使用。
用于增强苯乙烯树脂的弹性体包括聚丁二烯,苯乙烯-丁二烯共聚物、聚异戊二烯、丁二烯-异戊二烯共聚物、天然橡胶、乙烯-丙烯共聚物等。特别地,聚丁二烯、苯乙烯-丁二烯共聚物和其部分氢化的聚合物是优选的。
作为通过弹性体增强的苯乙烯树脂,弹性体增强的聚苯乙烯(HIPS)和弹性体增强的苯乙烯-丙烯腈共聚物(ABS树脂)是优选的。这些树脂的混合物也优选。弹性体的量是6%或更多,优选8%或更多,更优选10%或更多。
上述组合物优选包括5-92.5wt%的组分A、5至80wt%的组分B和25至80wt%的组分C,更优选10至90wt%的组分A、5至70wt%的组分B和2.5至60wt%的组分C。
组分B与组分A一起从顶部送入口送入的原因是便于融熔混合组分A,以有效增加要挤压的树脂的量,且便于融熔混合组分C。基于组分A的量,组分B的量优选5至100wt%,更优选10至50wt%,最优选20至30wt%。太大量的组分B增加热塑性树脂组合物的挥发性成份,且提高组分B的热损坏。另外,只有组分B容易熔化所以难以均匀融化组分A。太少量的组分B损坏了组分A的融熔混合,这样使得要挤压的树脂量必须减少,且作为结果,挤压变得不稳定。而且组分A和B的混合物没有与组分C充分融熔混合,这样使得挤压变得不稳定。
组分C的量,基于组分B的量优选50至500wt%,更优选75至300wt%,最优选100至200wt%。太少量的组分C,导致组分B的量相对的大。这导致组分B的热损坏。太大量的组分C是非优选的,它导致树脂组合物温度突然的降低,从而使挤压不稳定。
为了增强热塑性树脂(A)的流动性,热塑性树脂(B)和(C)的熔化温度或玻璃化转变点必须低于热塑性树脂(A)10℃或更多,优选30℃或更多。
含在组分A中具有分子量是300或更少的挥发性成分对降低具有高熔化温度(软化温度)的热塑性树脂(A)的熔化温度有效,且便于组分A与具有低于组分A的熔化温度的组分B混合。但是,当挥发性成份的量太大时,在熔融捏合机中,挥发性成份不能充分地被排除,这样使得在模制之后显露出银纹等,且不能实现足够的冲击强度。因此,包含在组分A中的分子量是300或更低的挥发性成份的量必须是500至30000ppm。当使用聚合反应溶剂以获得热塑性树脂(A),对得到的热塑性树脂(A)清洗,过滤和干燥之后残留的溶剂和单体低聚物等用作挥发性成份时,它可以省略在组份A中添加和浸渍具有分子量是300或更低的挥发性成份的步骤。
含在组分B中分子量是300或更低的挥发性成分,当它的量超过组分A中含有的分子量是300或更低的挥发性成分的量时,显著降低了组分B的熔化温度。结果,难以熔融混合组分B与组分A。因此,含在组分B中分子量是300或更低的挥发性成份的量应小于含在组分A中挥发性成份的量。
具有分子量是300或更低的挥发性成份包括具有6至18个碳原子的芳香烃例如乙苯、二甲苯、甲苯和苯乙烯,具有1至10个碳原子的醇等。
以下,参照附图,说明制备本发明的树脂组合物的方法。
具体地说,本发明的一个实施方案涉及一种使用例如装备有处于原料流上游点的第一原料输入口1和第二原料输入口2的挤压机的熔融捏合机制备聚亚苯基醚树脂组合物的方法。该方法包括在干燥混合聚亚苯基醚树脂A和通用聚苯乙烯B之后将其从第一输入口1送入和/或将其分别从第一输入口1送入;在开口5,从含有大量挥发性成份和高浓度聚亚苯基醚的组合物中除去挥发性成份,从第二输入口送入弹性体增强的苯乙烯树脂C。
本发明的另一个实施方案涉及一种使用装备有处于原料流上游点的第一原料输入口1,第二原料输入口2、第三原料输入口3和第四原料输入口4的熔融捏合机制备聚亚苯基醚树脂组合物的方法。该方法包括在干燥混合聚亚苯基醚树脂A和通用聚苯乙烯B之后将其从第一输入口1送入和/或将其分别从第一输入口1送入,在开口5,从含有高浓度聚亚苯基醚和大量的挥发性成份的组合物排除挥发性成份,从第二输入口2送入通用聚苯乙烯B、弹性体增强的苯乙烯树脂C、弹性体E和非挥发性阻燃剂G,从第三输入口3送入通用聚苯乙烯B、弹性体增强的苯乙烯树脂C、填充剂D、弹性体E和非挥发性阻燃剂G;在开口8排除挥发性成分;且从第四输入口送入液体形式的挥发性阻燃剂F。在原料输入口之间的中途设置螺杆系统,它能够传送和熔融混合树脂,在各输入口设置螺杆系统以减轻树脂的压力。在第二和第三输入口2和3的附近,常压通气口6和7是优选设置的。如果没有东西从第三输入口送入,则不使用它,且有时将其封住。
通过从侧输入口送入弹性体增强的苯乙烯树脂,弹性体被加热的时间被缩短,以便于防止树脂的损坏。结果,可以得到的聚亚苯基醚树脂组合物具有高的冲击强度和较少的挥发性成份。虽然优选所有的弹性体增强的苯乙烯树脂从侧输入口送入,但一部分树脂可以从顶部输入口送入,在这种情况下,不使用苯乙烯树脂成份;因为当只有组分A从顶部输入口1送入时,用捏合机螺杆的组分A的最初融熔混合不能充分进行。
根据常用的单级挤压方法,通过加入弹性体,冲击强度得到改善,但难以制备出具有较少挥发性成份的组合物。根据两级挤压方法,通过增加弹性体的加入量,冲击强度得到改善,但通过弹性体的损害,热稳定性降低了,对操作能力有不利的影响,且能量损耗变大。
当挥发性阻燃剂作为添加剂加入时,通过在减压下排除挥发性成份之后将其加入,挥发性物质损失可以减少。在非挥发性阻燃剂的情况下,它可以在任一阶段加入,且也可以在几个阶段均加入。
可以使用的熔融捏合机包括单螺杆挤压机,双螺杆挤压机,多螺杆挤压机等。优选的双螺杆挤压机是Werner & Pfleiderer GmbH制造的ZSK系列,Toshiba Machine Co.,Ltd.制造的TEM系列,JapanSteel Works,Ltd.制造的TEX系列,等等。熔融捏合机的长度与螺杆直径的比(L/D)是10至80。当L/D少于10,难以排除挥发性成份且难以侧面进料。当L/D超过80,树脂的滞留时间变得太长,树脂很可能被损坏。
在熔融捏合机的各排除挥发性成份的开口处,用以排除挥发性成份的压力,是在大气压下,优选250Torr或更少,更优选150Torr或更少,进一步优选50Torr或更少。
熔融混合的温度优选设置成从顶部输入口至捏合机出口逐渐降低。在顶部输入口至第一侧面输入口之间,筒温设置在280°至360℃之间,优选320°至340℃,且在第一侧面输入口至出口之间,筒温设置成200℃至320℃,优选240℃至300℃。通过在各区以10sec-1至250sec-1的剪切速率来熔融混合各组分,可以得到均匀的组合物。
填充剂,即组分D,包括无机粉末、无机填充剂,有机填充剂、色素、硅氧烷等。具体地说它包括选自硅藻土、碳、滑石、云母、玻璃珠、玻璃片、玻璃纤维、碳纤维、Kepler纤维、不锈钢纤维、铜纤维等组成的组中的一种或多种组份。而且,优选使用母炼胶方法,其中这些组分与树脂等复合,来改善操作和分散性能。
弹性体,即组分E包括聚丁二烯、苯乙烯-丁二烯共聚物,聚异戊二烯、丁二烯-异戊二烯共聚物、天然橡胶、乙烯-丙烯共聚物等。特别是聚丁二烯和苯乙烯-丁二烯共聚物是优选的。这些弹性体可以组合使用。
挥发性阻燃剂,即组分F,优选是磷酸酯型阻燃剂,例如,具有400℃或更低的沸点的磷酸酯型阻燃剂,例如磷酸三苯酯,磷酸甲苯二苯酯可以使用。
非挥发性阻燃剂,即组分G,优选具有沸点高于400℃,因此在减压条件下排除挥发性成份期间和在喷嘴端不挥发。具体地说,它包括选自具有包括双官能苯酚和特种单官能苯酚在末端的连接结构的磷酸酯化合物、三氧化锑、卤素型阻燃剂等中的一种或多种化合物。更具体地说,磷酸酯化合物包括选自芳香缩合磷酸酯例如2,2-双-{4-(双(甲基苯氧基)膦酰基氧基)苯基}丙烷(以下称作CR741),2,2-双-{4-(双(苯氧基)-膦酰基氧基)-苯基}丙烷,reosorcinol双(二苯基磷酸酯)等的一种或多种化合物。
粉末状的组分F和G可以在加入树脂组分前被熔化。向树脂组合物加入阻燃剂的方法已被公开,例如日本公开专利申请No.237812/1996和PCT/JP97/03179。
除了含在组合物中的热塑性树脂外的其它组分的量优选组分D是0至50wt%,组分E是0至30wt%,组分F是0至30wt%和组分G是0至30wt%,更优选组分D是0至42wt%组分E是0至10wt%,组分F是0至10wt%和组分G是0至10wt%。
以下参照实施例对本发明进行更详细的说明。
在实施例和对比实施例中,在30℃氯仿中测定的特性粘度[η]是0.53的聚-2,6-二甲基-1,4-亚苯基醚[以下称作PPE)的粉末用作组分A的聚亚苯基醚树脂。含在PPE中分子量是300或更低的挥发性成份的量除非另有说明均是12000ppm。
作为组分B的通用聚苯乙烯,使用重均分子量是260000,数均分子量是140000和含有500ppm分子量是300或更低的挥发性成份的聚苯乙烯(以下称为GP)。作为组分C的弹性体增强的苯乙烯树脂,使用聚丁二烯浓度是12%的,聚丁二烯粒径是1.5μm,挥发性成份为1000ppm的耐冲击聚苯乙烯(以下称为HIPS)。
作为组分D的填充剂,使用直径是13μm,切割长度是3mm的玻璃纤维(以下称为GF)。作为组分E的弹性体,使用苯乙烯-丁二烯共聚物。作为组分F的挥发性阻燃剂,使用磷酸三苯酯(以下称为TPP)。作为组分G的非挥发性阻燃剂使用2,2-双{4-(双(甲基苯氧基)膦酰基氧基)苯基}丙烷(以下称为CR741C)。
在实施例和对比实施例中,根据下述方式评价树脂组合物和模制品,并进行挤压中比能的测定。
(1)熔体粘度(MFR):ASTM D 1238
(2)悬臂梁式缺口冲击强度:ASTM D 256
(3)抗弯强度:ASTM D 790
(4)挥发性成分:
使用柱填充剂PEG-20M 25%(Carrier of Chromosorve W,柱长3m),采用气相色谱法在115℃下测定具有低分子量的挥发性成份例如乙苯、二甲苯、甲苯和苯乙烯。使用柱填充剂, Silicon OV-17 3%(Carrier of Chromosorve W,柱长3m)在190℃和260℃下测定具有高分子量的挥发性成份例如苯乙烯二聚物。通过对保留时间短于苯乙烯三聚物的组分量进行总计来测定和确定树脂组合物中含有的挥发性成分。
(5)挥发性组分残留率(wt.%)
(含在挤压树脂组合物中的挥发性组分/含在送入挤压机中原料的挥发性
组分)×100
(6)玻璃化转变点(Tg):
根据Vibron方法(ORIENTEC Co.,Rheo Vibron DDV-25FP)测定的损耗弹性模量达到一个峰值处的温度被确定为玻璃化转变点。
(7)比能(KWH/KG):
马达输出端的电能/组合物送入量
(8)含非熔化PPE的模制品外观的评定
制备0.04至0.06mm厚度和50mm×90mm大小的膜。具有直径是0.2mm或更少的一个非熔化PPE得1分,具有直径是0.2至0.5mm的一个非熔化PPE得10分。膜的得分是25或更少的确定为好(O)。
实施例1
作为熔融捏合机,使用螺杆以同方向旋转的双螺杆挤压机(L/D=44)。从顶部输送口1将54.7份PPE,12.8份GP和0.3份抗氧化剂送入熔融捏合机中,并熔融混合。在开口5,50Torr的减压条件下,挥发性成分从该混合组合物中排除。将28份HIPS从侧面输入口2送入,并熔融混合。接着,在开口8,50Torr的条件下,挥发性成分被排除,且向其中再送入4.2份TPP。口3和7被封住不用。测定得到的树脂组合物的物理性质。结果如表中所示。对比实施例1
作为用于第一级的熔融捏合机,使用螺杆以同方向旋转的双螺杆挤压机(L/D=32)。从顶部输送口将54.7份PPE,12.8份GP和0.3份抗氧化剂和28份HIPS送入熔融捏合机中,并熔融混合。在开口5,50Torr的减压条件下,挥发性成分被排除,且向其中再送入4.2份的TPP。得到的组合物中的挥发性成分是3200ppm。作为用于第二级的熔融捏合机,使用90mm φ单螺杆挤压机。将所有在第一级中制得的树脂组合物从顶部输入口送入,并熔融混合。接着,在50Torr的条件下,挥发性成分被排除。测定得到的树脂组合物的物理性质。结果如表中所示。对比实施例2
作为第一级熔融捏合机,使用螺杆以同方向旋转的双螺杆挤压机(L/D=32)。从顶部输送口将54.7份PPE,12.8份GP,0.3份抗氧化剂和25份HIPS和3份弹性体送入熔融捏合机中,并熔融混合。在50Torr的减压条件下,挥发性成分被排除,且向其中再送入4.5份的TPP。得到的组合物中的挥发性成分是3200ppm。作为第二级熔融捏合机,使用90mm φ单螺杆挤压机。将所有在第一级中制得的树脂组合物从顶部输入口送入,并熔融混合。接着,在50Torr的条件下,挥发性成分被排除。测定得到的树脂组合物的物理性质。结果如表中所示。
实施例2
作为熔融捏合机,使用螺杆以同方向旋转的双螺杆挤压机(L/D=44)。从顶部输送口1,将54.7份的含30000ppm分子量是300或更低的挥发性成分的PPE,12.8份GP和0.3份抗氧化剂送入熔融捏合机中,并熔融混合。在开口5,在50Torr的减压条件下,挥发性成分被排除。将28份HIPS和20份的GP从侧面输入口2送入,并熔融混合。接着,在开口8,在50Torr的条件下,挥发性成分被排除。且再向其中送入4.2份TPP。口3和7被封住不用。测定得到的树脂组合物的物理性质。结果如表中所示。对比实施例3
作为第一级熔融捏合机,使用螺杆以同方向旋转的双螺杆挤压机(L/D=44)。从顶部输送口1将54.7份含少于500ppm分子量是300或更低的挥发性成分的PPE,12.8份GP和0.3份抗氧化剂和1.6份二甲苯充分混合制得的混合物送入熔融捏合机中,并熔融混合。在开口5,在50Torr的减压条件下,挥发性成分被排除。将28份HIPS从侧面输入口2送入,并熔融混合。接着在50Torr的条件下,挥发性成分被排除,且再向其中送入4.2份TPP。口3和7被封住不用。测定得到的树脂组合物的物理性质。结果如表中所示。
实施例3
作为熔融捏合机,使用螺杆以同方向旋转的双螺杆挤压机(L/D=44)。从顶部输送口1,将48.1份的PPE,19份GP和0.3份抗氧化剂送入熔融捏合机中,并熔融混合。在开口5,50Torr的减压条件下,挥发性成分被排除。将28份HIPS和20份的GP从第一侧面输入口2送入并熔融混合之后,再将20份GF从第二侧面输入口3送入。在开口8,50Torr的条件下,挥发性成分被排除,且将4.6份TPP从第四原料输入口4送入。测定得到的树脂组合物的物理性质。结果如表中所示。对比实施例4
作为第一级熔融捏合机,使用螺杆以同方向旋转的双螺杆挤压机(L/D=32)。从顶部输送口将48.1份PPE,19份GP,0.3份抗氧化剂和8份HIPS送入熔融捏合机中,并熔融混合。在50Torr的减压条件下,挥发性成分被排除,且向其中再送入4.6份的TPP。作为第二级熔融捏合机,使用90mm φ单螺杆挤压机。将在第一级中制得的80份树脂组合物和20份GP从顶部输入口送入,并熔融混合。将20份GP从侧面输入口送入,并熔融混。接着,在50Torr的条件下,挥发性成分被排除。测定得到的树脂组合物的特理性质。结果如表中所示。
实施例4
作为熔融捏合机,使用螺杆以同方向旋转的双螺杆挤压机(L/D=44)。从顶部输送口1将54.7份PPE,12.8份GP和0.3份抗氧化剂送入熔融捏合机中,并熔融混合。在开口5,50Torr的减压条件下,挥发性成分被排除。分别将28份HIPS和4.2份CR741C从第一和第二侧面输入口2和3送入。熔融混合之后,在开口8,50Torr的条件下,按发性成分被排除。口7被封住。测定得到的树脂组合物的物理性质。结果如表中所示。
本发明在工业上成功地制备出一种热塑性树脂组合物,该组合物满足了相互矛盾的性质,即改善冲击强度和较少的挥发性成分,且同时有益于能耗的降低和操作。
表
实施例1 | 对比实施例1 | 对比实施例2 | 实施例2 | 对比实施例3 | 实施例3 | 对比实施例4 | 实施例4 | |
PPE(份) | 54.7 | 54.7 | 54.7 | 54.7 | 54.7 | 48.1 | 48.1 | 54.7 |
GP(份) | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 39 | 39 | 12.8 |
HIPS(份) | 28 | 28 | 25 | 28 | 28 | 8 | 8 | 28 |
弹性体(份) | - | - | 3 | - | - | - | - | - |
GF(份) | - | - | - | - | - | 20 | 20 | - |
TPP(份) | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.6 | 4.6 | - |
CR741C(份) | - | - | - | - | - | - | - | 4.2 |
抗氧化剂(份) | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
挤压次数 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 |
MFR(g/10 min)250℃,10kg | 4.2 | 3.9 | 3.9 | 4.3 | 4.3 | 2.8 | 2.8 | 4.2 |
悬臂梁式缺口冲击强度(kg·cm/cm) | 11.4 | 10.3 | 11.5 | 11.4 | 11.3 | 6.2 | 4.3 | 11.4 |
抗弯强度(kg/cm2) | - | - | - | - | - | 1,500 | 1,300 | - |
挥发性成份(ppm)残留率(%) | 1,30019 | 1,40020 | 1,40020 | 3,30019 | 3,30020 | 50010 | 4008 | 1,30019 |
弹性体成份的Tg(℃) | -75(锐) | -63(宽) | -63(宽) | -75(锐) | - | - | - | -75(锐) |
比能(KWH/KG) | 0.17 | 0.3 | 0.3 | 0.17 | 0.17 | 0.18 | 0.36 | 0.17 |
含非熔化PPE的模制品的外观 | ○ | ○ | ○ | ○ | × | - | - | ○ |
Claims (3)
1.一种制备热塑性树脂组合物的方法,该方法将聚亚苯基醚树脂(组分A)与通用聚苯乙烯(组分B)和弹性体增强的苯乙烯树脂(组分C)熔融混合,组分B和C的玻璃化转变点低于组分A 10℃或更多温度,该方法包括将含有具有分子量是300或更低的500至30000ppm挥发性成分的组分A和含有比组分A更少挥发性成分的组分B从熔融捏合机的第一输入口送入,在减压下排除其中挥发性成分,将组分C从第二输入口送入,并在用于在减压条件下排除挥发性成分的系统中排除挥发性成分,该系统设置于树脂组合物在第二输入口之后通过的位置,其中从第一输入口处加入的组分B与组分A的量的比为0.05至1,从第二输入口加入的组分C的量与组分B的量之比为0.5至5。
2.根据权利要求1的制备热塑性树脂组合物的方法,其中第一输入口和第二输入口之间的筒温设置为280℃至360℃,第二输入口和出口之间的筒温设置为200℃至320℃。
3.根据权利要求1或2的制备热塑性树脂组合物的方法,其中在树脂组合物经过用于在减压条件下排除挥发性成分的系统之后将挥发性阻燃剂送入,该系统设置于树脂组合物在第二输入口之后通过的位置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP048554/97 | 1997-02-18 | ||
JP4855497 | 1997-02-18 | ||
JP048554/1997 | 1997-02-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1193566A CN1193566A (zh) | 1998-09-23 |
CN1103344C true CN1103344C (zh) | 2003-03-19 |
Family
ID=12806606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN98106457A Expired - Lifetime CN1103344C (zh) | 1997-02-18 | 1998-02-17 | 一种树脂组合物的制备方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US6133379A (zh) |
KR (1) | KR100267588B1 (zh) |
CN (1) | CN1103344C (zh) |
MY (1) | MY116185A (zh) |
NL (1) | NL1008341C2 (zh) |
SG (1) | SG72789A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8710119B2 (en) * | 2005-03-29 | 2014-04-29 | Asahi Kasei Chemicals Corporation | Process for producing polyphenylene ether composition |
US7736565B2 (en) * | 2005-05-11 | 2010-06-15 | Asahi Kasei Chemicals Corporation | Process for producing PPE resin composition |
US7544728B2 (en) * | 2006-04-19 | 2009-06-09 | Asahi Kasei Chemicals Corporation | Production process of polyphenylene ether composition |
KR101212903B1 (ko) | 2010-11-08 | 2012-12-14 | 호남석유화학 주식회사 | 탄소장섬유를 이용한 변성 폴리페닐렌옥사이드 수지 조성물 및 그 제조방법 |
KR102071812B1 (ko) | 2015-10-02 | 2020-01-30 | 미쓰비시 엔지니어링-플라스틱스 코포레이션 | 폴리카르보네이트 수지 조성물 및 그 제조 방법 |
EP3587069B1 (de) * | 2018-06-27 | 2020-12-16 | Starlinger & Co Gesellschaft m.b.H. | Vorrichtung und verfahren zum extrudieren von kunststoff |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4880877A (en) * | 1985-12-25 | 1989-11-14 | Mitsubishi Rayon Co., Ltd. | Method for producing rubber modified thermoplastic resins |
US5109068A (en) * | 1988-08-31 | 1992-04-28 | Idemitsu Kosan Co., Ltd. | Styrene-based polymer composition, stretched molding thereof and process for producing the same |
US5447989A (en) * | 1993-09-17 | 1995-09-05 | Enichem S.P.A. | High impact modified polycarbonate compositions |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1125620A (en) * | 1965-01-06 | 1968-08-28 | Gen Electric | Improvements in polymeric blends |
DE3689262T2 (de) * | 1985-12-25 | 1994-05-19 | Mitsubishi Rayon Co | Verfahren zur Herstellung von thermoplastischen Harzen. |
JP2591838B2 (ja) * | 1990-02-13 | 1997-03-19 | 東ソー株式会社 | ポリフェニレンスルフィド樹脂組成物 |
US5635570A (en) * | 1990-08-23 | 1997-06-03 | Sumitomo Chemical Company, Limited | Resin composition and process for producing the same |
JPH04117444A (ja) * | 1990-09-06 | 1992-04-17 | Mitsubishi Kasei Polytec Co | 耐熱性スチレン系樹脂組成物の製造方法 |
US5196479A (en) * | 1991-02-27 | 1993-03-23 | The Dow Chemical Company | Impact resistant blends of high heat polycarbonate and aromatic polyester |
JPH0593130A (ja) * | 1991-10-02 | 1993-04-16 | Mitsubishi Petrochem Co Ltd | 耐衝撃性熱可塑性樹脂組成物の製造方法 |
DE4221293A1 (de) * | 1992-06-29 | 1994-01-05 | Basf Ag | Formmasse mit matter Oberfläche |
EP0643089B1 (en) * | 1993-07-14 | 1999-05-19 | Mitsubishi Chemical Corporation | Process for producing amorphous thermoplastic resin composition |
-
1998
- 1998-02-05 MY MYPI98000451A patent/MY116185A/en unknown
- 1998-02-10 US US09/021,390 patent/US6133379A/en not_active Expired - Lifetime
- 1998-02-14 SG SG1998000328A patent/SG72789A1/en unknown
- 1998-02-17 KR KR1019980004794A patent/KR100267588B1/ko not_active IP Right Cessation
- 1998-02-17 CN CN98106457A patent/CN1103344C/zh not_active Expired - Lifetime
- 1998-02-18 NL NL1008341A patent/NL1008341C2/nl not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4880877A (en) * | 1985-12-25 | 1989-11-14 | Mitsubishi Rayon Co., Ltd. | Method for producing rubber modified thermoplastic resins |
US5109068A (en) * | 1988-08-31 | 1992-04-28 | Idemitsu Kosan Co., Ltd. | Styrene-based polymer composition, stretched molding thereof and process for producing the same |
US5447989A (en) * | 1993-09-17 | 1995-09-05 | Enichem S.P.A. | High impact modified polycarbonate compositions |
Also Published As
Publication number | Publication date |
---|---|
NL1008341A1 (nl) | 1998-08-20 |
KR19980071424A (ko) | 1998-10-26 |
CN1193566A (zh) | 1998-09-23 |
MY116185A (en) | 2003-11-28 |
KR100267588B1 (ko) | 2000-10-16 |
NL1008341C2 (nl) | 1999-03-09 |
SG72789A1 (en) | 2000-05-23 |
US6133379A (en) | 2000-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1032015C (zh) | 苯乙烯聚合物组合物 | |
CN1561371A (zh) | 聚苯醚组合物 | |
JPH0122305B2 (zh) | ||
JPH0251558A (ja) | 臭気を軽減したポリフェニレンエーテル樹脂および組成物の成形物又は発泡製品 | |
JPS62187747A (ja) | 熱可塑性樹脂組成物 | |
JP3989075B2 (ja) | 樹脂組成物の製造方法 | |
CN1367808A (zh) | 制备聚苯醚热塑性树脂组合物的方法及自其制造的制品 | |
CN1748001A (zh) | 无卤素阻燃热塑性树脂组合物 | |
CN1103344C (zh) | 一种树脂组合物的制备方法 | |
JP3705624B2 (ja) | 酸変性ポリフェニレンエーテルの製造法 | |
US4690970A (en) | Thermoplastic compositions based on polyphenylene ethers, impact-resistant styrene polymers, and pulverulent, filler-containing rubber; and method for manufacturing such compositions | |
JPH0616807A (ja) | 低ゲル含量のエポキシ官能化ポリフェニレンエーテル、それらの製造法及びそれらから製造された共重合体含有組成物 | |
JPS63183954A (ja) | 熱可塑性樹脂組成物 | |
CN1281646C (zh) | 官能化聚苯醚树脂的共聚物和其共混物 | |
JPH0251939B2 (zh) | ||
JP3331743B2 (ja) | 熱可塑性樹脂組成物 | |
JPH08199051A (ja) | 改善された耐熱性及び流動性を示すポリ(フェニレンエーテル)樹脂及びポリエステル樹脂の組成物 | |
JPH06345918A (ja) | 熱可塑性樹脂組成物 | |
JPH08199050A (ja) | 改良された流動性を示すポリ(フェニレンエーテル)樹脂とポリエステル樹脂との組成物 | |
JP3297523B2 (ja) | 難燃樹脂材料製造用ペレット、及び難燃樹脂材料の製造方法 | |
JPH05306365A (ja) | リサイクル性が改良された樹脂組成物 | |
JP2797015B2 (ja) | 樹脂成形体 | |
JP3558381B2 (ja) | 難燃樹脂組成物の製造方法 | |
JP6343516B2 (ja) | 強化ポリフェニレンエーテル系樹脂組成物からなる自動車内装部品 | |
JP3465969B2 (ja) | 難燃性樹脂組成物の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent of invention or patent application | ||
CB02 | Change of applicant information |
Applicant after: Asahi Kasei Kogyo K. K. Applicant before: Asahi Kasei Kogyo K. K. |
|
COR | Change of bibliographic data |
Free format text: CORRECT: APPLICANT; FROM: ASAHI KASEI CORPORATION TO: ASAHI KASEI CORPORATION |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20030319 |