CN104011879A - 形成用于太阳能电池的cigs光吸收层的方法及cigs太阳能电池 - Google Patents

形成用于太阳能电池的cigs光吸收层的方法及cigs太阳能电池 Download PDF

Info

Publication number
CN104011879A
CN104011879A CN201380004295.3A CN201380004295A CN104011879A CN 104011879 A CN104011879 A CN 104011879A CN 201380004295 A CN201380004295 A CN 201380004295A CN 104011879 A CN104011879 A CN 104011879A
Authority
CN
China
Prior art keywords
cigs
solar cell
light absorbing
absorbing zone
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380004295.3A
Other languages
English (en)
Other versions
CN104011879B (zh
Inventor
尹载浩
郭智惠
安世镇
尹庆勋
申基植
安承奎
赵阿拉
朴相炫
朴海森
崔森武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea S Energy Ji Shusubcommittee-Tojiu Institute
Korea Institute of Energy Research KIER
Original Assignee
Korea S Energy Ji Shusubcommittee-Tojiu Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea S Energy Ji Shusubcommittee-Tojiu Institute filed Critical Korea S Energy Ji Shusubcommittee-Tojiu Institute
Publication of CN104011879A publication Critical patent/CN104011879A/zh
Application granted granted Critical
Publication of CN104011879B publication Critical patent/CN104011879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种用于形成CIGS光吸收层的方法,其可以在衬底的Na浓度低,由此CIGS光吸收层的耗尽层厚的情况下,提高太阳能电池的效率。本发明的方法通过三步真空共蒸发法形成用于太阳能电池的CIGS光吸收层,并包括:同时真空蒸发In、Ga和Se的第一步骤;同时真空蒸发Cu和Se的第二步骤;和真空蒸发In、Ga和Se的第三步骤。在第一步骤中蒸发并供应的Ga的量大于在第三步骤中蒸发并供应的Ga的量。根据本发明的另一方面的CIGS太阳能电池包括:衬底;在衬底上形成的电极层;和在电极层上形成的CIGS光吸收层。在电极层和CIGS光吸收层的界面处的Ga/(In+Ga)的比率为0.45或更高。本发明的方法配置为使得在通过三步真空共蒸发法形成CIGS光吸收层的方法中,提高第一步骤中Ga的蒸发量,使得能够在Na浓度低的衬底上形成CIGS光吸收层,从而提高深度深的耗尽层的CIGS太阳能电池的效率。

Description

形成用于太阳能电池的CIGS光吸收层的方法及CIGS太阳能电池
技术领域
本发明涉及一种形成用于太阳能电池的CIGS光吸收层的方法及CIGS太阳能电池,尤其涉及一种形成CIGS光吸收层的方法,其可以在衬底的碱浓度低,由此CIGS光吸收层的耗尽层厚的情况下,提高太阳能电池的效率。
背景技术
近来由于严重的环境污染问题和化石能源的枯竭,下一代清洁能源开发的重要性越来越受到人们的关注。其中,预期用于直接将太阳能转换为电能的太阳能电池成为能够解决未来能源问题的能量来源,这是因为其产生较少的污染,采用无限的太阳能,并且具有半永久性的寿命。
太阳能电池根据用于光吸收层的材料分为很多种类,而当前最广为使用的是利用硅的硅太阳能电池。但是,近来因硅供应量的短缺,硅的价格急剧攀升,因此,薄膜型太阳能电池受到人们的青睐。薄膜型太阳能电池的厚度较小,使得能够消耗较少量的材料,并且重量轻,因此,用途非常广泛。对作为这类薄膜型太阳能电池的材料的非晶硅和CdTe、CIS(CuInSe2)或CIGS(CuIn1-xGaxSe2)正在进行深入研究。
CIGS薄膜具有1×105cm-1的高吸收系数,且根据添加剂的类型可以在1至2.7eV的宽的范围内调节其带隙。另外,因为这种薄膜是非常热稳定的,所以即使长时间暴露于太阳光其也表现出几乎一致的效率,并具有高的耐湿性。该CIGS薄膜可以通过各种方法形成,特别地,利用基于PVD的共蒸发法形成的CIGS薄膜的太阳能电池具有最高的效率。共蒸发法的实例可以包括一步共蒸发法、两步共蒸发法和三步共蒸发法。其中,采用三步共蒸发法得到最高的效率。
图4图示了一种采用三步共蒸发法形成CIGS光吸收层的方法。
具体地,在第一步骤中,在约450℃的衬底温度下蒸发In、Ga和Se以沉积(In,Ga)2Se3。在第二步骤中,在将衬底温度升高至约700℃的同时,供应Cu和Se,以形成富Cu的状态。最后,在第三步骤中,在维持衬底温度的同时,蒸发In、Ga和Se,从而形成缺Cu的CIGS薄膜。
由此形成的CIGS薄膜由于在第二步骤中通过Cu充足的状态在表面处形成Cu2-xSe生长为α相。因此,在第一步骤中形成的β-CIGS和γ-CIGS在第二步骤中相变为α-CIGS的同时,形成粗晶粒。
另外,CIGS薄膜具有根据Ga/(In+Ga)比率变化的带隙能量,而三步共蒸发法可以通过在第二步骤中降低Ga/(In+Ga)比率凭借双重分级结构来提高CIGS薄膜太阳能电池的效率,在所述双层分级结构中,背部电极侧和正面的带隙能量高,而中心的带隙能量低。
图5示意性图示了在CIGS薄膜中形成双重带隙倾斜度的情况。(“Highefficiency graded bandgap thin-film polycrystalline Cu(In,Ga)Se2-basedsolar cells”,Solar Energy Materials and Solar Cells41/42(1996)231-246)
如上所述,当CIGS薄膜的正面的带隙高于中心部的带隙时,开路电压可以增加,并且重组可以减少,。当CIGS薄膜的背侧的带隙高于中心部的带隙时,电子迁移率可以增加。
同时,CIGS太阳能电池一般在钠钙玻璃衬底上制作而成。这是因为通过包含于钠钙玻璃衬底中的Na的各种作用提高CIGS太阳能电池的效率。但是,钠钙玻璃衬底的熔点较低,因此,在CIGS太阳能电池的制造方面受限。而且,不能使用金属或聚合物材料的柔性衬底成为CIGS太阳能电池的缺点。为了解决这类问题,正在研究强制注入Na等的各种方法,但亟需不添加Na即可提高太阳能电池效率的技术。
因此,通过改善形成CIGS薄膜的方法而不使用钠钙玻璃衬底和Na来提高太阳能电池效率的技术受到关注。
[现有技术文献]“High efficiency graded bandgap thin-filmpolycrystalline Cu(In,Ga)Se2-based solar cells”,Solar EnergyMaterials and Solar Cells41/42(1996)231-246
发明内容
技术问题
因此,考虑到现有技术中遇到的问题来完成本发明,本发明的一个目的在于提供一种形成CIGS光吸收层的方法,其中其耗尽层的深度可以通过使用碱浓度低的衬底来增加,从而提高包含这种CIGS光吸收层的CIGS太阳能电池的效率。
解决方案
为达到上述目的,本发明的一个方面提供一种利用三步共蒸发法形成用于太阳能电池的CIGS光吸收层的方法,其包括:共蒸发In、Ga和Se以使其沉积的第一步骤;共蒸发Cu和Se以使其沉积的第二步骤;和共蒸发In、Ga和Se以使其沉积的第三步骤;其中,在上述第一步骤中通过蒸发供应的Ga的量大于在上述第三步骤中通过蒸发供应的Ga的量。
通常,已经进行了在采用三步共蒸发法时通过调整Ga供应比例来提高使用钠钙玻璃衬底制造的CIGS太阳能电池的效率的许多尝试。但是,因为第一步骤中Ga供应量的改变没有很大的效果,所以在第一步骤和第三步骤一般以相同的量供应Ga。本发明的发明人开发出一种通过在共蒸发法的第一步骤中增加Ga的比例来提高太阳能电池的效率的方法。
此时,优选地,在CIGS光吸收层中形成的耗尽层区域的深度为400nm或更大。在本发明中,在形成其耗尽层的深度比在典型的钠钙玻璃衬底上形成的CIGS光吸收层大的CIGS光吸收层时,可以进一步提高电池效率。
上述耗尽层深度更大的CIGS光吸收层是在使用Na的浓度低的衬底时形成的,而这种衬底可以是玻璃内的碱浓度为8重量%或更低的钠钙玻璃衬底,或与钠钙玻璃衬底不同的材料制成的衬底。
第一步骤和第三步骤中的In的蒸发量为在第一步骤中的Ga的蒸发量为或更多,并且在第三步骤中的Ga的蒸发量为
另外,优选地,在300至450℃衬底温度下进行第一步骤,而在480℃至550℃的衬底温度下进行第二步骤和第三步骤。
本发明的另一方面提供一种CIGS太阳能电池,其包括采用上述方法中的任一种方法形成的CIGS光吸收层。
本发明的又一方面提供一种CIGS太阳能电池,其包括:衬底;在上述衬底上形成的电极层;和在上述电极层上形成的CIGS光吸收层;其中,在上述电极层和上述CIGS光吸收层的界面处的Ga/(In+Ga)的比率为0.45或更高。
本发明的发明人开发出一种利用具有通过在共蒸发法的第一步骤中增加Ga的比率而提高的背部电极界面处Ga/(In+Ga)比率的光吸收层,提高了效率的CIGS太阳能电池。
此时,优选地,在CIGS光吸收层中形成的耗尽层的深度为400nm或更大。为此,可以使用玻璃内的碱浓度为8重量%或更低的钠钙玻璃衬底,或与钠钙玻璃衬底不同的材料制成的衬底。
有益效果
根据本发明,在采用三步共真空蒸发法形成CIGS光吸收层的过程中,提高第一步骤中的Ga的蒸发量,从而提高在Na浓度低的衬底上形成的耗尽层深度大的CIGS太阳能电池的效率。
另外,根据本发明,可以利用Na浓度低的钠钙玻璃衬底或与钠钙玻璃衬底不同的材料制成的衬底制造CIGS太阳能电池,从而使得能够利用热稳定性好的衬底和具有各种性能的衬底制造CIGS太阳能电池。
附图说明
图1为根据本发明实施方案,根据第一步骤中Ga的蒸发量的变化的CIGS光吸收层的Ga/(In+Ga)比率分布曲线图;
图2为根据本发明实施方案制造的CIGS太阳能电池的结构示意图;
图3为包括根据本发明实施方案的CIGS光吸收层的太阳能电池的效率测量曲线图;
图4为采用三步共蒸发法形成CIGS光吸收层的方法的示意图;
图5为在CIGS薄膜中形成双重的带隙倾斜度时的模式图。
具体实施方式
下面,参照附图对本发明的实施方案进行详细说明。
具体地,在碱浓度为8重量%的钠钙玻璃衬底上,采用直流溅射沉积形成厚度约为1μm的钼背部电极。用于本实施方案的钠钙玻璃衬底的碱浓度低于用于CIGS太阳能电池的典型钠钙玻璃衬底的碱浓度12重量%。
然后,采用三步共蒸发法形成CIGS光吸收层。
第一步骤是将衬底温度维持在300至450℃的同时,蒸发In、Ga和Se以使其沉积的步骤;第二步骤是将衬底温度维持在480至550℃的同时,蒸发Cu和Se以使其沉积的步骤;第三步骤是将衬底温度维持在480至550℃的同时,蒸发In、Ga和Se以使其沉积的步骤。该方法与用于形成CIGS光吸收层的典型三步共蒸发法相同,但是不同的是在本实施方案中调整了第一步骤中的Ga的蒸发量。
具体而言,在第一步骤中,进行共蒸发,使得In的蒸发量固定为但Ga的蒸发量调整为1.5、1.6、1.7和为了防止沉积厚度随Ga的蒸发量的增加而变化,第一步骤中的沉积厚度一致地设置为1μm。
与此相反,在第三步骤中,进行共蒸发,使得In的蒸发量和Ga的蒸发量分别固定为另外,整个方法中的Se的蒸发量为第二步骤中的Cu的蒸发量为
在CIGS薄膜中,Ga/(In+Ga)比率对CIGS薄膜的择优取向有影响。Ga/(In+Ga)比率越接近0.3至0.35,CIGS薄膜越表现出(220)/(204)的择优取向,因此,调节Ga和In的蒸发量以达到该比率。因为通过三步共蒸发法形成双重分级结构,所以背部电极和CIGS光吸收层的界面处的Ga/(In+Ga)比率一般约为0.4。
图1为根据本发明实施方案,在第一步骤中改变Ga的蒸发量的同时形成的CIGS光吸收层的Ga/(In+Ga)比率分布曲线图。在曲线图中,左侧对应于正面,而右侧对应于背部电极侧。
在根据本实施方案的形成CIGS光吸收层的方法中,在背部电极上形成CIGS薄膜,从而在第一步骤中形成的部分是靠近背部电极的右侧部分。如该图中所示,可以看出,Ga的蒸发量越多,在CIGS光吸收层和背部电极的界面处的Ga/(In+Ga)比率越高。
在以下表1中示出结果。
【表1】
同时,用于本实施方案的衬底的碱浓度低于用于CIGS太阳能电池的典型钠钙玻璃衬底的碱浓度12重量%,因此,其熔点相对较高,由此可以在CIGS太阳能电池制造过程中使用更高的温度。
衬底的碱浓度可以影响CIGS光吸收层的耗尽层的深度。如果使用常用于CIGS太阳能电池的碱浓度约为12重量%或更高的钠钙玻璃衬底,则CIGS光吸收层的耗尽层的深度为距离表面200至300nm。但是,当根据本实施方案使用碱浓度为8重量%或更低的相对低浓度的钠钙玻璃衬底时,CIGS光吸收层的耗尽层的深度为400至600nm。如果使用碱浓度更低的由金属或聚合物材料制成的衬底,则在CIGS光吸收层中形成的耗尽层的深度可以进一步增加。
通过上述过程形成CIGS光吸收层之后,最终制造出CIGS太阳能电池,并测量其光电转换效率。
图2为根据本发明实施方案制造的CIGS太阳能电池的结构示意图。如图所示,根据本实施例的CIGS太阳能电池,除CIGS光吸收层和背部电极的界面处的Ga/(In+Ga)比率之外,具有与典型的CIGS太阳能电池相同的结构。衬底、背部电极和光吸收层已经在上面进行了说明,而缓冲层、窗口层、正面防反射层和正面电极与典型的结构相同,因此,在此不再赘述。
图3为包括根据本发明实施方案形成的CIGS光吸收层的太阳能电池的效率测量曲线图。
如图所示,第一步骤中的Ga蒸发量越多,太阳能电池的效率越高。因此,在比典型的钠钙玻璃衬底Na浓度低的衬底上形成的耗尽层深度较大的CIGS光吸收层使得在背部电极的界面处的Ga/(In+Ga)比率越大,太阳能电池的效率的越高。
虽然为了说明的目的公开了本发明的优选实施方案,但是本领域技术人员应理解,可以进行各种修改、添加或者替换,而不脱离如所附权利要求所公开的本发明的精神和范围。因此,本发明的范围并通过具体的实施方案而应通过权利要求来理解,并且其所有的技术构思等同物应理解为并入到本发明的范围中。

Claims (10)

1.一种利用三步共蒸发法形成用于太阳能电池的CIGS光吸收层的方法,所述方法包括如下步骤:
共蒸发In、Ga和Se以使其沉积的第一步骤;
共蒸发Cu和Se以使其沉积的第二步骤;和
共蒸发In、Ga和Se以使其沉积的第三步骤;
其中,在所述第一步骤中通过蒸发供应的Ga的量大于在所述第三步骤中通过蒸发供应的Ga的量。
2.根据权利要求1所述的形成用于太阳能电池的CIGS光吸收层的方法,其特征在于:在所述CIGS光吸收层中形成的耗尽层区域的深度为400nm或更大。
3.根据权利要求2所述的形成用于太阳能电池的CIGS光吸收层的方法,其特征在于:在其上形成所述GIGS光吸收层的衬底包含与钠钙玻璃衬底不同的材料。
4.根据权利要求2所述的形成用于太阳能电池的CIGS光吸收层的方法,其特征在于:在其上形成所述GIGS光吸收层的衬底为碱浓度为8重量%或更低的钠钙玻璃衬底。
5.根据权利要求1所述的形成用于太阳能电池的CIGS光吸收层的方法,其特征在于:在所述第一步骤和所述第三步骤中的In的蒸发量为在所述第一步骤中的Ga的蒸发量为或更多,并且在所述第三步骤中的Ga的蒸发量为
6.根据权利要求5所述的形成用于太阳能电池的CIGS光吸收层的方法,其特征在于:在300℃至450℃的衬底温度下进行所述第一步骤,并且在480℃至550℃的衬底温度下进行所述第二步骤和所述第三步骤。
7.一种CIGS太阳能电池,包括:
衬底;
在所述衬底上形成的电极层;和
在所述电极层上形成的CIGS光吸收层;
其中,在所述电极层和所述CIGS光吸收层的界面处的Ga/(In+Ga)的比率为0.45或更高。
8.根据权利要求7所述的CIGS太阳能电池,其特征在于:在所述CIGS光吸收层中形成的耗尽层的深度为400nm或更大。
9.根据权利要求8所述的CIGS太阳能电池,其特征在于:所述衬底包含与钠钙玻璃衬底不同的材料。
10.根据权利要求8所述的CIGS太阳能电池,其特征在于:所述衬底为碱浓度为8重量%或更低的钠钙玻璃衬底。
CN201380004295.3A 2012-07-13 2013-07-10 形成用于太阳能电池的cigs光吸收层的方法及cigs太阳能电池 Active CN104011879B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0076562 2012-07-13
KR1020120076562A KR101369166B1 (ko) 2012-07-13 2012-07-13 태양전지용 cigs 광흡수층 형성 방법 및 cigs 태양전지
PCT/KR2013/006117 WO2014010926A1 (ko) 2012-07-13 2013-07-10 태양전지용 cigs 광흡수층 형성 방법 및 cigs 태양전지

Publications (2)

Publication Number Publication Date
CN104011879A true CN104011879A (zh) 2014-08-27
CN104011879B CN104011879B (zh) 2016-06-22

Family

ID=49916301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380004295.3A Active CN104011879B (zh) 2012-07-13 2013-07-10 形成用于太阳能电池的cigs光吸收层的方法及cigs太阳能电池

Country Status (4)

Country Link
US (1) US20150303328A1 (zh)
KR (1) KR101369166B1 (zh)
CN (1) CN104011879B (zh)
WO (1) WO2014010926A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514194A (zh) * 2014-10-07 2016-04-20 韩国能源研究技术研究所 太阳电池模块及其制备方法
CN105789371A (zh) * 2014-12-23 2016-07-20 中国电子科技集团公司第十八研究所 一种铜铟镓硒薄膜太阳电池掺钾元素的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339874B1 (ko) * 2012-06-20 2013-12-10 한국에너지기술연구원 이중의 밴드갭 기울기가 형성된 czts계 박막의 제조방법, 이중의 밴드갭 기울기가 형성된 czts계 태양전지의 제조방법 및 그 czts계 태양전지
KR101638379B1 (ko) * 2015-01-28 2016-07-11 영남대학교 산학협력단 우선배향 제어된 cigs 박막 태양전지 및 그 제조방법
KR101924216B1 (ko) * 2017-02-23 2018-11-30 한국에너지기술연구원 유연 기판 고정 장치 및 이를 이용한 cigs계 박막 태양전지 제조 방법
KR102015985B1 (ko) * 2018-04-17 2019-08-29 한국과학기술연구원 태양전지용 cigs 박막의 제조방법
KR102291130B1 (ko) * 2018-12-28 2021-08-18 한국에너지기술연구원 Cigs 박막형 광흡수층의 제조방법, 이를 이용한 박막 태양 전지 제조방법 및 이에 의해 제조된 박막 태양 전지
KR102596774B1 (ko) * 2021-11-10 2023-11-01 한국에너지기술연구원 투광형 태양전지와 그 제조방법 및 cigs 박막의 형성방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273135A (ja) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd 化合物半導体薄膜の製造方法
CN101707219A (zh) * 2009-08-27 2010-05-12 南安市三晶阳光电力有限公司 本征隔离结构太阳能电池及其制造方法
US20100248420A1 (en) * 2009-03-24 2010-09-30 Daisuke Okamura Method for forming an absorber layer of a thin film solar cell
JP2012114413A (ja) * 2010-11-02 2012-06-14 Fujifilm Corp 光電変換素子およびその製造方法
CN103258896A (zh) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 柔性cigs薄膜太阳电池吸收层制备工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141564A (en) * 1988-05-03 1992-08-25 The Boeing Company Mixed ternary heterojunction solar cell
SE0400582D0 (sv) * 2004-03-05 2004-03-05 Forskarpatent I Uppsala Ab Method for in-line process control of the CIGS process
JP2009259872A (ja) 2008-04-11 2009-11-05 Rohm Co Ltd 光電変換装置およびその製造方法、および固体撮像装置
JP2011524270A (ja) * 2008-05-30 2011-09-01 コーニング インコーポレイテッド 光起電性ガラス積層物品および層状物品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273135A (ja) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd 化合物半導体薄膜の製造方法
US20100248420A1 (en) * 2009-03-24 2010-09-30 Daisuke Okamura Method for forming an absorber layer of a thin film solar cell
CN101707219A (zh) * 2009-08-27 2010-05-12 南安市三晶阳光电力有限公司 本征隔离结构太阳能电池及其制造方法
JP2012114413A (ja) * 2010-11-02 2012-06-14 Fujifilm Corp 光電変換素子およびその製造方法
CN103258896A (zh) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 柔性cigs薄膜太阳电池吸收层制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514194A (zh) * 2014-10-07 2016-04-20 韩国能源研究技术研究所 太阳电池模块及其制备方法
CN105789371A (zh) * 2014-12-23 2016-07-20 中国电子科技集团公司第十八研究所 一种铜铟镓硒薄膜太阳电池掺钾元素的方法

Also Published As

Publication number Publication date
WO2014010926A1 (ko) 2014-01-16
CN104011879B (zh) 2016-06-22
US20150303328A1 (en) 2015-10-22
KR101369166B1 (ko) 2014-03-24
KR20140010549A (ko) 2014-01-27

Similar Documents

Publication Publication Date Title
Cao et al. Towards high efficiency inverted Sb2Se3 thin film solar cells
CN104011879B (zh) 形成用于太阳能电池的cigs光吸收层的方法及cigs太阳能电池
CN102569442B (zh) 薄膜太阳能电池及其制作方法
US20140338736A1 (en) Method for manufacturing czts based thin film having dual band gap slope, method for manufacturing czts based solar cell having dual band gap slope and czts based solar cell thereof
CN101789469B (zh) 铜铟镓硒硫薄膜太阳电池光吸收层的制备方法
JP2015233139A (ja) 原子層蒸着法で形成されたバッファ層を含む太陽電池、及び、その製造方法
Waleed et al. Performance improvement of solution-processed CdS/CdTe solar cells with a thin compact TiO 2 buffer layer
WO2014025176A1 (ko) Na 공급 방법이 개선된 유연기판 CIGS 태양전지 및 그 제조방법
CN102437237A (zh) 黄铜矿型薄膜太阳能电池及其制造方法
CN108183166B (zh) 一种波动退火工艺及用该工艺制备的钙钛矿太阳能电池
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
CN102544230A (zh) 一种生长可变禁带宽度的Cd1-xZnxTe薄膜的方法
CN105470113A (zh) 一种CZTSSe薄膜太阳电池吸收层的制备方法
KR20130040358A (ko) 태양전지
CN102199759B (zh) 一种梯度氢气法生长绒面结构ZnO-TCO薄膜及应用
KR20110037714A (ko) 박막 태양전지 및 그의 제조방법
Yatsushiro et al. Effects of antimony doping on Cu (In1-x, Gax) Se2 thin films and solar cells
US8258003B2 (en) Manufacturing method of compound semiconductor solar cell
CN207925499U (zh) 一种Cu2ZnSn(S,Se)4薄膜太阳能电池
Asma et al. Numerical analysis of the effect graded Zn (O, S) on the performance of the graded CIGS based solar cells by SCAPS-1D
CN208570618U (zh) 一种太阳能电池
CN108172644B (zh) 一种磷掺杂碲化镉薄膜太阳能电池的制备方法
US20140326317A1 (en) Method of fabricating copper indium gallium selenide (cigs) thin film for solar cell using simplified co-vacuum evaporation and copper indium gallium selenide (cigs) thin film for solar cell fabricated by the same
Pal et al. Chalcogenide-Based 2D Nanomaterials for Solar Cells
CN209544363U (zh) 一种镓元素均匀分布的铜铟镓硒薄膜太阳能电池吸收层

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant