CN102856433A - 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法 - Google Patents

一种铜铟镓硒薄膜太阳能电池吸收层的制备方法 Download PDF

Info

Publication number
CN102856433A
CN102856433A CN2012103217868A CN201210321786A CN102856433A CN 102856433 A CN102856433 A CN 102856433A CN 2012103217868 A CN2012103217868 A CN 2012103217868A CN 201210321786 A CN201210321786 A CN 201210321786A CN 102856433 A CN102856433 A CN 102856433A
Authority
CN
China
Prior art keywords
indium gallium
copper indium
sputtering
copper
cuga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103217868A
Other languages
English (en)
Other versions
CN102856433B (zh
Inventor
魏爱香
刘军
赵湘辉
招瑜
刘俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201210321786.8A priority Critical patent/CN102856433B/zh
Priority claimed from CN201210321786.8A external-priority patent/CN102856433B/zh
Publication of CN102856433A publication Critical patent/CN102856433A/zh
Application granted granted Critical
Publication of CN102856433B publication Critical patent/CN102856433B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种铜铟镓硒薄膜太阳能电池吸收层的制备方法,该方法首先采用射频磁控溅射技术在清洗干净的玻璃衬底上制备金属钼背电极,以铜铟合金靶和铜镓合金靶为溅射靶材,以氩气作为溅射气体,采用射频磁控溅射技术,以双靶交替溅射的方式,制备成Mo/CuIn/CuGa/CuIn/CuGa/CuIn/CuGa多层结构的铜铟镓金属预制层,最后以固态硒粉为硒源,在铜铟镓预制层上真空蒸发厚度是铜铟镓预制层厚度的4~6倍的硒薄膜,再在真空条件下通过三步升温硒化方式进行硒化:首先加热到100℃恒温10~20min,再升温到260℃恒温15~20min,最后再加热到550℃恒温30min,形成具有黄铜矿结构的晶粒较大的铜铟镓硒吸收层;本发明方法以溅射为基础,可实现各种元素独立控制,是一个直接面向产业化的薄膜制备方法。

Description

一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
技术领域    
    本发明属于半导体薄膜制备技术和新能源的开发利用领域,具体涉及一种铜铟镓硒(CIGS)薄膜太阳能电池吸收层的制备方法。
背景技术
铜铟硒(CuInSe2,简称CIS)或铜铟镓硒(CuInxGa1-xSe2,简称CIGS)薄膜太阳能电池因其既具有高的光电转换效率,又具有比较低的制作成本,性能稳定,不会发生光诱导衰变,价格也低于传统的晶体硅电池,因而成为各国太阳能电池材料的研究热点之一。
 铜铟镓硒(CIGS)薄膜太阳能电池主要由玻璃衬底、钼(Mo)背电极、铜铟镓硒(CIGS)吸收层、缓冲层、窗口层、减反射层和铝电极组成,其中铜铟镓硒(CIGS)吸收层是太阳电池中的核心材料,制备高效铜铟镓硒(CIGS)电池的关键技术之一是要获得高质量的吸收层。铜铟镓硒(CIGS)薄膜的制备方法多种多样,主要的制备方法大致可以归结为真空制备技术和非真空制备技术两大类。真空制备工艺主要有多源共蒸发技术、溅射技术、分子束外延技术、化学气相沉积技术等;而非真空制备技术包括电沉积、旋涂法和丝网印刷等方法。虽然铜铟镓硒(CIGS)薄膜的制备方法多种多样,但仅有多源共蒸发技术和溅射后硒化法制得高效率的铜铟镓硒(CIGS)太阳能电池。蒸发和溅射两种制备方法在日本、美国、德国无论是实验室还是在生产线上都有采用。作为实验室里制备小面积的铜铟镓硒(CIGS)薄膜太阳电池时,共蒸发法沉积的铜铟镓硒(CIGS)薄膜质量较好,电池效率较高,但蒸发法无法精确控制元素比例、重复性差、材料利用率不高、很难实现大面积均匀稳定成膜,因而限制其在大规模工业化生产中的应用。而溅射后硒化法工艺相对简单,可以在大面积玻璃衬底上溅射金属合金层,可以精确控制各组分元素的比例、后硒化材料可以采用气态或固态的硒源,制备的薄膜性能优良,非常适合大面积开发,因此溅射后硒化法被视作更理想的产业化路线。
对磁控溅射制备的金属预置层铜铟镓(CIG)硒化形成铜铟镓硒(CIGS)吸收层。传统的硒化过程采用硒化氢(H2Se)气体硒化,由于H2Se气体有剧毒,操作不安全,对环境有污染。目前较多的硒化方法是在真空或氩气环境下利用Se蒸汽进行硒化,即固态源硒化法。这一方式可避免使用剧毒的H2Se气体, 因此操作更加安全, 设备也相对简单。采用固态源硒化铜铟镓(CIG)预制层时,由于Se的升华点等属性在真空条件下和非真空条件下有着很大的不同, 因而铜铟镓(CIG)预置层的固态源硒化方法可以在真空环境下硒化,也可以在非真空环境下硒化。 硒化法工艺中, 硒化过程各种参数的优化一直是国内外研究的热点和难点。
发明内容   
本发明的目的是提供一种铜铟镓硒(CIGS)薄膜太阳能电池吸收层的制备方法。
 本发明提供的铜铟镓硒(CIGS)薄膜太阳能电池吸收层的制备方法包括以下步骤:
(1)采用射频磁控溅射技术在清洗干净的玻璃衬底上制备金属钼(Mo)背电极。
(2)采用射频磁控溅射技术,以铜铟(CuIn)合金靶和铜镓(CuGa)合金靶为溅射靶材,以氩气(Ar)作为溅射气体,采用双靶交替溅射的方式,制备成Mo/CuGa/CuIn/CuGa/CuIn/……CuGa/CuIn/CuGa多层结构的铜铟镓(CIG)金属预制层。
(3)以固态硒粉(Se)为硒源,采用“三步升温硒化方式”,对铜铟镓(CIG)预制膜进行硒化制备铜铟镓硒(CIGS)吸收层。
(4)硒化工艺完成后的样品,采用扫描电子显微镜(SEM)、X射线电子能量色散谱,X射线衍射(XRD)仪,霍尔效应仪等表征所制备的CIGS薄膜的表面形貌、元素组成、物相结构和电阻率、载流子浓度、电子迁移率等物理量。
上述步骤(1)中采用射频磁控溅射技术制备Mo背电极的的工艺条件是:背底真空度1×10-3Pa ,溅射功率为150W。以99.99%的高纯Mo为溅射靶材,以氩气(Ar)为溅射气体, 首先在靠近玻璃衬底时采用溅射气压2Pa的条件下下,溅射10min,使生长的Mo薄膜与衬底有良好的附着力,然后把溅射气压调整为0.3Pa, 溅射30min,使所制备的Mo薄膜具有较高的电导率,形成符合太阳能电池器件质量要求的Mo导电层。
上述步骤(2)中采用磁控溅射技术制备多层结构的铜铟镓(CIG)金属预制层的方法是:以CuIn和CuGa合金靶作为溅射靶材,采用交替溅射CuIn和CuGa靶的方式制备Mo/CuGa/CuIn/CuGa/CuIn……/CuGa/CuIn/CuGa多层结构的铜铟镓(CIG)金属预制层。CuIn层溅射功率40~60W、氩气压强为0.8~1.5Pa,溅射时间为10~20min;CuGa层溅射功率为40~60W、氩气压强为0.8~1.5Pa,溅射时间为5~10min。
上述步骤(3)中采用固态硒(Se)粉为硒源,通过三步升温硒化方式,用“硒薄膜法”对铜铟镓(CIG)预制层进行硒化首先在真空中蒸发0.5~1g硒粉,在铜铟镓预制层上形成厚度是铜铟镓预制层厚度的4~6倍的硒薄膜,然后在真空室加热硒化:首先加热到100°C恒温15~25min,再升温到260°C恒温15~25min,然后再加热到500~550°C恒温30~40min,形成具有单一黄铜矿结构的晶粒较大的铜铟镓硒薄膜太阳能电池吸收层。
本发明的有益效果是:
本方法的主要特点在于中间生成物的形成过程是由纳米级别的各种元素颗粒相互反应而形成的,反应过程相对容易,条件要求相对简单。另外,对Ga元素的分布可以实现精确控制,而这是制备CIGS薄膜的一个难点。从实现工艺上来讲, 这种方法由于以溅射为基础, 可实现各种元素独立精确控制, 是一个直接面向产业化的薄膜制备方法。 
采用三步硒化法,在真空条件首先将预制层加热到100°C恒温15~25min,目的是形成成分均匀分布的预制层,再升温到260°C恒温15~25min,目的是形成In2Se3和Cu3Se2化合物,然后再加热到500~550°C恒温30~40min,目的是让In2Se3和Cu3Se2化合物进行充分反应,形成铜铟镓硒(CIGS)薄膜,使硒化后形成具有单一黄铜矿结构且能满足太阳能电池器件质量要求的铜铟镓硒(CIGS)吸收层。
附图说明
图1 铜铟镓预制层的截面SEM照片。
图2 在铜铟镓预制层上面蒸镀硒薄膜后的截面SEM照片。
图3 经100°C恒温15min,再升温到260°C恒温20min处理后样品的截面SEM照片。
图4经三步硒化后得到的铜铟镓硒吸收层的表面SEM照片。
图5 铜铟镓硒吸收层的X射线衍射图。
具体实施方式   
实施例1
1.玻璃衬底的清洗:把尺寸为3cm×1.5cm的玻璃衬底分别在乙醇、丙酮、去离子水中各超声清洗10min,用N2气吹干,备用。
2. 采用射频磁控溅射技术在清洗干净的玻璃衬底上制备厚度约1um的金属钼(Mo)背电极:具体工艺条件:背底真空为1×10-3Pa,溅射气体为Ar气,溅射功率150W, 首先溅射气压为2Pa的条件下,溅射10min,再把溅射气压调整为0.3Pa, 溅射30min。
3.采用磁控溅射技术在制备好的Glass/Mo衬底上制备铜铟镓(CIG)金属预制层:以铜铟(CuIn)合金靶和铜镓(CuGa)合金靶为溅射靶材,以氩气(Ar)作为溅射气体,采用双靶交替溅射的方式,制备CuGa/CuIn/CuGa/CuIn/CuGa,多层结构的铜铟镓(CIG)金属预制层,溅射功率均为40W,溅射气压均为0.8Pa, 多层结构对应的溅射时间分别为8min/20min/5min/ 20min/8min。
4. 以固态硒(Se)粉为硒源,采用三步升温硒化方式,对铜铟镓(CIG)预制层进行硒化制备铜铟镓硒(CIGS)吸收层:把制备好的铜铟镓(CIG)预制层放在真空系统中,首先在真空中蒸发0.5g硒粉,在铜铟镓(CIG)预制层上形成厚度是铜铟镓(CIG)预制层厚度的4~6倍的硒薄膜,然后在真空室加热硒化: 首先加热到100°C恒温15min,再升温到260°C恒温20min,最后再加热到500°C恒温30min,形成具有单一黄铜矿结构的晶粒较大的铜铟镓硒(CIGS)吸收层。
实施例2
1.玻璃衬底的清洗:把尺寸为3cm×1.5cm的玻璃衬底分别在乙醇、丙酮、去离子水中各超声清洗10min,用N2气吹干,备用。
2. 采用射频磁控溅射技术在清洗干净的玻璃衬底上制备厚度约1um的金属钼(Mo)背电极:具体工艺条件:背底真空为1×10-3Pa,溅射气体为Ar气,溅射功率150W, 首先溅射气压为2Pa的条件下,溅射10min,再把溅射气压调整为0.3Pa, 溅射30min。
3.采用磁控溅射技术在制备好的Glass/Mo衬底上制备铜铟镓(CIG)金属预制层:以铜铟(CuIn)合金靶和铜镓(CuGa)合金靶为溅射靶材,以氩气(Ar)作为溅射气体,采用双靶交替溅射的方式,制备Glass/MO/CuGa/CuIn/CuGa……/CuIn/CuGa,多层结构的铜铟镓(CIG)金属预制层,溅射功率均为50W,溅射气压均为1.0Pa, 多层结构对应的溅射时间分别为9min/15min/8min/ 15min/7min/15min/6min/15min/5min。
4. 以固态硒(Se)粉为硒源,采用三步升温硒化方式,对铜铟镓(CIG)预制层进行硒化制备铜铟镓硒(CIGS)吸收层:把制备好的铜铟镓(CIG)预制层放在真空系统中,首先在真空中蒸发0.8g硒粉,在铜铟镓(CIG)预制层上形成厚度是铜铟镓(CIG)预制层厚度的4~6倍的硒薄膜,然后在真空室加热硒化: 首先加热到100°C恒温25min,再升温到260°C恒温25min,最后再加热到520°C恒温40min,形成镓的成分在厚度方向上具有一定浓度梯度的的铜铟镓硒(CIGS)吸收层。
实施例3
1.玻璃衬底的清洗:把尺寸为3cm×1.5cm的玻璃衬底分别在乙醇、丙酮、去离子水中各超声清洗10min,用N2气吹干,备用。
2. 采用射频磁控溅射技术在清洗干净的玻璃衬底上制备厚度约1um的金属钼(Mo)背电极:具体工艺条件:背底真空为1×10-3Pa,溅射气体为Ar气,溅射功率150W, 首先溅射气压为2Pa的条件下,溅射10min,再把溅射气压调整为0.3Pa, 溅射30min。
3.采用磁控溅射技术在制备好的Glass/Mo衬底上制备铜铟镓(CIG)金属预制层:以铜铟(CuIn)合金靶和铜镓(CuGa)合金靶为溅射靶材,以氩气(Ar)作为溅射气体,采用双靶交替溅射的方式,制备CuGa/CuIn/CuGa/CuIn/CuGa,多层结构的铜铟镓(CIG)金属预制层,溅射功率均为60W,溅射气压均为0.8Pa, 多层结构对应的溅射时间分别为5min/10min/5min/ 10min/5min/10min/5min/10min/5min。
4. 以固态硒(Se)粉为硒源,采用三步升温硒化方式,对铜铟镓(CIG)预制层进行硒化制备铜铟镓硒(CIGS)吸收层:把制备好的铜铟镓(CIG)预制层放在真空系统中,首先在真空中蒸发0.6g硒粉,在铜铟镓(CIG)预制层上形成厚度是铜铟镓(CIG)预制层厚度的4~6倍的硒薄膜,然后在真空室加热硒化: 首先加热到100°C恒温20min,再升温到260°C恒温20min,最后再加热到550°C恒温30min,形成具有单一黄铜矿结构的晶粒较大的铜铟镓硒(CIGS)吸收层。
实施例4
1.玻璃衬底的清洗:把尺寸为3cm×1.5cm的玻璃衬底分别在乙醇、丙酮、去离子水中各超声清洗10min,用N2气吹干,备用。
2. 采用射频磁控溅射技术在清洗干净的玻璃衬底上制备厚度约1um的金属钼(Mo)背电极:具体工艺条件:背底真空为1×10-3Pa,溅射气体为Ar气,溅射功率150W, 首先溅射气压为2Pa的条件下,溅射10min,再把溅射气压调整为0.3Pa, 溅射30min。
3.采用磁控溅射技术在制备好的Glass/Mo衬底上制备铜铟镓(CIG)金属预制层:以铜铟(CuIn)合金靶和铜镓(CuGa)合金靶为溅射靶材,以氩气(Ar)作为溅射气体,采用双靶交替溅射的方式,制备CuGa/CuIn/CuGa/CuIn/CuGa,多层结构的铜铟镓(CIG)金属预制层,溅射功率均为60W,溅射气压均为1.0Pa, 多层结构对应的溅射时间分别为5min/12min/6min/ 14min/7min/16min/8min/18min/5min。
4. 以固态硒(Se)粉为硒源,采用三步升温硒化方式,对铜铟镓(CIG)预制层进行硒化制备铜铟镓硒(CIGS)吸收层:把制备好的铜铟镓(CIG)预制层放在真空系统中,首先在真空中蒸发1.0g硒粉,在铜铟镓(CIG)预制层上形成厚度是铜铟镓(CIG)预制层厚度的4~6倍的硒薄膜,然后在真空室加热硒化:首先加热到100°C恒温25min,再升温到260°C恒温25min,最后再加热到550°C恒温50min,形成形成镓的成分在厚度方向上具有一定浓度梯度的的铜铟镓硒(CIGS)吸收层。

Claims (4)

1.一种铜铟镓硒薄膜太阳能电池吸收层的制备方法,其特征在于其制备方法包括以下步骤:
(1)采用射频磁控溅射技术在清洗干净的玻璃衬底上制备金属钼背电极;
(2)采用射频磁控溅射技术,以铜铟合金靶和铜镓合金靶为溅射靶材,以氩气作为溅射气体,采用双靶交替溅射的方式,制备成Mo/CuGa/CuIn/CuGa/CuIn/CuGa/……CuIn/CuGa多层结构的铜铟镓金属预制层;
(3)以固态硒粉为硒源,采用三步升温硒化方式,对铜铟镓预制层进行硒化制备铜铟镓硒薄膜太阳能电池吸收层。
2.根据权利要求1所述的制备方法,其特征在于上述步骤(1)中采用射频磁控溅射技术制备钼背电极的的工艺条件是:背底真空度1×10-3Pa ,溅射功率为150W;以99.99%的高纯Mo为溅射靶材,以氩气为溅射气体, 首先在靠近玻璃衬底时采用溅射气压2Pa的条件下下,溅射10min,使生长的Mo薄膜与衬底有良好的附着力,然后把溅射气压调整为0.3Pa, 溅射30min,使所制备的Mo薄膜具有较高的电导率,形成符合太阳能电池器件质量要求的Mo导电层。
3.根据权利要求1所述的制备方法,其特征在于上述步骤(2)中采用射频磁控溅射技术制备多层结构的铜铟镓金属预制层的方法是:以铜铟合金靶和铜镓合金靶为溅射靶材,采用交替溅射CuIn和CuGa靶的方式制备Mo/CuGa/CuIn/CuGa/CuIn/CuGa/CuIn/CuGa多层结构的铜铟镓金属预制层;CuIn层溅射功率40~60W、氩气压强为0.8~1.5Pa,溅射时间为10~20min;CuGa层溅射功率为40~60W、氩气压强为0.8~1.5Pa,溅射时间为5~10min。
4.根据权利要求1所述的制备方法,其特征在于上述步骤(3)中采用固态硒粉为硒源,通过三步升温硒化方式,用“硒薄膜法”对铜铟镓预制层进行硒化首先在真空中蒸发0.5~1g硒粉,在铜铟镓预制层上形成厚度是铜铟镓预制层厚度的4~6倍的硒薄膜,然后在真空室加热硒化:首先加热到100°C恒温15~25min,再升温到260°C恒温15~25min,然后再加热到500~550°C恒温30~40min,形成具有单一黄铜矿结构的晶粒较大的铜铟镓硒薄膜太阳能电池吸收层。
CN201210321786.8A 2012-02-29 2012-08-31 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法 Expired - Fee Related CN102856433B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210321786.8A CN102856433B (zh) 2012-02-29 2012-08-31 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210050528.0 2012-02-29
CN2012100505280 2012-02-29
CN2012100505280A CN102634767A (zh) 2012-02-29 2012-02-29 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
CN201210321786.8A CN102856433B (zh) 2012-02-29 2012-08-31 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法

Publications (2)

Publication Number Publication Date
CN102856433A true CN102856433A (zh) 2013-01-02
CN102856433B CN102856433B (zh) 2016-11-30

Family

ID=

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206707A (zh) * 2015-08-26 2015-12-30 厦门神科太阳能有限公司 一种铜铟镓硒太阳能电池光吸收层薄膜的制备方法
CN110323292A (zh) * 2019-05-06 2019-10-11 中建材蚌埠玻璃工业设计研究院有限公司 一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法
CN114171640A (zh) * 2021-11-25 2022-03-11 泰州锦能新能源有限公司 一种铜铟镓硒太阳能电池的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101397647A (zh) * 2008-11-03 2009-04-01 清华大学 铜铟镓硒或铜铟铝硒太阳能电池吸收层靶材及其制备方法
US20120045360A1 (en) * 2009-04-14 2012-02-23 Kobelco Research Institute, Inc Cu-ga alloy sputtering target and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101397647A (zh) * 2008-11-03 2009-04-01 清华大学 铜铟镓硒或铜铟铝硒太阳能电池吸收层靶材及其制备方法
US20120045360A1 (en) * 2009-04-14 2012-02-23 Kobelco Research Institute, Inc Cu-ga alloy sputtering target and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206707A (zh) * 2015-08-26 2015-12-30 厦门神科太阳能有限公司 一种铜铟镓硒太阳能电池光吸收层薄膜的制备方法
CN105206707B (zh) * 2015-08-26 2017-03-29 厦门神科太阳能有限公司 一种铜铟镓硒太阳能电池光吸收层薄膜的制备方法
CN110323292A (zh) * 2019-05-06 2019-10-11 中建材蚌埠玻璃工业设计研究院有限公司 一种铜铟镓硒薄膜太阳能电池吸收层及其制备方法
CN114171640A (zh) * 2021-11-25 2022-03-11 泰州锦能新能源有限公司 一种铜铟镓硒太阳能电池的制备方法
CN114171640B (zh) * 2021-11-25 2024-03-01 泰州锦能新能源有限公司 一种铜铟镓硒太阳能电池的制备方法

Also Published As

Publication number Publication date
CN102634767A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
CN101740660B (zh) 铜铟镓硒太阳能电池、其吸收层薄膜及该薄膜的制备方法、设备
CN102634767A (zh) 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
CN101728461B (zh) 一种制备薄膜太阳能电池吸收层的方法
Liu et al. Preparation of Cu (In, Ga) Se2 thin film by sputtering from Cu (In, Ga) Se2 quaternary target
CN101814553B (zh) 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
CN105655235B (zh) 一种基于连续蒸发工艺制备梯度带隙光吸收层的方法和装置
CN102751388B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN102154622A (zh) 用作太阳能电池光吸收层的铜铟镓硒薄膜的制备方法
CN103296139B (zh) 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
CN102694077B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN101805890A (zh) 一种原位生长Cu2ZnSnS4光伏薄膜方法
CN102437237A (zh) 黄铜矿型薄膜太阳能电池及其制造方法
CN102214737B (zh) 太阳能电池用化合物薄膜的制备方法
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
Ayachi et al. Room temperature pulsed-DC sputtering deposition process for CIGS absorber layer: Material and device characterizations
CN102751387B (zh) 一种薄膜太阳能电池吸收层Cu(In,Ga)Se2薄膜的制备方法
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
CN103872154B (zh) 一种含钠钼膜及其制备方法和应用
CN103258899A (zh) 一种柔性不锈钢衬底上cigs吸收层制备方法
Wu et al. Characterization of Cu (In, Ga) Se2 thin films prepared via a sputtering route with a following selenization process
CN102005487B (zh) 一种柔性薄膜太阳电池用光吸收层材料及其制备方法
CN103346213A (zh) 一种太阳能电池吸收层的制备方法
CN102856433B (zh) 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
CN101967624A (zh) Cu2ZnSnS4光伏薄膜的制备方法
CN105762210B (zh) 一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161130

Termination date: 20180831