CN110323292A - 一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法 - Google Patents

一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法 Download PDF

Info

Publication number
CN110323292A
CN110323292A CN201910372254.9A CN201910372254A CN110323292A CN 110323292 A CN110323292 A CN 110323292A CN 201910372254 A CN201910372254 A CN 201910372254A CN 110323292 A CN110323292 A CN 110323292A
Authority
CN
China
Prior art keywords
copper
indium
layer
selenium
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910372254.9A
Other languages
English (en)
Inventor
彭寿
马立云
李刚
姚婷婷
王天齐
彭塞奥
金克武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd
Original Assignee
CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd filed Critical CNBM Bengbu Design and Research Institute for Glass Industry Co Ltd
Priority to CN201910372254.9A priority Critical patent/CN110323292A/zh
Publication of CN110323292A publication Critical patent/CN110323292A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种铜铟镓硒薄膜太阳能电池吸收层,包括m组相层叠的基础吸收层,每组基础吸收层均包含由下至上层叠的铜铟镓膜层与硒膜层,2≤m≤5;在制备时按以下步骤:S1、采用磁控溅射工艺,在薄膜太阳能电池背电极上沉积铜铟镓膜层;S2、采用真空蒸镀或者磁控溅射工艺在铜铟镓膜层上沉积硒膜层,得到由铜铟镓膜层与硒膜层构成的基础吸收层;S3、重复步骤S1与S2的沉积过程,层叠m组基础吸收层,得到铜铟镓硒前驱体,2≤m≤5;S4、将铜铟镓硒前驱体置于真空硒化炉中进行RTP退火,得到铜铟镓硒薄膜太阳能电池吸收层;该吸收层解决了现有产品中存在的Ga偏析的问题,提高薄膜太阳能电池的开路电压及光电转换效率,且制备方法简单。

Description

一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法
技术领域
本发明涉及薄膜太阳能电池技术领域,具体是一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法。
背景技术
太阳能作为一种重要的可再生能源,受到广泛的关注并得到快速发展。随着光伏技术的持续发展和进步,光伏发电成本不断下降,光伏发电竞争力持续增强,可以预见,全球光伏市场在未来很长一段时间内将继续保持高速增长。
与传统晶硅、非晶硅电池相比,铜铟镓硒(CIGS)薄膜太阳能电池作为新一代的薄膜电池,具备弱光发电性能好、成本低、温度系数低、能源回收期短、寿命长、发电稳定、抗辐射能力强、生产工艺无污染等优势,被业界评为“太阳能能源的未来”,市场前景巨大。CIGS是一种直接带隙的P型半导体材料,其吸收系数高达105/cm,2μm厚的CIGS薄膜就可吸收90%以上的太阳光。铜铟镓硒电池转换效率在薄膜太阳能电池中是最高的,2017年12月达到了22.9%的光电转换效率,因此日本、德国等国家都投入巨资进行研究和产业化。
CIGS吸收层的制备是铜铟镓硒薄膜太阳能电池的核心工艺。目前,国际上制备CIGS薄膜的工艺主要有两类,一类是由美国可再生能源国家实验室(NREL)发展出的“共蒸法”,另一类是以Solar Frontier、Avancis等公司为代表使用的“溅射后硒化法”。作为实验室里制备小面积的铜铟镓硒薄膜太阳能电池时,共蒸法沉积的CIGS薄膜质量较好,电池效率较高,但蒸发无法精确控制元素比例、重复性差、材料利用率不高、很难实现大面积均匀稳定成膜,因而限制其在大规模工业化生产中的应用。而溅射后硒化法工艺相对简单,可以在大面积玻璃衬底上溅射金属合金层,可以精确控制铜、铟、镓元素的比例、后硒化材料可以采用气态或固态的硒源,制备的薄膜性能优良,非常适合大面积开发,因此溅射后硒化法被视作更理想的产业化路线。
在溅射后硒化法中,CIGS吸收层的形成是堆叠元素前驱体一系列的硒化过程。然而,CIGS吸收层通常在靠近背电极的底层处显示出明显的Ga元素偏析的现象,这种效应的起因在于含In和Ga化合物的不同反应动力学。由于形成Ga的硒化物相的反应温度比形成Cu和In的硒化物温度高约100℃,所以富Ga相在堆叠层的底部区域中累积,直到在那里形成富Ga的CIGS吸收层。一旦发生形成黄铜矿CIGS吸收层的反应,所建立的梯度只能通过In和Ga的相互扩散来弛豫,而此过程需要较大的热激活能,即使在较高的退火温度下,增加退火时间,也只有很少的相互扩散能够实现。CIGS薄膜中掺Ga的目的是为了增加吸收层材料的带隙宽度,使其在1.04eV到1.67eV范围内连续可调,并实现与太阳光谱的最佳匹配。但是Ga偏析的问题,会降低电池的开路电压,从而影响光电转换效率。
发明内容
本发明的目的在于提供一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法,该吸收层解决了现有产品中存在的Ga偏析的问题,提高薄膜太阳能电池的开路电压及光电转换效率,且制备方法简单。
本发明解决其技术问题所采用的技术方案是:
一种铜铟镓硒薄膜太阳能电池吸收层,包括m组相层叠的基础吸收层,每组基础吸收层均包含由下至上层叠的铜铟镓膜层与硒膜层,2≤m≤5。
进一步的,所述铜铟镓膜层包括n组由铜镓膜层与铟膜层堆叠构成的复合膜层,1≤n≤10。
进一步的,所述铜铟镓膜层包括n组由铜铟膜层与镓膜层堆叠构成的复合膜层,1≤n≤10。
进一步的,所述铜铟镓膜层包括n组由铜镓膜层与铜铟膜层堆叠构成的复合膜层,1≤n≤10。
本发明还提供一种铜铟镓硒薄膜太阳能电池吸收层的制备方法,其特征在于,包括以下步骤:
S1、采用磁控溅射工艺,在薄膜太阳能电池背电极上沉积铜铟镓膜层;
S2、以固态硒为硒源,采用真空蒸镀或者磁控溅射工艺在铜铟镓膜层上沉积硒膜层,得到由铜铟镓膜层与硒膜层构成的基础吸收层;
S3、重复步骤S1与S2的沉积过程,层叠m组基础吸收层,得到铜铟镓硒前驱体,2≤m≤5;
S4、将铜铟镓硒前驱体置于真空硒化炉中进行RTP退火,得到上述方案中铜铟镓硒薄膜太阳能电池吸收层。
进一步的,所述铜铟镓膜层的沉积采用铜镓靶与铟靶,双靶交替溅射。
进一步的,所述铜铟镓膜层的沉积采用铜铟靶与镓靶,双靶交替溅射。
进一步的,所述铜铟镓膜层的沉积采用铜镓靶与铜铟靶,双靶交替溅射。
进一步的,步骤S4所述RTP退火温度为500~600℃。
本发明的有益效果是,通过在铜铟镓膜层中插入硒膜层,解决了铜铟镓硒吸收层中镓元素分布不均的问题,由于前驱体叠层中硒层两侧与铜铟镓膜层均接触,硒化反应往前驱体两侧进行,使得镓的梯度沿吸收层背面和吸收层表面两个方向,从而促进镓元素在铜铟镓硒吸收层中深度分布及吸收层带隙宽度的增大,进而提高薄膜太阳能电池的开路电压及光电转换效率;并且制备工艺简单成熟,适于大范围推广使用。
附图说明
下面结合附图和实施例对本发明进一步说明:
图1是本发明铜铟镓硒薄膜太阳能电池吸收层的结构示意图;
图2是本发明实施例一铜铟镓膜层的示意图;
图3是本发明实施例二铜铟镓膜层的示意图;
图4是本发明实施例三铜铟镓膜层的示意图。
具体实施方式
实施例一
如图1所示,本发明提供一种铜铟镓硒薄膜太阳能电池吸收层,包括m组相层叠的基础吸收层,即第一组基础吸收层、第二组基础吸收层……第m组基础吸收层,2≤m≤5;每组基础吸收层均包含由下至上层叠的铜铟镓膜层A与硒膜层B。
结合图2所示,所述铜铟镓膜层A包括n组由铜镓膜层1与铟膜层2堆叠构成的复合膜层,1≤n≤10。堆叠顺序由下至上可以为铜镓膜层1/铟膜层2/铜镓膜层1/铟膜层2/……/铜镓膜层1/铟膜层2,也可以为铟膜层2/铜镓膜层1/铟膜层2/铜镓膜层1/……/铟膜层2/铜镓膜层1。
在制备时,可按以下步骤进行:
S1、采用磁控溅射工艺,在薄膜太阳能电池背电极上沉积铜铟镓膜层;铜铟镓膜层的沉积采用铜镓靶与铟靶,双靶交替溅射;
S2、以固态硒为硒源,采用真空蒸镀或者磁控溅射工艺在铜铟镓膜层上沉积硒膜层,得到由铜铟镓膜层与硒膜层构成的基础吸收层;
S3、重复步骤S1与S2的沉积过程,层叠m组基础吸收层,得到铜铟镓硒前驱体,2≤m≤5;
S4、将铜铟镓硒前驱体置于真空硒化炉中进行RTP退火,得到本实施例铜铟镓硒薄膜太阳能电池吸收层。
步骤S4所述RTP退火温度为500~600℃,退火气氛可以为:1、惰性气体;2、惰性气体与硒化氢的混合气体;3、惰性气体与硫化氢的混合气体;4、惰性气体、硒化氢与硫化氢的混合气体。
实施例二
如图1所示,本发明提供一种铜铟镓硒薄膜太阳能电池吸收层,包括m组相层叠的基础吸收层,即第一组基础吸收层、第二组基础吸收层……第m组基础吸收层,2≤m≤5;每组基础吸收层均包含由下至上层叠的铜铟镓膜层A与硒膜层B。
结合图3所示,所述铜铟镓膜层A包括n组由铜铟膜层3与镓膜层4堆叠构成的复合膜层,1≤n≤10。堆叠顺序由下至上可以为铜铟膜层3/镓膜层4/铜铟膜层3/镓膜层4/……/铜铟膜层3/镓膜层4,也可以为镓膜层4/铜铟膜层3/镓膜层4/铜铟膜层3/……/镓膜层4/铜铟膜层3。
在制备时,可按以下步骤进行:
S1、采用磁控溅射工艺,在薄膜太阳能电池背电极上沉积铜铟镓膜层;铜铟镓膜层的沉积采用铜铟靶与镓靶,双靶交替溅射;
S2、以固态硒为硒源,采用真空蒸镀或者磁控溅射工艺在铜铟镓膜层上沉积硒膜层,得到由铜铟镓膜层与硒膜层构成的基础吸收层;
S3、重复步骤S1与S2的沉积过程,层叠m组基础吸收层,得到铜铟镓硒前驱体,2≤m≤5;
S4、将铜铟镓硒前驱体置于真空硒化炉中进行RTP退火,得到本实施例铜铟镓硒薄膜太阳能电池吸收层。
步骤S4所述RTP退火温度为500~600℃,退火气氛可以为:1、惰性气体;2、惰性气体与硒化氢的混合气体;3、惰性气体与硫化氢的混合气体;4、惰性气体、硒化氢与硫化氢的混合气体。
实施例三
如图1所示,本发明提供一种铜铟镓硒薄膜太阳能电池吸收层,包括m组相层叠的基础吸收层,即第一组基础吸收层、第二组基础吸收层……第m组基础吸收层,2≤m≤5;每组基础吸收层均包含由下至上层叠的铜铟镓膜层A与硒膜层B。
结合图4所示,所述铜铟镓膜层A包括n组由铜镓膜层1与铜铟膜层3堆叠构成的复合膜层,1≤n≤10。堆叠顺序由下至上可以为铜镓膜层1/铜铟膜层3/铜镓膜层1/铜铟膜层3/……/铜镓膜层1/铜铟膜层3;也可以为铜铟膜层3/铜镓膜层1/铜铟膜层3/铜镓膜层1/……/铜铟膜层3/铜镓膜层1。
在制备时,可按以下步骤进行:
S1、采用磁控溅射工艺,在薄膜太阳能电池背电极上沉积铜铟镓膜层;铜铟镓膜层的沉积采用铜镓靶与铜铟靶,双靶交替溅射;
S2、以固态硒为硒源,采用真空蒸镀或者磁控溅射工艺在铜铟镓膜层上沉积硒膜层,得到由铜铟镓膜层与硒膜层构成的基础吸收层;
S3、重复步骤S1与S2的沉积过程,层叠m组基础吸收层,得到铜铟镓硒前驱体,2≤m≤5;
S4、将铜铟镓硒前驱体置于真空硒化炉中进行RTP退火,得到本实施例铜铟镓硒薄膜太阳能电池吸收层。
步骤S4所述RTP退火温度为500~600℃,退火气氛可以为:1、惰性气体;2、惰性气体与硒化氢的混合气体;3、惰性气体与硫化氢的混合气体;4、惰性气体、硒化氢与硫化氢的混合气体。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (9)

1.一种铜铟镓硒薄膜太阳能电池吸收层,其特征在于,包括m组相层叠的基础吸收层,每组基础吸收层均包含由下至上层叠的铜铟镓膜层与硒膜层,2≤m≤5。
2.根据权利要求1所述的一种铜铟镓硒薄膜太阳能电池吸收层,其特征在于,所述铜铟镓膜层包括n组由铜镓膜层与铟膜层堆叠构成的复合膜层,1≤n≤10。
3.根据权利要求1所述的一种铜铟镓硒薄膜太阳能电池吸收层,其特征在于,所述铜铟镓膜层包括n组由铜铟膜层与镓膜层堆叠构成的复合膜层,1≤n≤10。
4.根据权利要求1所述的一种铜铟镓硒薄膜太阳能电池吸收层,其特征在于,所述铜铟镓膜层包括n组由铜镓膜层与铜铟膜层堆叠构成的复合膜层,1≤n≤10。
5.一种铜铟镓硒薄膜太阳能电池吸收层的制备方法,其特征在于,包括以下步骤:
S1、采用磁控溅射工艺,在薄膜太阳能电池背电极上沉积铜铟镓膜层;
S2、以固态硒为硒源,采用真空蒸镀或者磁控溅射工艺在铜铟镓膜层上沉积硒膜层,得到由铜铟镓膜层与硒膜层构成的基础吸收层;
S3、重复步骤S1与S2的沉积过程,层叠m组基础吸收层,得到铜铟镓硒前驱体,2≤m≤5;
S4、将铜铟镓硒前驱体置于真空硒化炉中进行RTP退火,得到权利要求1所述的铜铟镓硒薄膜太阳能电池吸收层。
6.根据权利要求5所述的一种铜铟镓硒薄膜太阳能电池吸收层的制备方法,其特征在于,所述铜铟镓膜层的沉积采用铜镓靶与铟靶,双靶交替溅射,得到权利要求2所述的铜铟镓硒薄膜太阳能电池吸收层。
7.根据权利要求5所述的一种铜铟镓硒薄膜太阳能电池吸收层的制备方法,其特征在于,所述铜铟镓膜层的沉积采用铜铟靶与镓靶,双靶交替溅射,得到权利要求3所述的铜铟镓硒薄膜太阳能电池吸收层。
8.根据权利要求5所述的一种铜铟镓硒薄膜太阳能电池吸收层的制备方法,其特征在于,所述铜铟镓膜层的沉积采用铜镓靶与铜铟靶,双靶交替溅射,得到权利要求4所述的铜铟镓硒薄膜太阳能电池吸收层。
9.根据权利要求5所述的一种铜铟镓硒薄膜太阳能电池吸收层的制备方法,其特征在于,步骤S4所述RTP退火温度为500~600℃。
CN201910372254.9A 2019-05-06 2019-05-06 一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法 Pending CN110323292A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910372254.9A CN110323292A (zh) 2019-05-06 2019-05-06 一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910372254.9A CN110323292A (zh) 2019-05-06 2019-05-06 一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法

Publications (1)

Publication Number Publication Date
CN110323292A true CN110323292A (zh) 2019-10-11

Family

ID=68118884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910372254.9A Pending CN110323292A (zh) 2019-05-06 2019-05-06 一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法

Country Status (1)

Country Link
CN (1) CN110323292A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120094428A1 (en) * 2010-10-15 2012-04-19 Electronics And Telecommunications Research Institute Manufacturing method of compound semiconductor solar cell
CN102634767A (zh) * 2012-02-29 2012-08-15 广东工业大学 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
JP5320535B1 (ja) * 2012-04-24 2013-10-23 株式会社半一 化合物半導体薄膜の製造方法及び化合物薄膜太陽電池の製造方法
CN103474511A (zh) * 2013-09-22 2013-12-25 深圳先进技术研究院 铜铟镓硒光吸收层的制备方法及铜铟镓硒薄膜太阳能电池
US20150017756A1 (en) * 2013-07-10 2015-01-15 Tsmc Solar Ltd. Apparatus and method for producing cigs absorber layer in solar cells
JP2017050337A (ja) * 2015-08-31 2017-03-09 日東電工株式会社 Cigs半導体前駆体膜の製造方法およびそれを用いたcigs半導体膜の製造方法並びにそれらを用いたcigs太陽電池の製造方法
US20170236710A1 (en) * 2007-09-05 2017-08-17 Ascent Solar Technologies, Inc. Machine and process for continuous, sequential, deposition of semiconductor solar absorbers having variable semiconductor composition deposited in multiple sublayers
CN109273542A (zh) * 2018-10-12 2019-01-25 北京铂阳顶荣光伏科技有限公司 铜铟镓硒太阳能电池吸收层、制备方法及太阳能电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170236710A1 (en) * 2007-09-05 2017-08-17 Ascent Solar Technologies, Inc. Machine and process for continuous, sequential, deposition of semiconductor solar absorbers having variable semiconductor composition deposited in multiple sublayers
US20120094428A1 (en) * 2010-10-15 2012-04-19 Electronics And Telecommunications Research Institute Manufacturing method of compound semiconductor solar cell
CN102634767A (zh) * 2012-02-29 2012-08-15 广东工业大学 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
CN102856433A (zh) * 2012-02-29 2013-01-02 广东工业大学 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
JP5320535B1 (ja) * 2012-04-24 2013-10-23 株式会社半一 化合物半導体薄膜の製造方法及び化合物薄膜太陽電池の製造方法
US20150017756A1 (en) * 2013-07-10 2015-01-15 Tsmc Solar Ltd. Apparatus and method for producing cigs absorber layer in solar cells
CN103474511A (zh) * 2013-09-22 2013-12-25 深圳先进技术研究院 铜铟镓硒光吸收层的制备方法及铜铟镓硒薄膜太阳能电池
JP2017050337A (ja) * 2015-08-31 2017-03-09 日東電工株式会社 Cigs半導体前駆体膜の製造方法およびそれを用いたcigs半導体膜の製造方法並びにそれらを用いたcigs太陽電池の製造方法
CN109273542A (zh) * 2018-10-12 2019-01-25 北京铂阳顶荣光伏科技有限公司 铜铟镓硒太阳能电池吸收层、制备方法及太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈玉华主编;姚宏颖,崔海波副主编: "《新型清洁能源技术》", 31 January 2019, 知识产权出版社, pages: 241 *

Similar Documents

Publication Publication Date Title
Kaneshiro et al. Advances in copper-chalcopyrite thin films for solar energy conversion
CN101728461B (zh) 一种制备薄膜太阳能电池吸收层的方法
CN102054897B (zh) 多元素合金单一靶材制备薄膜太阳能电池的方法
CN101814553B (zh) 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
CN102652368B (zh) 太阳能电池中使用的Cu-In-Zn-Sn-(Se,S)基薄膜及其制造方法
CN101840942A (zh) 一种薄膜太阳电池及其制造方法
CN102074590A (zh) 碲化镉薄膜太阳能电池结构中的背接触电极及制备方法
CN101127371A (zh) 一种纳米结构薄膜太阳能电池及其制备方法
CN104011879A (zh) 形成用于太阳能电池的cigs光吸收层的方法及cigs太阳能电池
Waleed et al. Performance improvement of solution-processed CdS/CdTe solar cells with a thin compact TiO 2 buffer layer
CN102694077B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN102044577A (zh) 一种柔性薄膜太阳电池及其制造方法
CN102437237A (zh) 黄铜矿型薄膜太阳能电池及其制造方法
Mazur et al. Solar cells based on CdTe thin films
CN102214737B (zh) 太阳能电池用化合物薄膜的制备方法
CN105470113A (zh) 一种CZTSSe薄膜太阳电池吸收层的制备方法
CN102544230A (zh) 一种生长可变禁带宽度的Cd1-xZnxTe薄膜的方法
CN101882653B (zh) 基于纳米CdS薄膜的太阳能电池制备方法
CN102142484A (zh) 多晶硅/铜铟镓硒叠层电池工艺
Reinhard et al. High efficiency flexible Cu (In, Ga) Se 2 solar cells
CN102024858B (zh) 油墨、薄膜太阳能电池及其制造方法
CN102005487B (zh) 一种柔性薄膜太阳电池用光吸收层材料及其制备方法
CN209544363U (zh) 一种镓元素均匀分布的铜铟镓硒薄膜太阳能电池吸收层
CN209544364U (zh) 一种吸收层中镓元素均匀分布的铜铟镓硒薄膜太阳能电池
CN110323292A (zh) 一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination