CN110330675A - 一种压敏薄膜的制备方法、压敏薄膜及压力传感器 - Google Patents

一种压敏薄膜的制备方法、压敏薄膜及压力传感器 Download PDF

Info

Publication number
CN110330675A
CN110330675A CN201910531780.5A CN201910531780A CN110330675A CN 110330675 A CN110330675 A CN 110330675A CN 201910531780 A CN201910531780 A CN 201910531780A CN 110330675 A CN110330675 A CN 110330675A
Authority
CN
China
Prior art keywords
pressure
sensitive film
dimentional
layered
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910531780.5A
Other languages
English (en)
Inventor
吴慧
蔡兴科
刘冰冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Vocational Institute
Original Assignee
Tianjin Vocational Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Vocational Institute filed Critical Tianjin Vocational Institute
Priority to CN201910531780.5A priority Critical patent/CN110330675A/zh
Publication of CN110330675A publication Critical patent/CN110330675A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds

Abstract

本发明公开了一种压敏薄膜的制备方法、压敏薄膜及压力传感器,所述压敏薄膜的制备方法主要包括(1)研磨挤压层状材料;(2)用有机溶剂溶出二维材料;(3)将含二维材料和含高分子聚合物的有机溶液共混;(4)制膜。本发明同时要求保护一种采用所述制备方法制得的压敏薄膜及基于所述压敏薄膜的压力传感器。此外,本发明还要求保护一种主要由二维导电材料、二维半导体材料和柔性高分子聚合物组成的压敏薄膜。本发明具有制备方法简单、可工业化大规模生产、产品性能可控、质量均一等优点。

Description

一种压敏薄膜的制备方法、压敏薄膜及压力传感器
技术领域
本发明属于柔性电子器件领域,尤其涉及一种压敏薄膜的制备方法、压敏薄膜及压力传感器。
背景技术
压力传感器是一种生活中使用非常广泛的器件,例如应用于智能水杯、精密天平、汽车座椅中的空气开关等。压力传感器一方面要求具有良好的线性度,比如高精密天平中的压力传感器;另一方面对其机械性能要求很高,比如汽车座椅中的压力传感器,需要经过反复的变形与摩擦。一种较为典型的压力传感器结构为:采用导电油墨作为底层,开路银电路作为顶层,空气垫圈作为中间层。当压力作用在压力传感器表面时,顶层的银电路与导电油墨接触,形成导电通路。导电油墨层主要通过喷墨打印的导电碳球组成,其存在压阻性能差、不连续等特点,从而导致基于导电油墨的压力传感器存在以下弊端:(1)在压力作用下压力传感器的电学性质线性度差;(2)打印的油墨层机械性能差,容易被刮坏;(3)不同批次打印的油墨层电学性能不一致,导致压力传感器的性能不稳定。因此,寻找一种能够替代传统油墨层的导电层,使之具有良好的机械性能和压阻性能,成为构造优异压力传感器的关键所在。
中国专利CN104262967B(授权公告日:2017年5月3日)公开了一种压力传感器中的敏感材料及其制备方法,所述敏感材料由碳材料和可挥发性溶剂按照一定比例混合并超声,再加入柔性高分子聚合物搅拌后加热固化而制备得到,其具有类似蚂蚁窝的三维孔状结构,具有较高的灵敏度和较宽的线性形变范围。其最低检测限为0.8Pa,灵敏度为8.25K/Pa。当压力小于0.8Pa时,压力的变化就检测不出来,不能满足高精密度测量仪器的要求。石墨烯、碳纳米管等成品材料在有机溶液中的再次分散性较差,导致石墨烯、碳纳米管等材料与高分子聚合物混合后形成的复合材料均匀性差,线性度不高,且不适合大批量连续性生产。其次,本发明中的敏感材料需要借助四氯化碳、丙酮等有毒性可挥发性溶剂进行造孔,对环境的污染大,不节能环保。因此,寻找一种经济适用、对环境友好的可大规模生产的压力传感器的工艺,也是压力传感器改进的方向之一。
发明内容
本发明旨在解决现有技术中压力传感器质量不稳定、造价昂贵的技术问题,提供一种压敏薄膜及其制备方法以及基于所述压敏薄膜的压力传感器。
为了达到上述目的,本发明采用了如下技术方案:
一种压敏薄膜的制备方法,包括如下步骤:步骤一,挤压研磨层状材料与研磨颗粒的混合物,对层状材料进行剥离;步骤二,将剥离后的混合物放入有机溶剂中,摇匀、沉淀,取上清液,得到含有二维材料的有机溶液;步骤三,将柔性高分子聚合物溶解到有机溶液中,然后再与含有二维材料的有机溶液混溶,或将柔性高分子聚合物直接溶解到含有二维材料的有机溶液中,得到混合溶液;步骤四,将步骤三制得的混合溶液采用抽滤、涂覆或气液界面自组装的方式成膜,得到压敏薄膜;其中,所述层状材料主要为层状导电材料。
作为本发明改进的技术方案,所述层状材料主要由层状导电材料和层状半导体材料组成。
作为本发明改进的技术方案,所述层状导电材料包括石墨、黑磷、单质碲中的一种或多种。
作为本发明改进的技术方案,所述层状半导体材料包括层状过渡金属硫化物、层状硒化钼、层状硒化钨、黑砷磷、层状碲化铋、层状过渡金属氧化物中的一种或多种。
作为本发明改进的技术方案,所述层状材料与柔性高分子聚合物的质量比为100:5~100。
作为本发明改进的技术方案,所述层状材料中,层状导电材料和层状半导体材料的质量比为100:1~10。
作为本发明改进的技术方案,所述研磨颗粒包括氧化铝、氮化硅、碳化硅、立方氮化硼、金刚石、碳化硼、碳化铝、氮化铝、石英砂、海砂、氧化硅、氧化锆、碳化钛、碳化钨、碳化钼、碳化钒、氮化钼、氮化钨、氮化铬、碳化铬、氮化钒、碳化锆、氮化锆中的一种或多种。
作为本发明改进的技术方案,所述有机溶剂包括N,N-二甲基甲酰胺、二甲基乙酰胺、甲醇、乙醇、丙酮、异丙醇、苯、N-甲基吡咯烷酮(NMP)、乙醚、醋酸乙酯中的一种或多种。
作为本发明改进的技术方案,所述柔性高分子聚合物包括聚乙烯、磺化聚醚醚酮、聚丙烯腈、聚环氧乙烷、聚氨酯、聚苯胺、聚吡咯、聚偏氟乙烯、聚醚酰亚胺、聚乙烯亚胺。
作为本发明改进的技术方案,所述层状材料和研磨颗粒的质量比为1:100~100:1。
作为本发明改进的技术方案,所述研磨颗粒的尺寸为20~8000目,研磨时间为10min~100h。
作为本发明改进的技术方案,所述沉淀的方式为静置或离心沉淀;静置时间为6h~3天;离心沉淀时间为5min~3h,离心速率为1000~3000rpm。
本发明还提供上述制备方法制得的压敏薄膜。
本发明还提供一种压力传感器,包括顶层的银印刷电路、中间层的空气垫圈及底层的导电薄膜,所述导电薄膜为前述的压敏薄膜。
此外,本发明还提供一种压敏薄膜,主要由二维导电材料、二维半导体材料和柔性高分子聚合物组成。
作为本发明改进的技术方案,所述二维导电材料包括石墨烯、黑磷烯、单质碲烯中一种或多种;所述二维半导体材料包括二维过渡金属硫化物、二维硒化钨、二维硒化钼、二维黑砷磷、二维碲化铋、二维过渡金属氧化物中的一种或多种。
作为本发明改进的技术方案,所述二维导电材料、二维半导体材料质量比为100:1~10,二维导电材料和二维半导体材料混合物与柔性高分子聚合物的质量比为100:5~100。
作为本发明改进的技术方案,所述二维导电材料、二维半导体材料的厚度为0.35~20nm,横向尺寸为0.1~20μm。
与现有技术相比,本发明具有如下有益效果:
1.本发明采用的制备方法,层状材料剥离效果好,在有机溶剂中分散十分均匀,当其与溶有柔性高分子聚合物的有机溶液共混时,能够快速分散混溶,从而使得制备的压敏薄膜质量均一。
2.本发明采用的制备方法,十分适合大规模批量化生产。当采用抽滤成膜时,其抽滤出的有机溶剂还可以重复利用,十分清洁环保。
3.本发明制得的压敏薄膜用于压电传感器,具备优异的压阻效应,受到很小的压力,电阻值也会发生明显的变化,灵敏度极高,线性系数好,最低检测限度小。
4.本发明制得的压敏薄膜用于压电传感器,具有机械性能强,耐拉伸、耐磨、耐冲击的优点,经过反复刮擦,其表面仍完好无损。
5.本发明的压敏薄膜,在常见的导电材料中添加少量半导体材料,能够显著提高现有压敏材料的压阻效应。通过调节二维导电材料、二维半导体材料和柔性高分子聚合物的质量比,可以实现对压敏薄膜导电性和压阻效应的可控调节。
附图说明
图1为本发明制得的含二维材料的有机溶液的照片;
图2为实施例1-4与商用打印油墨制得的压敏薄膜的照片及经过200次刮擦后的照片;
图3为本发明压力传感器的结构示意图,上为俯视图,下为侧视图;
图4为本发明制得的压力传感器的俯视图(左)和仰视图(右);
图5为实施例1-4与商用打印油墨制得的压敏薄膜的归一化电阻变化对比曲线;
图6为实施例1-4与商用打印油墨制得的压敏薄膜的在压力作用下的灵敏度;
图7为实施例1-4与商用打印油墨制得的压敏薄膜经反复刮擦后的归一化电阻变化对比曲线。
具体实施方式
为了使本领域的技术人员清楚明了地理解本发明,现结合具体实施方式和说明书附图,对本发明进行详细说明。
实施例1
步骤一,将石墨与150目立方碳化硅混合均匀,然后放入臼式研磨仪中,其中,石墨与碳化硅的质量比为1:10。对臼棒施加100N/cm2的作用力进行挤压研磨,研磨时间为5h。
步骤二,将研磨后的混合物转移到二氯甲烷中,摇匀,超声分散,然后静置2天或在1000rpm的离心机中离心10min,取上清液,得到含有石墨烯的有机溶液,如图1(左)所示。石墨烯的厚度为0.35~20nm,横向尺寸为0.1~20μm。
步骤三,将聚氨酯加入二氯甲烷溶解,得到含有聚氨酯的有机溶液。将含有石墨烯的有机溶液与含有聚氨酯的有机溶液混合在一起,按照石墨与聚氨酯的质量比为100:57进行配制,得到含有二维石墨烯和聚氨酯的混合溶液。
步骤四,将步骤三制得的混合溶液进行抽滤,在滤膜上形成一层主要由二维石墨烯和聚氨酯组成的薄膜,烘干,得到由石墨烯和聚氨酯组成的压敏薄膜,如图2a所示。
步骤五,将步骤四制得的压敏薄膜按照图3所示的压力传感器结构进行组装,制得的压力传感器如图4所示。
实施例2
步骤一,将石墨、黑砷磷按照93:7的质量比与150目立方碳化硅混合均匀,然后放入臼式研磨仪中,其中,石墨与立方氮化硼的质量比为1:10。对臼棒施加100N/cm2的作用力进行挤压研磨,研磨时间为5h。
步骤二,将研磨后的混合物转移到二氯甲烷中,摇匀,超声分散,然后静置2天或在1000rpm的离心机中离心10min,取上清液,得到含有二维石墨烯和二维黑砷磷的有机溶液,如图1(右)所示。其中,石墨烯和二维黑砷磷的厚度为0.35~20nm,横向尺寸为0.1~20μm。
步骤三,将聚氨酯加入二氯甲烷溶解,得到含有聚氨酯的有机溶液。将含有二维石墨烯和二维黑砷磷的有机溶液与含有聚氨酯的有机溶液混合在一起,将石墨与黑砷磷混合物与聚氨酯按照100:57的质量比进行配制,得到含有二维石墨烯、二维黑砷磷和聚氨酯的混合溶液。
步骤四,将步骤三制得的混合溶液进行抽滤,在滤膜上形成一层主要由二维石墨烯、二维黑砷磷和聚氨酯组成的薄膜,烘干,得到由石墨烯、二维黑砷磷和聚氨酯组成的压敏薄膜,如图2b所示。
步骤五,将步骤四制得的压敏薄膜按照图3所示的压力传感器结构进行组装,制得的压力传感器。
实施例3
步骤一,将成品石墨烯加入二氯甲烷中进行超声分散,超声2h得到石墨烯分散液。
步骤二,将聚氨酯溶解到二氯甲烷中,得到聚氨酯分散液。
步骤三,将石墨烯分散液和聚氨酯分散液混合在一起,搅拌,得到粘稠状混合物。其中,石墨烯和聚氨酯的质量比为100:57。
步骤四,将步骤三制得的粘稠状混合物旋涂成膜,然后再60℃下加热固化2h,使得粘稠状混合物聚合。二氯甲烷挥发掉,形成由石墨烯和聚氨酯组成的压敏薄膜,如图2c所示。
步骤五,将步骤四制得的压敏薄膜按照图3所示的压力传感器结构进行组装,制得的压力传感器。
实施例4
步骤一,将成品石墨烯和二维黑砷磷加入二氯甲烷中进行超声分散,超声2h得到石墨烯和二维黑砷磷的分散液。其中,石墨烯和二维黑砷磷的质量比为93:7。
步骤二,将聚氨酯溶解到二氯甲烷中,得到聚氨酯分散液。
步骤三,将石墨烯和二维黑砷磷的分散液与聚氨酯分散液混合在一起,搅拌,得到粘稠状混合物。其中,石墨烯和二维黑砷磷的总质量和聚氨酯的质量比为100:57。
步骤四,将步骤三制得的粘稠状混合物旋涂成膜,然后再60℃下加热固化2h,使得粘稠状混合物聚合。二氯甲烷挥发掉,形成由石墨烯、二维黑砷磷和聚氨酯组成的压敏薄膜,如图2d所示。
步骤五,将步骤四制得的压敏薄膜按照图3所示的压力传感器结构进行组装,制得的压力传感器。
将实施例1-4制备的压敏薄膜和商用打印油墨及其制得的压力传感器进行刮擦测试和压力电阻测试,如图2,图5,图6和图7所示。
图2为实施例1-4制得的压敏薄膜和商用打印油墨的照片及经过200次刮擦后的照片对比图。由图2可见,实施例1-2制得的压敏薄膜经过反复刮擦,其表面依然完好无损;实施例3-4制得的压敏薄膜,经反复刮擦,出现轻微的划痕;而商用打印油墨制得的压敏薄膜,经过反复刮擦后其表面出现严重的划痕。这可能是因为抽滤制备的薄膜,晾干前薄膜内部含有的有机溶剂少,干燥过程中几乎无有机溶剂的挥发,挥发气体对薄膜的破坏度很小,使得最终制得的压敏薄膜表面平整,二维材料与高分子聚合物结合十分紧密,故经过反复刮擦其表面仍完好无损。此外,柔性高分子聚合物对二维材料能够起到一定的粘结固定的作用,故实施例3-4制得的压敏薄膜相对于商用打印油墨制得的薄膜更为紧致,不易划伤。
图5-6为实施例1-4与商用打印油墨制得的压敏薄膜的归一化电阻变化对比曲线。由图5中归一化电阻变化对比曲线可见,实施例1、2制得的压敏薄膜相比实施例3和4及商用打印油墨具有更好的线性相关度;而由图6可知实施例2和4制得的压敏薄膜相比实施例1和3及商用打印油墨具有高的斜度,表明二维半导体材料的存在,可以显著提高压敏薄膜的灵敏度。根据灵敏度计算公式S=XR/R0/XP,测得实施例1-4及商用打印油墨制得的压敏薄膜的灵敏度分别为S1=0.0675/N;S2=0.0765/N;S3=0.0543/N;S4=0.0589/N;S油墨=0.0504/N。其中,XR表示施压前后的电阻变化,R0表示施压前的电阻值,XP表示施压大小。这与图5所展现的规律相一致。
图7为实施例1-4与商用打印油墨制得的压敏薄膜经反复刮擦后的归一化电阻变化对比曲线。由图7可见,实施例1和2制得的压敏薄膜,经过反复刮擦,其归一化电阻基本不变。说明采用本发明的制备方法制得的压敏薄膜,作为压力传感器,具有更好的机械性能。实施例3和4制得的压敏薄膜,经过反复刮擦,其归一化电阻发生不断增大,但小于商用打印油墨制得的压敏薄膜的变化。这可能是因为柔性高分子聚合物对二维材料能够起到粘结固定的作用,故在经过反复刮擦后,其表面虽然出现划痕,但受损程度小于商用打印油墨。
实施例5
步骤一,将层状黑磷与400目石英砂混合均匀,然后放入臼式研磨仪中,其中,层状黑磷与石英砂的质量比为1:10。对臼棒施加100N/cm2的作用力进行挤压研磨,研磨时间为5h。
步骤二,将研磨后的混合物转移到乙醚中,摇匀,超声分散,然后静置2天或在1000rpm的离心机中离心10min,取上清液,得到含有黑磷烯的有机溶液。黑磷烯的厚度为0.35~20nm,横向尺寸为0.1~20μm。
步骤三,将聚吡咯加入乙醚溶解,得到含有聚吡咯的有机溶液。将含有黑磷烯的有机溶液与含有聚吡咯的有机溶液混合在一起,按照黑磷与聚吡咯的质量比为100:5进行配制,得到含有二维黑磷烯和聚吡咯的混合溶液。
步骤四,将步骤三制得的混合溶液旋涂成膜,自然晾干得到由黑磷烯和聚吡咯组成的压敏薄膜。
步骤五,将步骤四制得的压敏薄膜按照图3所示的压力传感器结构进行组装,制得的压力传感器。
根据灵敏度计算公式S=XR/R0/XP,测得本实施例制得的压敏薄膜,其灵敏度S=0.089/N。
实施例6
步骤一,将黑磷、硫化钼按照90:10的质量比与400目氧化铝混合均匀,然后放入臼式研磨仪中,其中,黑磷与氧化铝的质量比为1:10。对臼棒施加100N/cm2的作用力进行挤压研磨,研磨时间为5h。
步骤二,将研磨后的混合物转移到N-甲基吡咯烷酮中,摇匀,超声分散,然后静置2天或在1000rpm的离心机中离心10min,取上清液,得到含有二维黑磷烯和二维硫化钼的有机溶液。其中,黑磷烯和二维硫化钼的厚度为0.35~20nm,横向尺寸为0.1~20μm。
步骤三,将磺化聚醚醚酮加入N-甲基吡咯烷酮溶解,得到含有磺化聚醚醚酮的有机溶液。将含有二维黑磷烯和二维硫化钼的有机溶液与含有磺化聚醚醚酮的有机溶液混合在一起,将黑磷与硫化钼混合物与磺化聚醚醚酮按照100:100的质量比进行配制,得到含有二维黑磷烯、二维硫化钼和磺化聚醚醚酮的混合溶液。
步骤四,将步骤三制得的混合溶液进行抽滤,在滤膜上形成一层主要由二维黑磷烯、二维硫化钼和磺化聚醚醚酮组成的薄膜,烘干,得到由二维黑磷烯、二维硫化钼和磺化聚醚醚酮组成的压敏薄膜。
步骤五,将步骤四制得的压敏薄膜按照图3所示的压力传感器结构进行组装,制得的压力传感器。
根据灵敏度计算公式S=XR/R0/XP,测得本实施例制得的压敏薄膜,其灵敏度S=0.10/N。
实施例7
步骤一,将成品二维黑磷和二维硒化钨加入乙醚中进行超声分散,超声2h得到二维黑磷和二维硒化钨的分散液。其中,二维黑磷和二维硒化钨的质量比为99:1。
步骤二,将聚环氧乙烷溶解到二氯甲烷中,得到聚环氧乙烷分散液。
步骤三,将二维黑磷和二维硒化钨的分散液与聚氨酯分散液混合在一起,搅拌,得到粘稠状混合物。其中,二维黑磷和二维硒化钨的总质量和聚环氧乙烷的质量比为100:50。
步骤四,将步骤三制得的粘稠状混合物旋涂成膜,然后再60℃下加热固化2h,使得粘稠状混合物聚合。二氯甲烷挥发掉,形成由二维黑磷、二维硒化钨和聚环氧乙烷组成的压敏薄膜。
步骤五,将步骤四制得的压敏薄膜按照图3所示的压力传感器结构进行组装,制得的压力传感器。
根据灵敏度计算公式S=XR/R0/XP,测得本实施例制得的压敏薄膜,其灵敏度S=0.063N-1
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

1.一种压敏薄膜的制备方法,包括如下步骤:
步骤一,挤压研磨层状材料与研磨颗粒的混合物,对层状材料进行剥离;
步骤二,将剥离后的混合物放入有机溶剂中,摇匀、沉淀,取上清液,得到含有二维材料的有机溶液;
步骤三,将柔性高分子聚合物溶解到有机溶液中,然后再与含有二维材料的有机溶液混溶,或将柔性高分子聚合物直接溶解到含有二维材料的有机溶液中,得到混合溶液;
步骤四,将步骤三制得的混合溶液采用抽滤、涂覆或气液界面自组装的方式成膜,得到压敏薄膜;
其中,所述层状材料主要为层状导电材料。
2.根据权利要求1所述的制备方法,其特征在于:所述层状材料还包括层状半导体材料。
3.根据权利要求1所述的制备方法,其特征在于:所述层状导电材料包括石墨、黑磷、单质碲中的一种或多种;进一步地,所述层状材料与柔性高分子聚合物的质量比为100:5~100。
4.根据权利要求2所述的制备方法,其特征在于:所述层状半导体材料包括层状过渡金属硫化物、层状硒化钼、层状硒化钨、黑砷磷、层状碲化铋、层状过渡金属氧化物中的一种或多种;进一步地,所述层状材料中,层状导电材料和层状半导体材料的质量比为100:1~10。
5.根据权利要求1-4任一项所述的制备方法,其特征在于:所述研磨颗粒包括氧化铝、氮化硅、碳化硅、立方氮化硼、金刚石、碳化硼、碳化铝、氮化铝、石英砂、海砂、氧化硅、氧化锆、碳化钛、碳化钨、碳化钼、碳化钒、氮化钼、氮化钨、氮化铬、碳化铬、氮化钒、碳化锆、氮化锆中的一种或多种;优选地,所述有机溶剂包括N,N-二甲基甲酰胺、二甲基乙酰胺、甲醇、乙醇、丙酮、异丙醇、苯、N-甲基吡咯烷酮、乙醚、醋酸乙酯中的一种或多种;优选地,所述柔性高分子聚合物包括聚乙烯、磺化聚醚醚酮、聚丙烯腈、聚环氧乙烷、聚氨酯、聚苯胺、聚吡咯、聚偏氟乙烯、聚醚酰亚胺、聚乙烯亚胺。
6.一种压敏薄膜,其特征在于:采用权利要求1-4任一项所述的制备方法制得。
7.一种压力传感器,包括顶层的银印刷电路、中间层的空气垫圈及底层的导电薄膜,其特征在于:所述导电薄膜为权利要求6所述的压敏薄膜。
8.一种压敏薄膜,其特征在于:主要由二维导电材料、二维半导体材料和柔性高分子聚合物组成。
9.根据权利要求8所述的压敏薄膜,其特征在于:所述二维导电材料包括石墨烯、黑磷烯、单质碲烯中一种或多种;所述二维半导体材料包括二维过渡金属硫化物、二维硒化钨、二维硒化钼、二维黑砷磷、二维碲化铋、二维过渡金属氧化物中的一种或多种;优选地,所述二维导电材料、二维半导体材料质量比为100:1~10,二维导电材料和二维半导体材料的混合物与柔性高分子聚合物的质量比为100:5~100。
10.根据权利要求8所述的压敏薄膜,其特征在于:所述二维导电材料、二维半导体材料的厚度为0.35~20nm,横向尺寸为0.1~20μm。
CN201910531780.5A 2019-06-19 2019-06-19 一种压敏薄膜的制备方法、压敏薄膜及压力传感器 Pending CN110330675A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910531780.5A CN110330675A (zh) 2019-06-19 2019-06-19 一种压敏薄膜的制备方法、压敏薄膜及压力传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910531780.5A CN110330675A (zh) 2019-06-19 2019-06-19 一种压敏薄膜的制备方法、压敏薄膜及压力传感器

Publications (1)

Publication Number Publication Date
CN110330675A true CN110330675A (zh) 2019-10-15

Family

ID=68142194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910531780.5A Pending CN110330675A (zh) 2019-06-19 2019-06-19 一种压敏薄膜的制备方法、压敏薄膜及压力传感器

Country Status (1)

Country Link
CN (1) CN110330675A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664974A (zh) * 2020-04-26 2020-09-15 太原理工大学 一种黑磷柔性应力传感器及其制备方法
CN112158888A (zh) * 2020-09-17 2021-01-01 西北工业大学 利用氧化物半导体纳米粉体剥离层状材料制备二维材料的方法
WO2021013174A1 (en) * 2019-07-22 2021-01-28 Xi'an Jiaotong-Liverpool University Pressure sensor, preparation method and application thereof and wearable smart fabric comprising the same
CN113136102A (zh) * 2021-04-21 2021-07-20 成都大学 一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法
CN113150530A (zh) * 2021-04-21 2021-07-23 上海工程技术大学 聚吡咯-碳化锆-聚氨酯复合薄膜及其制备方法和应用
CN113418552A (zh) * 2021-06-09 2021-09-21 海南大学 一种二维过渡金属硫化物材料柔性传感器及其制备方法
WO2021185212A1 (zh) * 2020-03-16 2021-09-23 清华大学 薄膜压阻材料的制备方法、薄膜压阻材料、机器人及设备
CN114455576A (zh) * 2022-01-24 2022-05-10 南方电网科学研究院有限责任公司 一种高灵敏检测压力变化的石墨烯复合材料的制备方法
CN114964575A (zh) * 2022-05-24 2022-08-30 四川大学 一种掺杂异丙醇的复合膜柔性压力传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005097A (zh) * 2006-01-17 2007-07-25 台达电子工业股份有限公司 半导体压阻式传感器及其操作方法
CN101186715A (zh) * 2007-11-23 2008-05-28 清华大学 超薄柔顺导电高分子敏感膜及其制备方法
CN101201277A (zh) * 2007-11-23 2008-06-18 清华大学 阵列式超薄柔顺力传感器及其制备方法
CN104262967A (zh) * 2014-09-16 2015-01-07 苏州能斯达电子科技有限公司 一种用于压力传感器中的敏感材料及其制备方法
US20150020610A1 (en) * 2013-07-18 2015-01-22 Kulite Semiconductor Products, Inc. Two dimensional material-based pressure sensor
CN105263858A (zh) * 2013-03-14 2016-01-20 都柏林圣三一学院教务长、研究员、基金会学者及董事会其他成员 可放大的用于大量制备片状剥离的、无缺陷的、非氧化的二维材料的方法
WO2018044085A1 (ko) * 2016-09-01 2018-03-08 에스케이씨코오롱피아이 주식회사 절연성능을 갖는 고방열 그래핀-폴리이미드 복합필름 및 이의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005097A (zh) * 2006-01-17 2007-07-25 台达电子工业股份有限公司 半导体压阻式传感器及其操作方法
CN101186715A (zh) * 2007-11-23 2008-05-28 清华大学 超薄柔顺导电高分子敏感膜及其制备方法
CN101201277A (zh) * 2007-11-23 2008-06-18 清华大学 阵列式超薄柔顺力传感器及其制备方法
CN105263858A (zh) * 2013-03-14 2016-01-20 都柏林圣三一学院教务长、研究员、基金会学者及董事会其他成员 可放大的用于大量制备片状剥离的、无缺陷的、非氧化的二维材料的方法
US20150020610A1 (en) * 2013-07-18 2015-01-22 Kulite Semiconductor Products, Inc. Two dimensional material-based pressure sensor
CN104262967A (zh) * 2014-09-16 2015-01-07 苏州能斯达电子科技有限公司 一种用于压力传感器中的敏感材料及其制备方法
WO2018044085A1 (ko) * 2016-09-01 2018-03-08 에스케이씨코오롱피아이 주식회사 절연성능을 갖는 고방열 그래핀-폴리이미드 복합필름 및 이의 제조방법

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021013174A1 (en) * 2019-07-22 2021-01-28 Xi'an Jiaotong-Liverpool University Pressure sensor, preparation method and application thereof and wearable smart fabric comprising the same
WO2021185212A1 (zh) * 2020-03-16 2021-09-23 清华大学 薄膜压阻材料的制备方法、薄膜压阻材料、机器人及设备
CN111664974A (zh) * 2020-04-26 2020-09-15 太原理工大学 一种黑磷柔性应力传感器及其制备方法
CN112158888A (zh) * 2020-09-17 2021-01-01 西北工业大学 利用氧化物半导体纳米粉体剥离层状材料制备二维材料的方法
CN113136102A (zh) * 2021-04-21 2021-07-20 成都大学 一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法
CN113150530A (zh) * 2021-04-21 2021-07-23 上海工程技术大学 聚吡咯-碳化锆-聚氨酯复合薄膜及其制备方法和应用
CN113150530B (zh) * 2021-04-21 2022-10-14 上海工程技术大学 聚吡咯-碳化锆-聚氨酯复合薄膜及其制备方法和应用
CN113418552A (zh) * 2021-06-09 2021-09-21 海南大学 一种二维过渡金属硫化物材料柔性传感器及其制备方法
CN114455576A (zh) * 2022-01-24 2022-05-10 南方电网科学研究院有限责任公司 一种高灵敏检测压力变化的石墨烯复合材料的制备方法
CN114455576B (zh) * 2022-01-24 2023-11-10 南方电网科学研究院有限责任公司 一种高灵敏检测压力变化的石墨烯复合材料的制备方法
CN114964575A (zh) * 2022-05-24 2022-08-30 四川大学 一种掺杂异丙醇的复合膜柔性压力传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN110330675A (zh) 一种压敏薄膜的制备方法、压敏薄膜及压力传感器
Najeeb et al. Organic thin‐film capacitive and resistive humidity sensors: a focus review
Quain et al. Direct writing of additive‐free MXene‐in‐Water ink for electronics and energy storage
CN104916379B (zh) 作为可印刷热敏电阻的含有硅‑碳复合物的导电薄膜
Hajian et al. Development of a fluorinated graphene-based resistive humidity sensor
CN105800605B (zh) 一种氧化石墨烯/石墨烯双层压阻薄膜及制备方法
CN108250844A (zh) 一种水性石墨烯高导电油墨的制备方法
CN103334096B (zh) 一种制备纳米银-石墨烯复合薄膜的方法
EP3397702B1 (en) Piezoresistive ink, methods and uses thereof
FR2977713A1 (fr) Electrode transparente conductrice multicouche et procede de fabrication associe
Iffelsberger et al. 3D printing temperature tailors electrical and electrochemical properties through changing inner distribution of graphite/polymer
CN112254850B (zh) 柔性压力传感器用导电碳浆及其制备方法和压力传感器
US7435310B2 (en) Method for surface imprinted films with carbon nanotubes
Brun et al. Nanocomposite Carbon‐PDMS Material for Chip‐Based Electrochemical Detection
CN109631743A (zh) 一种基于石墨烯纳米银的柔性应变传感器及其制备方法
CN103412001A (zh) 一种制造气体敏感纳米薄膜的方法
CN1333013C (zh) 导电聚苯胺与碳纳米管复合的电磁屏蔽复合膜及其制法
Huang et al. Regenerated silk fibroin-modified soft graphene aerogels for supercapacitive stress sensors
CN104575699A (zh) 具有负温度系数性能的薄膜及其制造方法
CN109399556A (zh) 一种基于印刷方式的柔性微纳压力传感器的制备方法
Nakajima et al. Highly stable flexible thermistor properties of spinel Mn-Co-Ni oxide films on silver/carbon micro-pinecone array composite electrodes
CN106643460B (zh) 一种石墨烯基应变传感薄膜及其制备方法和应用
US7119028B1 (en) Surface imprinted films with carbon nanotubes
KR101183435B1 (ko) 터치패널용 전극 페이스트 조성물 및 이를 이용한 전극 형성방법
Andreghetto et al. Piezoresistive epoxy resin films with carbon black particles for small-strain sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination