CN108172644B - 一种磷掺杂碲化镉薄膜太阳能电池的制备方法 - Google Patents

一种磷掺杂碲化镉薄膜太阳能电池的制备方法 Download PDF

Info

Publication number
CN108172644B
CN108172644B CN201711298179.3A CN201711298179A CN108172644B CN 108172644 B CN108172644 B CN 108172644B CN 201711298179 A CN201711298179 A CN 201711298179A CN 108172644 B CN108172644 B CN 108172644B
Authority
CN
China
Prior art keywords
cadmium telluride
battery
solar battery
phosphorus doping
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711298179.3A
Other languages
English (en)
Other versions
CN108172644A (zh
Inventor
彭寿
马立云
潘锦功
殷新建
杨少飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNBM (CHENGDU) OPTOELECTRONIC MATERIAL Co Ltd
Original Assignee
CNBM (CHENGDU) OPTOELECTRONIC MATERIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNBM (CHENGDU) OPTOELECTRONIC MATERIAL Co Ltd filed Critical CNBM (CHENGDU) OPTOELECTRONIC MATERIAL Co Ltd
Priority to CN201711298179.3A priority Critical patent/CN108172644B/zh
Publication of CN108172644A publication Critical patent/CN108172644A/zh
Application granted granted Critical
Publication of CN108172644B publication Critical patent/CN108172644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种磷掺杂碲化镉薄膜太阳能电池的制备方法,包括以下步骤:1)在透明导电层的上表面依次沉积高电阻层及窗口层,得待处理电池A;2)在三氯氧磷气氛下,在步骤1)中所述待处理电池A的上表面沉积光吸收层,得待处理电池B;3)在步骤2)中所述待处理电池B的上表面沉积铜掺杂的背接触层,得预制件;4)将步骤3)中所述预制件在大气气氛下进行高温退火处理,得磷掺杂碲化镉薄膜太阳能电池。

Description

一种磷掺杂碲化镉薄膜太阳能电池的制备方法
技术领域
本发明涉及碲化镉薄膜太阳能电池技术领域,具体涉及一种磷掺杂碲化镉薄膜太阳能电池的制备方法。
背景技术
能源是人类文明赖以发展的重要物质基础。在工业化进程中,人类在获得和利用能源的同时也破坏了赖以生存的自然环境。随着地球资源的日益减少和人类对能源要求的不断增加,能源危机已经迫在眉睫。除了资源枯竭问题,化石燃料的利用引起的环境问题开始威胁人类安全。
为了生存和发展,人类必须寻求可以替代常规能源的可再生的洁净新能源,其中首选太阳能发电和风力发电。太阳能具有储存巨大,清洁无污染、不受地域限制等优点,是地球的终极能源。太阳能的利用分为太阳能光能利用和热能利用两个领域。利用太阳能电池的光伏效应进行发电,已经成为太阳能规模利用的最重要的方式。太阳能电池中碲化镉薄膜太阳能电池由于其具有理想的禁带宽度、高光吸收率、转换效率高、电池性能稳定、电池结构简单等优点而被广泛应用。
目前,使用的碲化镉薄膜太阳能电池,其电池效率已经达到16%以上,其电池的短路电流密度也已经达到30mA/cm2以上,已经接近理论极限。然而碲化镉薄膜太阳能电池的开路电压依然在850mV左右,仅达到理论值的74%左右,和最佳性能仍有很大差距。
发明内容
有鉴于此,本申请提供一种磷掺杂碲化镉薄膜太阳能电池的制备方法,其是通过将三氯氧磷引入碲化镉薄膜的沉积过程,使碲化镉薄膜在含有三氯氧磷的气氛中沉积,而实现在碲化镉薄膜中掺杂磷元素,达到提高载流子浓度及空穴浓度,从而提高碲化镉薄膜太阳电池的开路电压的目的。
为解决以上技术问题,本发明提供的技术方案是一种磷掺杂碲化镉薄膜太阳能电池的制备方法,包括以下步骤:
1)在透明导电层的上表面依次沉积高电阻层及窗口层,得待处理电池A;
2)在三氯氧磷气氛下,在步骤1)中所述待处理电池A的上表面沉积光吸收层,得待处理电池B;
3)在步骤2)中所述待处理电池B的上表面沉积铜掺杂的背接触层,得预制件;
4)将步骤3)中所述预制件在大气气氛下进行高温退火处理,得磷掺杂碲化镉薄膜太阳能电池。
优选的,步骤2)中所述在三氯氧磷气氛下,光吸收层的沉积温度在200-650℃的范围内,其沉积压力在0.01-100000Pa的范围内。
优选的,所述光吸收层的沉积温度在500-620℃的范围内,其沉积压力在10-1000Pa的范围内。
优选的,步骤3)中所述铜掺杂的背接触层中铜掺杂的处理方法为溅射铜薄膜、氯化铜溶液浸泡或掺铜碳浆涂敷中的一种。
优选的,步骤4)中所述预制件在200-400℃下,退火处理20-50min,即得磷掺杂碲化镉薄膜太阳能电池。
一种磷掺杂碲化镉薄膜太阳能电池,所述电池包括:背接触层、光吸收层、窗口层、高电阻层及透明导电层,其中,所述透明导电层的上表面依次层叠高电阻层、窗口层、光吸收层及背接触层;其中,光吸收层的层叠是在三氯氧磷气氛下完成的。
优选的,所述背接触层为石墨浆或ZnTe:Cu中的一种。
优选的,所述光吸收层为CdTe薄膜,其厚度为0.1-10μm。
优选的,所述CdTe薄膜的厚度为1-5μm。
优选的,所述光吸收层的空穴浓度在1015-1020cm-3的范围内。
本申请提供一种磷掺杂碲化镉薄膜太阳能电池的制备方法,包括以下步骤:1)在透明导电层的上表面依次沉积高电阻层及窗口层,得待处理电池A;2)在三氯氧磷气氛下,在步骤1)中所述待处理电池A的上表面沉积光吸收层,得待处理电池B;3)在步骤2)中所述待处理电池B的上表面沉积铜掺杂的背接触层,得预制件;4)将步骤3)中所述预制件在大气气氛下进行高温退火处理,得磷掺杂碲化镉薄膜太阳能电池。本申请中提出引入三氯氧磷,并使得光吸收层即碲化镉薄膜在三氯氧磷气氛中沉积,以实现在碲化镉薄膜中掺杂磷元素,达到提高载流子浓度及空穴浓度,从而提高碲化镉薄膜太阳电池的开路电压的目的。其中,碲化镉是一种典型的Ⅱ-Ⅵ族化合物半导体材料,需要一定量的受主掺杂而提高其载流子浓度及空穴浓度。三氯氧磷是一种重要的半导体掺杂材料,其中的磷元素为Ⅴ族元素,是一种理想的碲化镉受主掺杂元素,其可以作为受主替代薄膜中Te元素的位置,形成p型掺杂而提高碲化镉的空穴浓度,从而提高碲化镉太阳能电池的开路电压。三氯氧磷中的氧元素可以对碲化镉材料的晶粒钝化,提高薄膜光致非平衡载流子寿命;其中的氯元素可以进一步提高空穴浓度并改善镀膜完成后的CdCl2处理造成的Cl元素纵向掺杂不均匀现象。其中,本申请还提出对所述背接触层进行铜掺杂,其目的在于,铜可扩散进入碲化镉内部,替代碲化镉表面区域的镉形成受主杂质,增加碲化镉的掺杂浓度而提高碲化镉的空穴浓度,从而提高碲化镉太阳能电池的开路电压。
本发明取得的积极成果为:
1.将三氧化磷气氛引入碲化镉的沉积过程中,使磷元素作为受主替代薄膜中Te元素的位置,以提高碲化镉的空穴浓度,从而提高碲化镉太阳能电池的开路电压;
2.对背接触层进行铜掺杂处理,使铜元素替代碲化镉表面区域的镉形成受主杂质,以提高碲化镉的空穴浓度,从而提高碲化镉太阳能电池的开路电压。
综上所述,本发明提供一种磷掺杂碲化镉薄膜太阳能电池的制备方法,采用该方法制备得到的碲化镉太阳能薄膜电池具有较高的开路电压。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明作进一步的详细说明。
随着当今世界人口和经济的增长、能源资源的日益匮乏、环境的日益恶化以及人们对电能的需求量越来越大,太阳能的开发和利用已经在全球范围内掀起了热潮。这非常有利于生态环境的可持续发展,因此世界各国竞相投资研究开发太阳能电池。
太阳能电池是一种利用光生伏特效应将太阳光能直接转化为电能的器件。早在1839年,科学家们已经开始研究光生伏特效应,到20世纪40年代中期,太阳能电池的研制取得了重大突破,在单晶硅中发现了称之为Czochralski的过程。1954年,美国贝尔实验室根据这个Czochralski的过程成功研制了世界上第一块太阳能电池,能量转换效率达到4%。太阳能电池的问世,标志着太阳能开始借助人工器件直接转换为电能,这是世界能源业界的一次新的飞跃。
太阳能电池种类繁多,包括单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、化合物半导体电池和叠层太阳能电池等。
碲化镉是一种化合物半导体,在太阳能电池中一般作吸收层。由于它的直接带隙为1.45eV,最适合于光电能量转换,因此使得约2μm厚的碲化镉吸收层在其带隙以上的光学吸收率达到90%成为可能,允许的最高理论转换效率在大气质量AM1.5条件下高达27%。碲化镉容易沉积成大面积的薄膜,沉积效率也高。因此,碲化镉薄膜太阳能电池的制造成本较低,是应用前景较好的一种新型太阳能电池。
目前,所应用的碲化镉薄膜太阳能电池中,产业化的电池效率已经达到16%以上,短路电流密度已经达到30mA/cm2以上,均接近其理论极限,而其开路电压依然在850mV左右,仅仅达到理论值的74%左右,和和最佳性能仍有很大差距。因此,提高碲化镉薄膜太阳能电池的开路电压是碲化镉薄膜太阳电池性能提高的主要方向。
在n型导电的窗口层和p型导电的碲化镉层组成的碲化镉薄膜太阳电池基础上提高碲化镉薄膜太阳电池Voc主要有两个方向,提高碲化镉层的空穴浓度或提高碲化镉层的载流子寿命。两者都需要对碲化镉吸收层的沉积工艺做出改进。
目前光吸收层即碲化镉的制作方法一般为采用高纯的CdTe原材料通过高温使其气化后沉积在温度较低的基板上,沉积过程中一般气氛为N2或Ar,同时掺杂少量的O2,完成后在CdCl2气氛下高温退火处理。采用该方法制成的碲化镉薄膜,其空穴浓度较低,一般仅达到1014/cm3左右。
为了提高碲化镉薄膜的空穴浓度及载流子寿命而提高碲化镉太阳能电池的开路电压,本申请提出在碲化镉沉积过程中引入三氯氧磷气氛,其中,磷元素可作为碲化镉的受主掺杂元素而提高其空穴浓度;氧元素可以对碲化镉材料的晶粒钝化,提高薄膜光致非平衡载流子寿命;氯元素可以进一步提高空穴浓度并改善镀膜完成后的CdCl2处理造成的Cl元素纵向掺杂不均匀现象。同时,本申请还提出对背接触层进行铜掺杂,其目的在于,铜可扩散进入碲化镉内部,替代碲化镉表面区域的镉形成受主杂质,增加碲化镉的掺杂浓度而提高碲化镉的空穴浓度,从而提高碲化镉太阳能电池的开路电压。
本发明提供的技术方案是一种磷掺杂碲化镉薄膜太阳能电池的制备方法,包括以下步骤:
1)在透明导电层的上表面依次沉积高电阻层及窗口层,得待处理电池A;
2)在三氯氧磷气氛下,在步骤1)中所述待处理电池A的上表面沉积光吸收层,得待处理电池B;
3)在步骤2)中所述待处理电池B的上表面沉积铜掺杂的背接触层,得预制件;
4)将步骤3)中所述预制件在大气气氛下进行高温退火处理,得磷掺杂碲化镉薄膜太阳能电池。
其中,步骤2)中所述在三氯氧磷气氛下,光吸收层的沉积温度在200-650℃的范围内,其沉积压力在0.01-100000Pa的范围内;所述光吸收层的沉积温度在500-620℃的范围内,其沉积压力在10-1000Pa的范围内;步骤3)中所述铜掺杂的背接触层中铜掺杂的处理方法为溅射铜薄膜、氯化铜溶液浸泡或掺铜碳浆涂敷中的一种;步骤4)中所述预制件在200-400℃下,退火处理20-50min,即得磷掺杂碲化镉薄膜太阳能电池。
一种磷掺杂碲化镉薄膜太阳能电池,所述电池包括:背接触层、光吸收层、窗口层、高电阻层及透明导电层,其中,所述透明导电层的上表面依次层叠高电阻层、窗口层、光吸收层及背接触层;其中,光吸收层的层叠是在三氯氧磷气氛下完成的;其中,所述背接触层为石墨浆或ZnTe:Cu中的一种;所述光吸收层为CdTe薄膜,其厚度为0.1-10μm;所述CdTe薄膜的厚度为1-5μm;所述光吸收层的空穴浓度在1015-1020cm-3的范围内。
下面将结合本发明的实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
一种碲化镉薄膜太阳能电池的制备方法,包括以下步骤:
1)在透明导电层的上表面依次沉积高电阻层及窗口层,得待处理电池A;
2)在步骤1)中所述待处理电池A的上表面沉积碲化镉薄膜,得待处理电池B;其中,所述碲化镉薄膜的厚度为4-5μm;所述碲化镉薄膜的沉积温度为620℃;所述碲化镉薄膜的沉积压力为500Pa;
3)在步骤2)中所述待处理电池B的上表面沉积铜掺杂的背接触层,得预制件;其中,所述铜掺杂的背接触层中铜掺杂的处理方法为溅射铜薄膜法;所述背接触层为ZnTe:Cu。
4)将步骤3)中所述预制件在大气气氛下进行高温退火处理,得碲化镉薄膜太阳能电池;其中,所述预制件在400℃下,退火处理20min,即得碲化镉薄膜太阳能电池。
采用上述制备方法得到的一种碲化镉薄膜太阳能电池的性能数据如表1所示。
实施例二:
一种磷掺杂碲化镉薄膜太阳能电池的制备方法,包括以下步骤:
1)在透明导电层的上表面依次沉积高电阻层及窗口层,得待处理电池A;
2)在纯磷气氛下,在步骤1)中所述待处理电池A的上表面沉积碲化镉薄膜,得待处理电池B;其中,所述碲化镉薄膜的厚度为4-5μm;所述碲化镉薄膜的沉积温度为620℃;所述碲化镉薄膜的沉积压力为500Pa;
3)在步骤2)中所述待处理电池B的上表面沉积铜掺杂的背接触层,得预制件;其中,所述铜掺杂的背接触层中铜掺杂的处理方法为溅射铜薄膜法;所述背接触层为ZnTe:Cu。
4)将步骤3)中所述预制件在大气气氛下进行高温退火处理,得磷掺杂碲化镉薄膜太阳能电池;其中,所述预制件在400℃下,退火处理20min,即得磷掺杂碲化镉薄膜太阳能电池。
采用上述制备方法得到的一种磷掺杂碲化镉薄膜太阳能电池的性能数据如表1所示。
实施例三:
一种磷掺杂碲化镉薄膜太阳能电池的制备方法,包括以下步骤:
1)在透明导电层的上表面依次沉积高电阻层及窗口层,得待处理电池A;
2)在三氯氧磷气氛下,在步骤1)中所述待处理电池A的上表面沉积碲化镉薄膜,得待处理电池B;其中,所述碲化镉薄膜的厚度为4-5μm;所述碲化镉薄膜的沉积温度为620℃;所述碲化镉薄膜的沉积压力为500Pa;
3)在步骤2)中所述待处理电池B的上表面沉积铜掺杂的背接触层,得预制件;其中,所述铜掺杂的背接触层中铜掺杂的处理方法为溅射铜薄膜法;所述背接触层为ZnTe:Cu。
4)将步骤3)中所述预制件在大气气氛下进行高温退火处理,得磷掺杂碲化镉薄膜太阳能电池;其中,所述预制件在400℃下,退火处理20min,即得磷掺杂碲化镉薄膜太阳能电池。
其中,所述三氯氧磷气氛下处理后的碲化镉薄膜的空穴浓度在1015-1020cm-3的范围内。
采用上述制备方法得到的一种磷掺杂碲化镉薄膜太阳能电池的性能数据如表1所示。
实施例四:
一种磷掺杂碲化镉薄膜太阳能电池的制备方法,包括以下步骤:
1)在透明导电层的上表面依次沉积高电阻层及窗口层,得待处理电池A;
2)在三氯氧磷气氛下,在步骤1)中所述待处理电池A的上表面沉积碲化镉薄膜,得待处理电池B;其中,所述碲化镉薄膜的厚度为1-2μm;所述碲化镉薄膜的沉积温度为550℃;所述碲化镉薄膜的沉积压力为800Pa;
3)在步骤2)中所述待处理电池B的上表面沉积铜掺杂的背接触层,得预制件;其中,所述铜掺杂的背接触层中铜掺杂的处理方法为氯化铜溶液浸泡法;所述背接触层为石墨浆。
4)将步骤3)中所述预制件在大气气氛下进行高温退火处理,得磷掺杂碲化镉薄膜太阳能电池;其中,所述预制件在200℃下,退火处理35min,即得磷掺杂碲化镉薄膜太阳能电池。
其中,所述三氯氧磷气氛下处理后的碲化镉薄膜的空穴浓度在1015-1020cm-3的范围内。
采用上述制备方法得到的一种磷掺杂碲化镉薄膜太阳能电池的性能数据如表1所示。
电池 Voc(V) Jsc(mA/cm<sup>2</sup>) FF(%) Eff(%)
实施例一 0.835 22.3 71.3 13.28
实施例二 0.872 22.4 71.5 13.97
实施例三 0.891 22.6 71.7 14.44
实施例四 0.927 22.5 72.3 15.08
表1实施例一-实施例四中所得碲化镉薄膜太阳能电池性能数据
通过表1中数据分析可知,采用在三氯氧磷气氛下沉积碲化镉薄膜太阳电池,电池的开路电压有明显提升。同样开路电压也高于普通的在纯磷气氛下沉积的碲化镉薄膜太阳电池。
同样也可得知,三氯氧磷气氛下沉积碲化镉薄膜太阳电池在550℃,800Pa的压力条件下得到的电池性能最好。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种磷掺杂碲化镉薄膜太阳能电池的制备方法,其特征在于,包括以下步骤:
1)在透明导电层的上表面依次沉积高电阻层及窗口层,得待处理电池A;
2)在三氯氧磷气氛下,在步骤1)中所述待处理电池A的上表面沉积光吸收层,得待处理电池B;
3)在步骤2)中所述待处理电池B的上表面沉积铜掺杂的背接触层,得预制件;
4)将步骤3)中所述预制件在大气气氛下进行高温退火处理,得磷掺杂碲化镉薄膜太阳能电池。
2.根据权利要求1中所述一种磷掺杂碲化镉薄膜太阳能电池的制备方法,其特征在于,步骤2)中所述在三氯氧磷气氛下,光吸收层的沉积温度在200-650℃的范围内,其沉积压力在0.01-100000Pa的范围内。
3.根据权利要求2中所述一种磷掺杂碲化镉薄膜太阳能电池的制备方法,其特征在于,所述光吸收层的沉积温度在500-620℃的范围内,其沉积压力在10-1000Pa的范围内。
4.根据权利要求1中所述一种磷掺杂碲化镉薄膜太阳能电池的制备方法,其特征在于,步骤3)中所述铜掺杂的背接触层中铜掺杂的处理方法为溅射铜薄膜、氯化铜溶液浸泡或掺铜碳浆涂敷中的一种。
5.根据权利要求1中所述一种磷掺杂碲化镉薄膜太阳能电池的制备方法,其特征在于,步骤4)中所述预制件在200-400℃下,退火处理20-50min,即得磷掺杂碲化镉薄膜太阳能电池。
6.一种磷掺杂碲化镉薄膜太阳能电池,其特征在于,所述电池包括:背接触层、光吸收层、窗口层、高电阻层及透明导电层,其中,所述透明导电层的上表面依次层叠高电阻层、窗口层、光吸收层及背接触层;其中,光吸收层的层叠是在三氯氧磷气氛下完成的。
7.根据权利要求6中所述一种磷掺杂碲化镉薄膜太阳能电池,其特征在于,所述背接触层为石墨浆或ZnTe:Cu中的一种。
8.根据权利要求6中所述一种磷掺杂碲化镉薄膜太阳能电池,其特征在于,所述光吸收层为CdTe薄膜,其厚度为0.1-10μm。
9.根据权利要求8中所述一种磷掺杂碲化镉薄膜太阳能电池,其特征在于,所述CdTe薄膜的厚度为1-5μm。
10.根据权利要求6中所述一种磷掺杂碲化镉薄膜太阳能电池,其特征在于,所述光吸收层的空穴浓度在1015-1020cm-3的范围内。
CN201711298179.3A 2017-12-08 2017-12-08 一种磷掺杂碲化镉薄膜太阳能电池的制备方法 Active CN108172644B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711298179.3A CN108172644B (zh) 2017-12-08 2017-12-08 一种磷掺杂碲化镉薄膜太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711298179.3A CN108172644B (zh) 2017-12-08 2017-12-08 一种磷掺杂碲化镉薄膜太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN108172644A CN108172644A (zh) 2018-06-15
CN108172644B true CN108172644B (zh) 2019-09-27

Family

ID=62525603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711298179.3A Active CN108172644B (zh) 2017-12-08 2017-12-08 一种磷掺杂碲化镉薄膜太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN108172644B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117855338B (zh) * 2024-03-04 2024-06-14 龙焱能源科技(杭州)有限公司 一种曲面薄膜太阳能电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978101A (zh) * 2008-03-18 2011-02-16 索莱克山特公司 薄膜太阳能电池中改进的背接触
CN104221165A (zh) * 2012-01-17 2014-12-17 第一太阳能有限公司 具有吸收多层的光伏器件及制造该光伏器件的方法
CN106252432A (zh) * 2016-09-28 2016-12-21 中山瑞科新能源有限公司 一种可降低缺陷密度的碲化镉太阳能电池制备方法
WO2017134191A1 (de) * 2016-02-03 2017-08-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Verfahren zum abscheiden einer cdte-schicht auf einem substrat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978101A (zh) * 2008-03-18 2011-02-16 索莱克山特公司 薄膜太阳能电池中改进的背接触
CN104221165A (zh) * 2012-01-17 2014-12-17 第一太阳能有限公司 具有吸收多层的光伏器件及制造该光伏器件的方法
WO2017134191A1 (de) * 2016-02-03 2017-08-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Verfahren zum abscheiden einer cdte-schicht auf einem substrat
CN106252432A (zh) * 2016-09-28 2016-12-21 中山瑞科新能源有限公司 一种可降低缺陷密度的碲化镉太阳能电池制备方法

Also Published As

Publication number Publication date
CN108172644A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
Ranabhat et al. An introduction to solar cell technology
Bagher et al. Types of solar cells and application
CN101866963B (zh) 高转化率硅基多结多叠层pin薄膜太阳能电池及其制造方法
CN101820007B (zh) 高转化率硅晶及薄膜复合型多结pin太阳能电池及其制造方法
CN103681889B (zh) 一种引入驻极体结构的高效太阳能电池及制备方法
CN103346214B (zh) 一种硅基径向同质异质结太阳电池及其制备方法
CN109509807A (zh) 晶硅异质结太阳能电池的发射极结构及其制备方法
Muhammad et al. Recent progressive status of materials for solar photovoltaic cell: A comprehensive review
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
Di Carlo et al. Photovoltaics
CN101820006B (zh) 高转化率硅基单结多叠层pin薄膜太阳能电池及其制造方法
CN106449850B (zh) 一种高效硅基异质结双面电池及其制备方法
Deb Thin-film solar cells: an overview
CN108172644B (zh) 一种磷掺杂碲化镉薄膜太阳能电池的制备方法
CN101894871A (zh) 高转化率硅晶及薄膜复合型单结pin太阳能电池及其制造方法
CN105552166A (zh) 一种硝酸盐体系两步法制备铜铟硒光电薄膜的方法
CN102148279A (zh) 基于ⅱ-ⅵ族化合物半导体/硅纳米孔柱阵列的太阳能电池及其制备方法
Alami et al. Second-generation photovoltaics: thin-film technologies
CN101807611B (zh) 一种具有光伏效应的钯掺杂碳薄膜材料
Tripathi et al. Solar energy from cells to grid
CN102543465B (zh) CdS单晶纳米线太阳能电池及其制备方法
CN105529243A (zh) 一种硫酸盐体系两步法制备铜铟硒光电薄膜的方法
Markose et al. Solar cell technologies: an overview
CN209544363U (zh) 一种镓元素均匀分布的铜铟镓硒薄膜太阳能电池吸收层
Narducci et al. A primer on photovoltaic generators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant