CN110312742A - 聚合物颗粒 - Google Patents

聚合物颗粒 Download PDF

Info

Publication number
CN110312742A
CN110312742A CN201880012834.0A CN201880012834A CN110312742A CN 110312742 A CN110312742 A CN 110312742A CN 201880012834 A CN201880012834 A CN 201880012834A CN 110312742 A CN110312742 A CN 110312742A
Authority
CN
China
Prior art keywords
monomer
polymer beads
monodisperse
polymer
crosslinking agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880012834.0A
Other languages
English (en)
Other versions
CN110312742B (zh
Inventor
P.N.P.伦德伯格
G.方纳姆
K.H.安德森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Technologies Corp
Original Assignee
Life Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Life Technologies Corp filed Critical Life Technologies Corp
Priority to CN202310457193.2A priority Critical patent/CN116640245A/zh
Publication of CN110312742A publication Critical patent/CN110312742A/zh
Application granted granted Critical
Publication of CN110312742B publication Critical patent/CN110312742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/38Amides
    • C08F222/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F228/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F228/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/10Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及单分散磁性水凝胶聚合物颗粒,其包含磁性材料和由以下形成的聚合物:(a)亲水性乙烯基单体,其log Poct/wat(log P)小于约0.5;和(b)包含至少两个乙烯基的交联剂。本发明还涉及单分散涂覆的水凝胶聚合物颗粒,其包含由以下形成的聚合物:(a)亲水性乙烯基单体,其log Poct/wat(log P)小于约0.5;和(b)包含至少两个乙烯基的交联剂;和涂层。还提供了形成单分散磁性水凝胶聚合物颗粒和单分散涂覆的聚合物颗粒的方法。

Description

聚合物颗粒
本发明涉及可用于生物测定和其它应用的单分散聚合物颗粒。单分散聚合物颗粒是磁性的和/或涂覆的。本发明还涉及制备这种颗粒的方法和使用该颗粒的方法,以及其他主题。
背景技术
聚合物颗粒用于各种应用,例如生物测定或测序应用。在这些应用的一些中,希望在聚合物颗粒中包括磁性材料,例如以允许聚合物颗粒的磁性隔离。在这些应用的一些中,希望在聚合物颗粒上提供涂层,例如以改变颗粒的表面性质。基础聚合物颗粒通常通过乳液聚合或分散/沉淀聚合制备。
乳液聚合可用于形成50-1,000nm的相对单分散的聚合物颗粒。然而,单分散聚合物颗粒的形成确实具有许多重要的局限性。首先,所有颗粒必须形成为相同批次的一部分并且在相对于聚合时间的短时间内形成。其次,需要控制生长条件以确保聚合物颗粒的生长在所有颗粒中是相同的。第三,由于该方法需要将单体从大的储库液滴转移并溶胀到生长的颗粒中,所以颗粒不交联,或具有非常低的交联水平,因为更高水平的交联将防止颗粒膨胀。
沉淀或分散聚合可用于产生0.5-10微米的较大颗粒。沉淀聚合在溶解单体但不溶解聚合物的溶剂(例如醇)中进行。当聚合物从溶液中沉淀出来并且在短时间内发生颗粒形成时,可以实现单分散性。沉淀后需要相对大量的空间稳定剂来稳定颗粒。稳定剂的量和类型可以改变颗粒的尺寸,并且可以通过使用高含量的交联剂获得多孔颗粒。然而,沉淀聚合的条件难以控制,例如,很难控制孔隙率,这是当聚合物从溶液中沉淀出来时孔结构是如何形成的结果。沉淀聚合的困难意味着,在实际中几乎不可能产生对于多于一个非常有限尺寸的变化具有相同的单体组成和孔隙度的多孔颗粒。
解决一些问题的一种方法是通过两阶段工艺生产交联的多孔或固体单分散聚合物颗粒,所述两阶段工艺在已故的John Ugelstad教授之后命名为Ugelstad工艺,其描述于例如EP-B-3905和US-A-4530956中。一种改进的Ugelstad方法在WO00/61647中描述。在Ugelstad工艺中,适当地通过乳液聚合制备的种子颗粒通过种子悬浮聚合在两个步骤中转化为单分散颗粒。在第一步中,通过制备相对低分子量水不溶性物质的细(例如亚微米)水乳液然后加入与水混溶的有机溶剂(例如丙酮)使种子颗粒溶胀,使得水不溶性物质扩散到种子颗粒中。水不溶性物质是热活化的聚合引发剂是方便的。在第二步中,然后除去溶剂,将水不溶性物质锁定在种子颗粒中,并且种子颗粒吸收大量单体和交联剂。在引发聚合之后,例如通过加热以活化引发剂,产生更大的聚合物颗粒。因此,Ugelstad方法包括通过乳液聚合制备种子颗粒并通过悬浮聚合使种子颗粒膨胀。上述现有技术中描述的最小单分散颗粒的平均直径为1μm。
在Ugelstad方法的简化版本中,可以简单地通过使用低聚种子颗粒来实现增强的溶胀能力,例如其中低聚物重均分子量对应于多达50个单体单元(在聚苯乙烯的情况分子量为约5000)。这在US 4530956中描述。在WO2010/125170中描述的另一版本Ugelstad方法中,低聚物种子颗粒可用于制备平均直径在亚微米范围内的单分散颗粒。
根据如上所述的Ugelstad方法或其变型制备的颗粒可以制成磁性的,例如如WO00/61647或WO2010/125170中所述。然而,通过Ugelstad方法和其变型制备的颗粒由疏水性单体如苯乙烯制成,通常在水性(连续相)体系中使用油(不连续相)。因此,所得聚合物颗粒是疏水的。当用于生物学应用时,疏水性颗粒遭受非特异性吸收的问题。这意味着疏水性聚合物颗粒通常是表面改性的,例如用涂层,以在用于生物学应用之前增加表面的亲水性。
US2014/0073715描述了一种制备单分散亲水性颗粒的方法。该方法使用具有疏水性保护基团的单体,该基团加到聚合形成颗粒的单体中,并随后除去该保护基团。然而,添加和除去保护基团确实增加了该方法的复杂性,并且可能限制可用于该方法的不同类型单体的数量。
显然,已知的磁性单分散聚合物颗粒和制备这种颗粒的方法受到许多限制。这也适用于涂覆的单分散聚合物颗粒。因此需要新的单分散聚合物颗粒和新的生产方法。
本发明的一个目的是提供单分散磁性聚合物颗粒和制备具有低变异系数(CV)和/或低%多分散性的单分散磁性聚合物颗粒的方法。本发明的目的还在于提供涂覆的单分散聚合物颗粒和制备具有低变异系数(CV)和/或低%多分散性的涂覆的单分散聚合物颗粒的方法。
发明内容
本发明部分基于以下认识:包含亲水性低聚物的种子颗粒可用于形成交联的单分散聚合物颗粒的新方法中。本发明还基于以下认识:所形成的交联的单分散聚合物颗粒可通过在交联的单分散聚合物颗粒的孔中沉积磁性材料而制成磁性。本发明还基于以下认识:所形成的交联的单分散聚合物颗粒可以涂覆有其他物质。
根据本发明的第一方面,提供了单分散磁性水凝胶聚合物颗粒,其包含磁性材料和由以下形成的聚合物:(a)亲水性乙烯基单体,其log Poct/wat(log P)小于约0.6;和(b)包含至少两个乙烯基的交联剂。
在一个实施方案中,亲水性乙烯基单体包含选自下述单体的至少一种亲水性乙烯基单体:
(i)其包含-C(O)NH2、-C(O)NHCH3、-C(O)NHCH2CH3或-C(O)N(CH3)2
(ii)式(Ib)的化合物
(iii)式(Ic)的化合物:
其中:
R1和R1a各自独立地选自-H、-CH3、-CH2CH3或-CH2C(O)OH;
(iv)4-丙烯酰基吗啉或1-乙烯基咪唑;和
(v)其包括不包含伯胺、仲胺、羟基或羧酸的至少两个乙烯基。
本发明的第二方面提供单分散涂覆的水凝胶聚合物颗粒,其包含由以下形成的聚合物:(a)亲水性乙烯基单体,其log Poct/wat(log P)小于约0.6;和(b)包含至少两个乙烯基的交联剂;所述颗粒还包含涂层。
在一个实施方案中,亲水性乙烯基单体包含选自下述单体的至少一种亲水性乙烯基单体:
(i)其包含-C(O)NH2、-C(O)NHCH3、-C(O)NHCH2CH3或-C(O)N(CH3)2
(ii)式(Ib)的化合物
(iii)式(Ic)的化合物:
其中:
R1和R1a各自独立地选自-H、-CH3、-CH2CH3或-CH2C(O)OH;
(iv)4-丙烯酰基吗啉或1-乙烯基咪唑;和
(v)其包括不包含伯胺、仲胺、羟基或羧酸的至少两个乙烯基。
本发明的第三方面提供单分散水凝胶聚合物颗粒,其由以下形成:(a)亲水性乙烯基单体,所述单体包含选自4-丙烯酰基吗啉和1-乙烯基咪唑的单体;和(b)包含至少两个乙烯基的交联剂。
本发明的第四方面提供形成例如第三方面的单分散水凝胶聚合物颗粒的方法。在一个实施方案中,该方法包括:
形成溶液(a):至少2%wt的亲水性乙烯基单体的水溶液,其包含选自4-丙烯酰基吗啉和1-乙烯基咪唑的单体,该溶液还包含含有至少两个乙烯基的交联剂;
形成稳定剂在有机溶剂中的溶液(b),其中所述有机溶剂不与水混溶,并且其中溶液(a)和溶液(b)的至少一种包含自由基引发剂;混合溶液(a)和(b)以形成油包水乳液(c)并向乳液中加入单分散种子颗粒;
允许单分散种子颗粒在所述乳液中形成溶胀颗粒;和
聚合溶胀颗粒以形成单分散水凝胶聚合物颗粒。
在一个实施方案中,该方法包括:
形成溶液(a):至少2%wt的亲水性乙烯基单体的水溶液,其包含选自4-丙烯酰基吗啉和1-乙烯基咪唑的单体,该水溶液还包含链转移剂;
形成稳定剂在有机溶剂中的溶液(b),其中所述有机溶剂不与水混溶,并且其中溶液(a)和溶液(b)的至少一种包含自由基引发剂;
混合溶液(a)和(b)以形成油包水乳液(c)并向乳液中加入单分散种子颗粒;
允许单分散种子颗粒在所述乳液中形成溶胀颗粒;
聚合该溶胀颗粒以形成单分散聚合物颗粒;
形成稳定剂在有机溶剂中的溶液(d),其中所述有机溶剂不与水混溶;
形成溶液(e):至少2%wt的亲水性乙烯基单体的水溶液,其包含选自4-丙烯酰基吗啉和1-乙烯基咪唑的单体,该水溶液还包含含有至少两个乙烯基的交联剂,其中溶液(d)和溶液(e)中的至少一种包含自由基引发剂;
混合溶液(d)和(e)以形成油包水乳液(f)并添加单分散聚合物颗粒到所述乳液中;
允许单分散聚合物颗粒在乳液中形成溶胀的聚合物颗粒;和
聚合该溶胀的聚合物颗粒以形成单分散水凝胶聚合物颗粒。
第五方面提供了形成单分散磁性水凝胶聚合物颗粒的方法。该方法包括形成包含单分散水凝胶聚合物颗粒和磁性材料或磁性材料前体的含水悬浮液。当含水悬浮液包含磁性材料前体时,磁性材料前体转化为磁性材料。使磁性材料(无论含水悬浮液最初是否含有磁性材料前体)与聚合物颗粒结合。单分散水凝胶聚合物颗粒由(a)log Poct/wat(log P)小于约0.6的亲水性乙烯基单体;和(b)包含至少两个乙烯基的交联剂形成。在一个实施方案中,形成含水悬浮液包括形成pH小于6的含水悬浮液,其包含单分散水凝胶聚合物颗粒和Fe2+和/或Fe3+离子;并且将磁性材料前体转化为磁性材料包括将pH升高至大于8;并允许磁性材料沉淀。
第六方面提供形成涂覆的单分散水凝胶聚合物颗粒的方法。该方法包括形成包含单分散水凝胶聚合物颗粒和至少一种环氧化物或至少一种硅酸盐或至少一种硅烷的悬浮液;使所述至少一种环氧化物的环氧基与所述颗粒的表面官能团反应;或使所述硅酸盐反应形成二氧化硅涂层。单分散水凝胶聚合物颗粒由(a)log Poct/wat(log P)小于的亲水性乙烯基单体;和(b)包含至少两个乙烯基的交联剂形成。
第七方面包括可通过第五或第六方面的方法获得的单分散磁性水凝胶聚合物颗粒或涂覆的单分散水凝胶聚合物颗粒。单分散磁性水凝胶聚合物颗粒单分散或涂覆的单分散水凝胶聚合物颗粒可通过第五或第六方面的方法获得。
第八方面包括在测定中使用第一或第七方面的单分散磁性水凝胶聚合物颗粒。
第九方面包括在测定中使用第二或第七方面的涂覆的单分散水凝胶聚合物颗粒。
第十方面包括在测定中使用第三方面的单分散水凝胶聚合物颗粒,或第四方面的方法形成的单分散水凝胶聚合物颗粒。
本发明的一个实施方案提供了通过本说明书中描述的方法获得的颗粒。
本发明的一个实施方案提供了具有通过本文公开的方法获得的颗粒特征的颗粒;虽然这些颗粒可通过本文所述的方法获得,但它们的特征仅在于它们的性质而不是它们的制造方法,因此,涉及由其特性指定的颗粒的权利要求的保护范围仅由其特征决定,排除了它们的实际制造方法。
本发明的产品、方法和用途不限于刚刚提到的主题,而是不限制地在以下描述和权利要求中更全面地描述。
附图说明
下面参考附图进一步描述本发明的实施方案,其中:
图1是本公开的单阶段溶胀颗粒形成方法的图解表示,包括实例单体的指示。
图2是本公开的单阶段颗粒形成方法的图解表示。
图3是本公开的两阶段溶胀颗粒形成方法的示意图,包括实例单体和链转移剂的指示。
图4是本公开的两阶段溶胀颗粒形成方法的图解表示。
图5说明了本发明的颗粒在核苷酸扩增和/或检测中的用途。
图6说明了作为在实施例67的测定中获得的抗原浓度的函数的信号。
菱形表示实施例34的颗粒的结果,正方形表示实施例35的颗粒的结果,三角形表示实施例36的颗粒的结果。
图7说明了作为在实施例68的测定中获得的抗原浓度的函数的信号。
菱形表示使用实施例34的颗粒的结果,正方形表示使用实施例35的颗粒的结果,三角形表示实施例36的颗粒的结果。
图8说明了作为在实施例69的测定中获得的抗原浓度的函数的信号。
菱形表示使用实施例34的颗粒的结果,正方形表示使用实施例37的颗粒的结果,三角形表示实施例38的颗粒的结果。
图9说明使用实施例34、35和36的颗粒与商业MyOneTM环氧树脂颗粒相比获得的非特异性结合。
具体实施方式
遍及本说明书的描述和权利要求书,词“包括(comprise)”和“含有(contain)”和这些词的变化意味着“包含(但不限于)”,且并不意图(且并不)排除其它部分、添加剂、组分、整数或步骤。在本说明书的整个说明书和权利要求书中,除非上下文另有要求,否则单数形式包含复数形式。特别地,在使用不定冠词的情况下,除非上下文另有要求,否则说明书应被理解为考虑复数以及单数。
结合本发明的特定方面、实施方案或实施例描述的特征、整数、特性、化合物、化学部分或基团应理解为适用于本文描述的任何其他方面、实施方案或实施例,除非与其不相容。本说明书(包括任何所附权利要求、摘要和附图)中所公开的全部特征和/或如此公开的任何方法或工艺的所有步骤可以任何组合形式组合,但此类特征和/或步骤中的至少一些互斥的组合除外。本发明不限于本文公开的任何实施方案的细节。本发明扩展到本说明书(包括任何所附权利要求、摘要和附图)中公开的特征的任何新颖特征或任何新颖组合,或如此公开的任何方法或过程的步骤的任何新颖步骤或任何新颖的组合。
读者应注意与本说明书同时或在本说明书之前提交的与本申请相关联的并且对查阅本申请的公众开放的所有论文和文件,并且所有这些论文和文件的内容通过引用结合于本文。
本文提及的所有出版物、专利申请、专利和其他参考文献都通过引用整体并入。倘若有冲突,则将以本文说明书(包括定义)为准。
在一个实施方案中,本发明提供了新型磁性聚合物颗粒,另一个实施方案提供了可以制备所述新型颗粒的方法。其他实施方案提供了使用聚合物颗粒的方法。
聚合物颗粒形成方法包括油包水乳液,即悬浮在连续油相中的不连续水相。然后可以使形成的聚合物颗粒磁化和/或涂覆。
因此,本文所述的聚合物颗粒形成方法涉及两种不同的颗粒,即种子颗粒,其经历溶胀和聚合过程以形成聚合物颗粒。因此,术语“种子颗粒”和“聚合物颗粒”在本文中如下使用:
除非上下文另有要求,“种子颗粒”是指可通过分散聚合获得并用作聚合物颗粒形成过程中的中间体的颗粒。
“聚合物颗粒”是指可以通过本文所述方法中的悬浮聚合由种子颗粒制备的颗粒。聚合后,可以向颗粒中加入磁性材料。例如,在聚合物颗粒包含孔的情况下,磁性材料可以沉积在至少一部分孔中。在聚合(和任选地添加磁性材料)之后,可以例如用有机(例如聚合物)或二氧化硅涂层涂覆颗粒。
聚合物颗粒可以由特定的亲水性乙烯基单体和交联剂“形成”。特定的亲水性单体可包含一种或多种单体。特定的交联剂可包含一种或多种交联剂。在本文中“由...形成”可意指聚合物由反应的特定亲水性乙烯基单体和交联剂组成。在本文中“由...形成”可意指聚合物包含特定的亲水性乙烯基单体和交联剂,以及少量其他乙烯基单体和/或交联剂。例如,聚合物可包含至少90%重量的特定单体和交联剂,和不大于10%重量的其他乙烯基单体和/或交联剂;例如,聚合物可包含至少95%重量的特定单体和交联剂,和不大于5%重量的其他乙烯基单体和/或交联剂。例如,聚合物可包含至少98%重量的特定单体和交联剂,和不大于2%重量的其他乙烯基单体和/或交联剂;例如,聚合物可包含至少99%重量的特定单体和交联剂,和不大于1%重量的其他乙烯基单体和/或交联剂。
“磁性材料”是指响应磁场的物质。当磁性材料是顺磁性时,在去除磁场时关闭磁性。当磁性材料是超顺磁性时,磁性材料在相对低的磁场下变得饱和,并且随着磁场的移除而关闭磁性能是非常迅速/瞬间的。当磁性材料是铁磁性的,每个磁畴内所有其磁性原子对净磁化增加了积极的贡献。当磁性材料是铁磁性,每个磁畴内一些磁性原子被抵消,但整体上材料表现出净磁化。在去除外部磁场之后,铁磁和亚铁磁材料都保持磁性。在材料的居里温度之上,铁磁和铁磁材料变成顺磁材料。磁性能也可能受磁性材料中磁性颗粒尺寸的影响,一些材料在较大的颗粒尺寸下是铁磁性的和亚铁磁性的,但是超顺磁性的合适小颗粒尺寸(例如nm尺度)。例如,当晶体的尺寸充分小(例如,对于铁氧化物低于约15nm尺度),铁磁材料例如铁氧化物形成超顺磁性晶体。
“磁性材料前体”是指可以转化以提供磁性材料的物质。磁性材料前体可包含溶剂化的过渡金属离子(例如Fe、Ni、Co的多价阳离子或其组合,任选地与Al、Mn、Cu、Zn、Ca、Ge、Te、Ti或Sn和/或稀土的多价阳离子混合)。溶剂化的过渡金属离子和/或稀土离子可以通过引起离子沉淀(例如氧化物)的任何过程转化为磁性材料。沉淀可以由例如pH变化、溶剂去除或温度变化引起。例如,磁性材料前体可以由pH小于6的包含Fe2+和/或Fe3+离子的含水悬浮液提供;并且可以通过沉淀,例如通过将pH升高至大于8,将Fe2+和/或Fe3+离子转化为磁性材料。
“涂层”是指施加到基材的表面的覆盖物。涂层可以是全覆盖涂层,其完全覆盖基材,或者它可以是部分涂层,其仅覆盖基材表面的一部分。可以通过任何合适类型的结合将涂层施加到基材上,例如通过共价键合、金属键合、离子键合、氢键键合、范德华相互作用、疏水相互作用等中的至少一种。可以涂覆多孔基材,使得至少一部分涂层存在于孔内,同时保持多孔结构(例如,因为涂层部分地填充孔)。在基材包含聚合物的情况下,可以通过接枝提供涂层(或其至少一部分)。在通过接枝提供涂层(或其至少一部分)的情况下,涂层可以是部分涂层。在本公开中,除非上下文另有要求,否则基材是聚合物颗粒或多个聚合物颗粒。聚合物颗粒可以是磁性聚合物颗粒或不包含磁性材料的聚合物颗粒。
在聚合物化学的上下文中的“接枝”包括这样的反应,其中一种或多种嵌段连接到大分子的主链作为侧链,侧链具有与主链中的那些不同的构成或构型特征。在基材是聚合物颗粒或多个聚合物颗粒并且通过接枝提供涂层(或其至少一部分)的情况下,聚合物颗粒的聚合物提供主链并且涂层提供侧链(或多个侧链)。
关于聚合物,例如聚合物颗粒,提及“水凝胶”是指其中溶胀剂是水的聚合物凝胶。水凝胶聚合物可以在水中吸收其重量的至少20%。水凝胶聚合物可以在水中吸收其重量的至少45%、至少65%、至少85%、至少100%或至少300%。例如,水凝胶聚合物可以在水中吸收其重量的至少1000%、至少1500%或甚至至少2000%。
关于聚合物颗粒(例如水凝胶聚合物颗粒)提及“易透的”是指颗粒是多孔的,并且分子或其他感兴趣的试剂能够容易地通过颗粒孔中的水溶液扩散。例如,本公开的交联的水凝胶聚合物颗粒可以对寡核苷酸和核酸扩增和测序试剂是易透的,例如,即使聚合酶与寡核苷酸连接,寡核苷酸也可以部分或全部位于孔内。
除非另有说明,本说明书中提及的“平均”直径是指交联聚合物颗粒(例如交联的水凝胶聚合物颗粒、磁性水凝胶聚合物颗粒和/或涂覆的水凝胶聚合物颗粒)的众数直径或指的是种子颗粒的z均直径。众数直径可以通过盘式离心机测量,例如通过CPS盘式离心机。z均直径可以是通过动态光散射(也称为光子相关光谱法)测量的z均平均直径。在整个范围内,还公开了实施方案,其中平均直径是众数直径,例如通过光学显微镜测定的众数直径。
术语“单分散”是指对于多个颗粒(例如,至少100个,更优选至少1000个),颗粒的直径的变异系数(CV)或%多分散性小于20%,例如小于15%,通常小于10%,任选小于8%,例如小于5%。
术语“Mw”是聚合物的重均分子量。它由下式定义:
其中Mi是特定链的分子量,Ni是该分子量的链的数目。可以使用凝胶渗透色谱法(GPC),相对于具有特定洗脱溶剂系统的一组标准聚合物,测量Mw。例如,种子颗粒中的低聚物或聚合物的Mw可以通过GPC相对于聚苯乙烯标准物测量,使用具有0.01M LiBr的DMF作为洗脱剂。
在本说明书中提及的“多分散性”或“%多分散性”是指源自“多分散指数”的动态光散射数据的值。多分散性指数是从简单的2参数拟合到相关数据例如动态光散射数据计算的数,如ISO标准文件13321:1996E和ISO22412:2008中所定义。多分散性指数是无量纲的并且按比例的,使得除了高度单分散标准物之外,很少看到小于0.05的值。颗粒样品的多分散指数值大于0.7表明样品具有非常宽的尺寸分布,例如颗粒不是单分散的。
本文所用的术语“烷基”和“Cx-Cy烷基”(其中x为至少1且小于10,y为大于10的数)包括指具有例如1、2、3、4、5、6、7、8、9或10个碳原子的直链或支链烷基部分。该术语包括提及例如甲基、乙基、丙基(正丙基或异丙基)、丁基(正丁基、仲丁基或叔丁基)、戊基、己基等。特别地,烷基可以是“C1-C6烷基”,即具有1、2、3、4、5或6个碳原子的烷基;或“C1-C4烷基”,即具有1、2、3或4个碳原子的烷基。术语“低级烷基”包括具有1、2、3或4个碳原子的烷基。在化学上可能的情况下,烷基可以被1至5个取代基任选地取代,所述取代基各自独立地选自:氧代,=NRa,=NORa,卤代,硝基,氰基,NRaRa,NRaS(O)2Ra,NRaCONRaRa,NRaCO2Ra,ORa;SRa,S(O)Ra,S(O)2ORa,S(O)2Ra,S(O)2NRaRa,CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基。
本文所用的术语“醇”和“Cx-Cy醇”(其中x为至少1且小于10,y为大于10的数)包括指具有例如1、2、3、4、5、6、7、8、9或10个碳原子的直链或支链醇部分。该术语包括提及被一个或多个羟基(-OH)取代的相应烷基。因此,该术语包括提及单羟基取代的醇或多元醇(例如二醇或三醇)。特别地,醇可以是“C1-C6醇”,即具有1、2、3、4、5或6个碳原子和1个或多个羟基的烷基;或“C1-C4醇”,即具有1、2、3或4个碳原子和一个或多个羟基的醇。
符号表示部分与化合物其余部分的连接点。
如本文所用的术语“log P”是指化合物例如亲水性乙烯基单体的辛醇-水分配系数(log Poct/wat)。化合物的log P可以通过多种方法中的任何一种来确定。特别地,对于在实施方案中使用的化合物和本文公开的其他化合物,log P可以根据J.Sangster,“Octanol-water partition coefficients of simple organic compounds”,J.Phys.Chem.Ref.Data,Vol.18,No.3,1989,1111-1227(通过引用将其全部并入本文)第1116页2.1.a章节测量。Log P也可以由该化合物的结构使用软件来计算,例如Log P可以使用CambridgeSoft公司的Ultra 14.0计算。
由于log P是有机相-水相分配系数,给定化合物的该值与水相中单体的分数相关。特别地,该值越低(包括越负),化合物(例如单体或交联剂)在水或水相中的分数越高。用于本发明的化合物(例如单体或交联剂)应具有足够低的log P,使得在平衡时化合物在水相中可以足够量用于聚合,例如根据在此公开的制备颗粒的方法。因此,Log P可用于表征本发明中使用的化合物。
基于化合物的分子结构,还可以估计分子在有机相或水相中的趋势。例如,包含更多亲水原子如氮和氧以及更少碳原子的单体可能具有更多的亲水基团并且具有增加的分配到水相的倾向。
由于本发明中感兴趣的化合物(例如单体和/或交联剂)通常是可聚合的乙烯基单体,因此可以使用计算化合物中疏水和亲水原子数之间的比率的公式来提供化合物分配到水相的相对倾向的估计。对于给定类别的化合物,由这样的公式计算的值可以(大致)与logP相关。可以使用这样的公式代替log P或者除了log P之外还使用这样的公式来确定可用于本发明的单体。
例如,本发明的亲水性乙烯基类单体的合适式(例如式I化合物,例如其中R1为-H、-CH3)如下:
其中NC是碳原子数,NN是氮原子数,NO是单体中氧原子数。如果R原子<2.75,则丙烯酰胺、乙烯基咪唑、丙烯酰基吗啉、乙烯基膦酸和乙烯基磺酸是合适的;如果R原子≤2且单体具有水溶解度(例如在25℃)≥50g/L,则丙烯酸酯和其它单体类别是合适的。丙烯酰胺通常比类似的丙烯酸酯更易溶于水相,并且R原子的通过标准的差异反映了这一点。该R原子式和截止标准也可适用于本发明中使用的交联剂,例如式(IIa)或(IIb)化合物。表1中给出了示例性单体和交联剂的R原子值。
聚合物颗粒
本发明包括其中颗粒是聚合物的和单分散的实施方案。本发明包括颗粒是多孔的实施方案。根据本发明,颗粒是磁性的和/或包含涂层。除非上下文另有要求,否则下文对“颗粒”和“聚合物颗粒”的提及包括提及本发明的单分散磁性水凝胶聚合物颗粒和/或本发明的单分散涂覆的水凝胶聚合物颗粒。
颗粒可以在至少100个例如至少1000个的群体中。例如,出于测量目的,颗粒可以在至少100个例如至少1000个的群体中。例如,在某些最终用途应用中,颗粒可以方便地在至少100个例如至少1000个的群体中。
“单分散”是指对于多个颗粒(例如,至少100个,更优选至少1000个),颗粒的直径的变异系数(CV)小于20%,例如小于15%,通常小于10%,任选小于8%,例如小于5%。特定类别的聚合物颗粒具有小于10%的CV。CV定义为100×(标准偏差)除以平均值,其中“平均值”是平均粒径,标准偏差是粒度的标准偏差。本发明还包括“平均”是z均或模式粒径的实施方案。CV优选地在主模式下计算。因此低于或高于模式尺寸的一些颗粒可在可例如基于约90%总颗粒数目的(可检测颗粒)计算中打折扣。这种CV的测定可在CPS盘式离心机上进行。
聚合物颗粒可以通过本说明书后面描述的聚合物颗粒形成方法制备,例如通过使用如本文所述的单分散种子颗粒。
现在回到聚合物颗粒,该说明书公开了交联的水凝胶聚合物颗粒。交联的水凝胶聚合物颗粒的特征在于,当置于作为聚合物的良好溶剂的水溶液中时,颗粒溶胀而不是溶解。举例来说,水是包含丙烯酰胺聚合物的水凝胶颗粒的良好溶剂。水凝胶颗粒是亲水的并且在水中溶胀并且可以制成各种不同的孔隙。本文公开的交联水凝胶颗粒提供低非特异性结合、单分散性和孔隙率的组合,当颗粒用于生物测定时提供优势。另外,可以通过在颗粒中包含磁性材料和/或涂覆颗粒来改变非特异性结合和孔隙率性质。
通过该方法制备的聚合物颗粒中的交联水平可以表示为悬浮聚合中使用的总单体中包含的交联剂单体的重量百分比(%wt)。交联剂单体的%wt可以等于基质聚合物中交联剂的%wt(即交联聚合物颗粒的干重中交联剂的%wt)。因此,当悬浮聚合中使用的单体是例如单官能丙烯酰胺和双官能丙烯酰胺时,双官能丙烯酰胺(交联剂单体)的百分比计算为基于双官能丙烯酰胺加单官能丙烯酰胺的总重量的重量百分比。典型的交联水平包括>1%wt交联剂,例如>2%wt交联剂,例如,>5%wt交联剂。例如,交联水平可以是>10%wt交联剂,或>15%wt交联剂,例如,>20%wt交联剂或>25%wt交联剂。交联水平也可以是例如5-60%wt交联剂,例如10-50%wt交联剂,例如20-40%wt交联剂或20-30%wt交联剂。交联水平也可以是1-30%wt交联剂,例如1-20%wt交联剂,例如1-10%wt交联剂;或者交联水平也可以是2-30%wt交联剂,例如2-20%wt交联剂,例如2-10%wt交联剂;例如,适合于多孔水凝胶颗粒的水平。
交联水平可以是>30%wt交联剂或>40%wt交联剂,例如在高度交联的颗粒中。交联水平可以是10-90%wt交联剂,20-80%wt交联剂或25-75%wt交联剂,例如25-60%wt交联剂或30-50%wt交联剂。在高度交联的颗粒中,交联水平可以高达100%wt交联剂,例如亲水性乙烯基单体可以是交联剂。
在颗粒是磁性聚合物颗粒(例如磁性水凝胶聚合物颗粒)的情况下,交联水平优选>10%wt交联剂,例如>30%wt交联剂或>40%wt交联剂。与具有较低交联水平的颗粒相比,这些交联水平可以使颗粒具有更好的磁性材料保留。交联水平可以是10-90%wt交联剂,20-80%wt交联剂或25-75%wt交联剂,例如25-60%wt交联剂或30-50%wt交联剂。
如上所述,当交联颗粒置于聚合物的良好溶剂中时,交联颗粒溶胀。溶胀量,例如以直径的增加测量,与交联水平有关。具有较高交联度的颗粒通常比由类似聚合物制成的颗粒溶胀得少,但具有较低的交联度。通过将样品与一系列已知的不同交联水平的标准进行比较,该性质可用于确定聚合物颗粒样品中的相对交联水平。
该颗粒合适地包含通过聚合一种或多种乙烯基不饱和单体制备的加成聚合物。乙烯基不饱和单体可包含任选被取代的概况性乙烯基,-CR=CR'H,其中R为H或烷基(例如其中R为-CH3或-CH2CH3),且其中R'为H、烷基(例如-CH3或-CH2CH3)或官能团(例如羧酸、膦酸、伯胺或仲胺)。乙烯基不饱和单体可包含概况性乙烯基,-CR=CH2,其中R为H或烷基(例如其中R为-CH3或-CH2CH3)。乙烯基不饱和单体可包含乙烯基,-CH=CH2。单体可以是亲水性乙烯基单体,例如log P值小于约1的乙烯基单体,例如log P值小于约0.5。亲水性乙烯基单体可包含任选被取代的概况性乙烯基,-CR=CR'H,其中R为H或烷基(例如其中R为-CH3或-CH2CH3),且其中R'为H、烷基(例如-CH3或-CH2CH3)或官能团(例如羧酸、膦酸、伯胺或仲胺)。亲水性乙烯基单体可包含概况性乙烯基,-CR=CH2,其中R为H或烷基(例如其中R为-CH3或-CH2CH3)。亲水性乙烯基单体可包含乙烯基,-CH=CH2。单体可以是log P小于约0.6的乙烯基单体,例如log P小于约0.52。单体可以是log P小于约0.5的乙烯基单体。例如,单体可以是log P小于约0.3或小于约0.2的乙烯基单体,例如单体可以是log P小于约0.1的乙烯基单体。单体可以是log P小于约0的乙烯基单体,例如log P小于约-0.2。单体可以是log P大于约-3.8的乙烯基单体,例如log P大于约-3或约-2。单体可以是log P为0.6至-3的乙烯基单体。单体可以是log P为0.5至-2的乙烯基单体,例如log P为0至-2,例如log P为-0.2至-2。特别地,单体可以是乙烯基单体,其也包含亲水基团,例如丙烯酰胺单体或丙烯酸酯单体。
单体可具有R原子的特定值。当单体是丙烯酰胺、乙烯基咪唑、丙烯酰基吗啉、乙烯基膦酸和乙烯基磺酸时,特定的R原子可以是R原子<2.75。当单体是其他单体类别的丙烯酸酯时,特定的R原子可以是R原子≤2并且单体具有水溶解度(例如在25℃下)≥50g/L。
用于颗粒中的单体可以是至少一种式(I)化合物:
其中:
R1为-H、-CH3、-CH2CH3或-CH2C(O)OH;
R1a为-H、-CH3、-CH2CH3、-CH2C(O)OH或-C(O)R2
R1b为-C(O)R2、–P(O)(OH)2、-S(O)2OH或具有3至8个环原子的杂环,其中杂原子选自N、O或S;或R1b与R1a或R1组合为-C(O)-OC(O)-;
R2选自-OR3、–N(R4)R5或-N连接的氨基酸;
R3选自-H、-C1-C6烷基或-C1-C6醇;和
R4和R5各自独立地选自-H、-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇;或R4和R5与它们所连接的氮一起形成具有3至8个环原子的杂环,其中杂原子选自N、O或S。
在一个实施方案中,R1为-H、-CH3、-CH2CH3或-CH2C(O)OH;
R1a为-H或-C(O)R2
R1b为-C(O)R2、–P(O)(OH)2或-S(O)2OH;或R1b与R1a或R1组合为-C(O)-
OC(O)-;
R2选自-OR3或–N(R4)R5
R3选自-H、-C1-C6烷基或-C1-C6醇;和
R4和R5各自独立地选自-H、-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇。
当R3是-C1-C6烷基或-C1-C6醇时,在化学上可能的情况,烷基或醇可以被1至5个(例如1、2、3或4个)取代基取代,取代基在每次出现时各自独立地选自:氧代,=NRa,=NORa,卤代,硝基,氰基,NRaRa,NRaS(O)2Ra,NRaCONRaRa,NRaCO2Ra,ORa;SRa,S(O)Ra,S(O)2ORa,S(O)2Ra,S(O)2NRaRa,CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基。例如,当R3是-C1-C6烷基或-C1-C6醇时,在化学上可能的情况,烷基或醇可以被1至5个(例如1、2、3或4个)取代基取代,取代基在每次出现时各自独立地选自ORa或CO2Ra,任选地其中Ra是H。
在R4和/或R5是-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇的情况,在化学上可能的情况下,每个可以独立地被取代1至5个(例如1、2、3或4个)取代基取代,取代基在每次出现时各自独立地选自:氧代,=NRa,=NORa,卤代,硝基,氰基,NRaRa,NRaS(O)2Ra,NRaCONRaRa,NRaCO2Ra,ORa;SRa,S(O)Ra,S(O)2ORa,S(O)2Ra,S(O)2NRaRa,CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基。例如,当R4和/或R5是-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇时,在化学上可能的情况,每个可以独立地被1至5个(例如1、2、3或4个)取代基取代,取代基在每次出现时各自独立地选自ORa或CO2Ra,任选地其中Ra是H。
R1可以是-H、-CH3或-CH2CH3。R1可以是-H或-CH3。例如R1可以是-H。R1可以是-CH2C(O)OH。
R1a可以是-H、-CH3或-CH2CH3。R1a可以是-H。R1a可以是-C(O)R2。R1a可以是-CH2C(O)OH。
R1b可以是-C(O)R2。R1b可以是-P(O)(OH)2。R1b可以是-S(O)2OH。当R1b是-C(O)R2时,R1a可以是-H。当R1b是-C(O)R2时,R1a可以是-C(O)R2,并且R2可以任选地是-OR3。当R1b是-P(O)(OH)2时R1a可以是-H,R1可以是-H、-CH3或-CH2CH3(例如–H)。当R1b是-S(O)2OH时R1a可以是-H,R1可以是-H、-CH3或-CH2CH3(例如–H)。
R1b可以是具有3至8个环原子的杂环,其中杂原子选自N、O或S。R1b可以是咪唑基。
R1b与R1a或R1的组合可以是-C(O)-OC(O)-。
R2可以是-OR3。R2可以是-N(R4)R5。R2可以是-NH2、-NHCH3、-NHCH2CH3,或-NH(CH3)2。R2可以是N-连接的氨基酸。N-连接的氨基酸可选自精氨酸、组氨酸、赖氨酸、天冬氨酸、谷氨酸、丝氨酸、苏氨酸、天冬酰胺、谷氨酰胺、半胱氨酸、甘氨酸、脯氨酸、丙氨酸、β-丙氨酸和甲硫氨酸。
R3可以是-H。R3可以是-C1-C6烷基。例如,R3可以是被1或2个取代基取代的-C1-C6烷基,它们各自独立地在每次出现时选自:氧代,卤代,氰基,NRaRa,NRaCONRaRa,NRaCO2Ra,ORa;CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基,例如其中Ra是-H。R3可以是-C1-C6醇。例如,R3可以是被1或2个取代基取代的-C1-C6醇,它们各自独立地在每次出现时选自:氧代,卤代,氰基,NRaRa,NRaCONRaRa,NRaCO2Ra,ORa;CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基,例如其中Ra是-H。
R4可以是-H或-C1-C6烷基。R4可以是-C1-C6烷基。例如,R4可以是被1或2个取代基取代的-C1-C6烷基,它们各自独立地在每次出现时选自:氧代,卤代,氰基,NRaRa,NRaCONRaRa,NRaCO2Ra,ORa;CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基,例如其中Ra是-H。
R5可以是-H或-C1-C6烷基。R5可以是-C1-C6烷基。例如,R5可以是被1或2个取代基取代的-C1-C6烷基,它们各自独立地在每次出现时选自:氧代,卤代,氰基,NRaRa,NRaCONRaRa,NRaCO2Ra,ORa;CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基,例如其中Ra是-H。
R4和R5与它们所连接的氮一起可形成具有3至8个环原子(例如4、5或6个环原子)的杂环,其中杂原子选自N、O或S。R4和R5与它们所连接的氮一起形成吗啉代杂环。
用于颗粒中的单体可以是至少一种式(Ia)化合物:
其中R1、R2和R1a如别处所定义。
用于颗粒中的单体可以是至少一种式(Ib)化合物:
其中R1和R1a是如别处所定义。在一个实施方案中,R1和R1a各自独立地选自-H、-CH3、-CH2CH3或-CH2C(O)OH。
用于颗粒中的单体可以是至少一种式(Ic)化合物:
其中R1和R1a是如别处所定义。在一个实施方案中,R1和R1a各自独立地选自-H、-CH3、-CH2CH3或-CH2C(O)OH。
式(I)、(Ia)、(Ib)或(Ic)化合物的log P值可小于约1,例如log P小于约0.5。式(I)、(Ia)、(Ib)或(1c)化合物的log P小于约0.6,例如log P小于约0.52。式(I)、(Ia)、(Ib)或(1c)化合物可具有小于约0.5的log P。例如,式(I)、(Ia)、(Ib)或(1c)的化合物可具有小于约0.3或小于约0.2的log P,例如式(I)、(Ia)、(Ib)或(1c)的化合物可具有小于约0.1的log P。式(I)、(Ia)、(Ib)或(1c)化合物可具有小于约0的log P,例如log P小于约-0.2。式(I)、(Ia)、(Ib)或(Ic)化合物的log P大于约-3.8,例如log P大于约-3或约-2。式(I)、(Ia)、(Ib)或(1c)化合物的log P为0.6至-3。式(I)、(Ia)、(Ib)或(1c)化合物的log P为0.5至-2,例如log P为0至-2,例如log P为-0.2到-2。
式(I)或(Ia)化合物可具有R原子<2.75,其中化合物是丙烯酰胺、乙烯基咪唑、丙烯酰基吗啉、乙烯基膦酸或乙烯基磺酸;或R原子≤2且水溶解度≥50g/L,其中化合物是丙烯酸酯或其他单体类。式(Ib)或(Ic)化合物可具有<2.75的R子。
单体可包含至少一种亲水性乙烯基单体,其包含选自-C(O)NH2、-C(O)NHCH3、-C(O)NHCH2CH3或-C(O)N(CH3)2的酰胺基团。单体可包含至少一种包含伯酰胺基团(-C(O)NH2)的亲水性乙烯基单体。
特别可提及丙烯酰胺单体和/或丙烯酸酯单体。合适的单体包括丙烯酰胺(丙-2-烯酰胺),N-(羟甲基)丙烯酰胺,N-羟乙基丙烯酰胺,N-[三(羟甲基)甲基]丙烯酰胺,4-丙烯酰基吗啉,3-丙烯酰胺丙酸,甲基丙烯酰胺,N-(2-羟乙基)甲基丙烯酰胺,N-(3-氨基丙基)甲基丙烯酰胺,羟丙基丙烯酰胺,N,N-二甲基丙烯酰胺,丙烯酸2-羟乙酯,甲基丙烯酸2-羟乙酯,丙烯酸;log P值小于约1(例如log P值小于约0.5)的其它丙烯酰胺单体,丙烯酸单体,甲基丙烯酰胺单体或甲基丙烯酸单体;R原子<2.75的其他丙烯酰胺单体或甲基丙烯酰胺单体;和R原子≤2且水溶解度(例如在25℃)≥50g/L的其他丙烯酸单体或甲基丙烯酸单体。
单体可包含单体混合物。例如,单体可包含至少一种如上定义的单体和至少一种相容的官能单体。示例性官能单体是如本文所定义的亲水性乙烯基单体,其包含羧酸(-COOH)、膦酸(-P(O)(OH)2)、磺酸(-S(O)2OH)、伯胺或仲胺。例如,单体可包含至少一种式(I)、(Ia)、(Ib)或(Ic)的单体,其不包含羧酸(-COOH)、膦酸(-P(O)(OH)2)、磺酸(-S(O)2OH)、伯胺或仲胺;和式(I)、(Ia)或(Ib)的单体,其包含至少一种羧酸(-COOH)、膦酸(-P(O)(OH)2)、磺酸(-S(O)2OH)、伯胺或仲胺(例如包含至少一种羧酸(-COOH)或膦酸(-P(O)(OH)2))。
在高度交联的颗粒中,单体可以是或包含交联剂,例如本文其他地方定义的交联剂。例如,单体可以是或包含至少一种式(IIa)或(IIb)的化合物。
官能单体可以是乙烯基单体,其log P值小于约1,例如log P小于约0.5,其包含羧酸或伯胺。官能单体可以是乙烯基单体,其log P小于约0.6,例如log P小于约0.52。官能单体可以是乙烯基单体,其log P小于约0.5。例如,官能单体可以是log P小于约0.3或小于约0.2的乙烯基单体,例如,官能单体可以是log P小于约0.1的乙烯基单体。官能单体可以是乙烯基单体,其log P小于约0,例如log P小于约-0.2。官能单体可以是乙烯基单体,其logP大于约-3.8,例如log P大于约-3或约-2。官能单体可以是乙烯基单体,其log P为0.6至-3。官能单体可以是乙烯基单体,其log P为0.5至-2,例如log P为0至-2,例如log P为-0.2至-2。官能单体可以是式(I)、(Ia)或(Ib)的化合物,其包含羧酸、膦酸、磺酸或伯胺。官能单体可包含羧酸、膦酸或磺酸,例如可包含羧酸或膦酸。官能单体可以是包含羧酸或伯胺的丙烯酰胺单体。
合适的官能单体包括3-丙烯酰胺基丙酸、4-丙烯酰胺基丁酸、5-丙烯酰胺戊酸、N-(3-氨基丙基)甲基丙烯酰胺、丙烯酸、富马酸、衣康酸、乙烯基膦酸、乙烯基磺酸和1-乙烯基咪唑。其他合适的官能单体包括酸酐,例如马来酸酐或衣康酸酐,其可在聚合过程中水解以提供羧酸基团。
当存在至少一种官能单体时,官能单体的量可为约0.1至约100%摩尔,例如约0.2至约50%摩尔,例如约0.5至约40%摩尔或约1至约30%摩尔(例如约2至约20%摩尔)。例如,官能单体的量可以是至少约2至约100%摩尔,例如约2至约50%摩尔,例如约4至约40%摩尔或约4至约30%摩尔(例如约2至约20%摩尔)。官能单体的量可为约5至约100%摩尔,例如约5至约80%摩尔。%摩尔可以指官能单体的量,以总亲水性乙烯基单体的摩尔%计。官能单体的量可以为约0.1至约60%wt,例如约0.2至约50%wt,例如约0.5至约40%wt。官能单体的量可以为约1至约60%wt,例如约2至约50%wt,例如约2或3至约40%wt。官能单体的量可以为约0.1至约10%wt,例如约0.2至约5%wt,例如约0.5至约2%wt。%wt可以指包含在聚合过程中使用的总单体中的官能单体的重量百分比。总单体可以例如包含不是至少一种官能单体的亲水性乙烯基单体、交联剂和官能单体。
交联可以通过引入包含至少两个(例如两个)乙烯基(-CH=CH2)作为共聚单体的交联剂来实现。该交联剂可以是式(IIa)或(IIb)中的至少一种化合物:
其中R6选自-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6羟烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;R7和R8各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基,-C1-C6羟烷基或-C1-C6醚;或R7和R8连接在一起形成-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6羟烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;R9是-N(R11)C(O)CH=CH2;R10选自-H和–N(R12)C(O)CH=CH2;和R11和R12各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基,-C1-C6羟烷基或-C1-C6醚。
交联剂可以是至少一种式(IIa)化合物。交联剂可以是至少一种式(IIb)化合物。
在化学上可能的情况下,R6、R7、R8、R9、R10、R11和R12可以独立地被1至5个取代基取代,所述取代基各自独立地选自:氧代,=NRa,=NORa,卤代,硝基,氰基,NRaRa,NRaS(O)2Ra,NRaCONRaRa,NRaCO2Ra,ORa;SRa,S(O)Ra,S(O)2ORa,S(O)2Ra,S(O)2NRaRa,CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H、C1-C4烷基和C1-C4烯基。
R6可以选自-C1-C6烷基-、-C1-C6杂烷基-、-C1-C6环烷基-、-C1-C6羟烷基-和-C1-C6醚-。R6可以选自-C1-C6烷基-和-C1-C6羟烷基-。R6可以是-C1-C6烷基-,例如-CH2-、-(CH2)2-、-(CH2)3-或-(CH2)4-,例如-(CH2)2-。R6可以是-C1-C6羟烷基-,例如-C(OH)H-、-(C(OH)H)2-、-(C(OH)H)3-、或-(C(OH)H)4-,例如-(C(OH)H)2-。
R6可以是-C1-C6杂烷基-,任选地其中杂原子是胺(例如叔胺)。例如,在杂原子上被C(O)Ra取代的-C1-C6杂烷基-,任选地其中杂原子是胺,例如R6可以是-CH2CH2N(C(O)CH=CH2)CH2CH2-。
当R6是聚醚时,聚醚可以是直链或支链的。R6可以是包含2至100个C2-C3醚单元的聚醚,例如包含2至50个C2-C3醚单元的聚醚。R6可以是包含2至100个C2醚单元的聚醚,例如包含2至50个C2醚单元的聚醚。例如,R6可以是-(CH2)r(OCH2CH2)nO(CH2)s,其中r和s各自独立地为2或3(例如2);n为1至100(例如1至50或1至25;例如5至50或5至25)的整数。不希望受任何理论束缚,据信包含聚醚(例如其中R6是聚醚)的交联剂在水相中具有优异的溶解性。这意味着,虽然这种交联剂可用于提供具有低水平交联的颗粒(例如1-20%wt交联剂,或1-10%wt交联剂),但这种包含交联剂的聚醚特别适合于提供包含相对高的交联水平的颗粒,例如>20%wt交联剂,>25%wt交联剂,或>30%wt交联剂。例如,交联水平可以是10-90%wt交联剂,20-80%wt交联剂或25-75%wt交联剂,例如25-60%wt交联剂或30-50%wt交联剂。
R7和/或R8和/或R11和/或R12可以是H。例如,R7和/或R8可以是H。例如,R11和/或R12可以是H。
R7和R8可以连接在一起形成-C1-C6烷基-、-C1-C6杂烷基-、-C1-C6环烷基-、-C1-C6羟烷基-、-C1-C6醚-、包含2至100个C2-C3醚单元的聚醚。当R7和R8连接在一起形成-C1-C6烷基-时,由R7和R8定义的基团可以与R6相同。例如,R6可以是-C1-C6烷基-并且R7和R8可以是-C1-C6烷基-。
R6可以选自-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;R7和R8可以各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基或-C1-C6醚;或R7和R8连接在一起形成-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;和R11和R12各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基或-C1-C6醚。
式(IIa)或(IIb)化合物的log P值可小于约1,例如log P小于约0.5。式(IIa)或(IIb)化合物的log P小于约0.6。式(IIa)或(IIb)化合物可具有小于约0.5的log P。例如,式(IIa)或(IIb)的化合物可具有小于约0.3或小于约0.2的log P,例如式(IIa)或(IIb)的化合物可具有小于约0.1的log P。式(IIa)或(IIb)化合物可具有小于约0的log P,例如logP小于约-0.2。式(IIa)或(IIb)化合物可具有大于-3.8的log P,例如大于约-3或约-2的logP。式(IIa)或(IIb)化合物的log P为0.6至-3。式(IIa)或(IIb)化合物的log P为0.5至-2,例如log P为0至-2,例如log P为-0.2至-2。
式(IIa)或(IIb)化合物可具有R原子<2.75。
用于本发明颗粒的示例性交联剂包括N,N'-(1,2-二羟基亚乙基)双丙烯酰胺,N,N'-亚甲基双(丙烯酰胺),N,N'-亚乙基双(丙烯酰胺),哌嗪二丙烯酰胺,甘油1,3-二甘醇酯二丙烯酸酯,N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺,聚乙二醇二丙烯酰胺(MW≤2000),4-臂PEG-丙烯酰胺(MW≤2000),N,N-双(2-丙烯酰胺基乙基)丙烯酰胺。示例性交联剂N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺、聚乙二醇二丙烯酰胺(MW≤2000)和4-臂PEG-丙烯酰胺(MW)≤2000),(特别是N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺)特别适用于高度交联的颗粒和机械上更稳定的颗粒,例如具有至少20%wt交联剂的交联水平的颗粒(例如至少30%wt交联剂的交联水平)。本发明的一个实施方案包括使用交联剂的组合。作为特定的单体,可以提及丙烯酰胺(丙-2-烯酰胺),其中N,N'-(1,2-二羟基双丙烯酰胺)是合适的交联剂。作为特定的单体,可以提及羟甲基丙烯酰胺,其中N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺是合适的交联剂。作为特定的单体,可以提及羟乙基丙烯酰胺,其中N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺是合适的交联剂。
交联剂可包括N,N'-亚甲基双(丙烯酰胺),N,N'-亚乙基双(丙烯酰胺),哌嗪二丙烯酰胺,N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺,聚乙二醇二丙烯酰胺(MW≤2000),4-臂PEG-丙烯酰胺(MW≤2000),N,N-双(2-丙烯酰胺基乙基)丙烯酰胺。
交联剂可以是不包含伯胺、仲胺、羟基或羧酸的化合物。交联剂可以是式(IIa)或式(IIb)的化合物,其不包含伯胺、仲胺、羟基或羧酸。
可以使用的许多示例性单体和交联剂列于表1中。许多其他单体列于表2中。使用CambridgeSoft公司的软件Ultra 14.0确定表1和表2中所列的单体的Log P值。根据式R原子=NC/(NN+NO)计算R原子值,其中NC、NN和NO分别代表单体或交联剂中碳、氮和氧原子的数目。在作为本发明实施方案的一些颗粒中,不使用表2的单体,例如由于单体的log P值。此外,表2的单体丙烯酸甲酯和甲基丙烯酸可以用于常规的Ugelstad方法中,因此这些单体和具有较高log P值的其它单体可能不太优选用于可以用本文所述的聚合物颗粒形成方法制成的本发明颗粒。
表1:示例性单体和交联剂
表2:其他单体和交联剂
在交联的水凝胶聚合物颗粒中的交联水平可表示为包括在聚合中使用的总单体中的交联剂单体的重量百分比(重量%)。典型的交联水平包括>1%wt交联剂,例如>2%wt交联剂,例如,>5%wt交联剂。例如,交联水平可以是>10%wt交联剂,或>15%wt交联剂,例如,>20%wt交联剂(例如>30%wt交联剂或>40wt%交联剂)。交联水平也可以是1-60%wt交联剂,例如5-30%wt交联剂。例如,交联水平可以是5-60%wt交联剂,例如10-50%wt交联剂。交联水平也可以是例如15-40%wt交联剂,例如20-40%wt交联剂,例如20-30%wt交联剂。交联水平可以是10-90%wt交联剂、20-80%wt交联剂或25-75%wt交联剂,例如25-60%wt交联剂或30-50%wt交联剂;例如,在高度交联的颗粒中。交联水平也可以是1-30%wt交联剂,例如1-20%wt交联剂,例如1-10%wt交联剂。交联水平也可以是2-30%wt交联剂,例如2-20%wt交联剂,例如2-10%wt交联剂。在高度交联的颗粒中,交联水平可以高达100%wt交联剂,例如亲水性乙烯基单体可以是交联剂。
在一个实施方案中,颗粒的平均直径可以为至少500nm,例如至少600nm,任选地至少800nm,如在直径为至少1μm的颗粒的情况下。
在一个实施方案中,颗粒的平均直径可以不大于10μm,例如不大于5μm,任选地不大于3μm,如在直径不大于2μm的颗粒的情况下。
在一个实施方案中,本发明包括一类平均直径为0.5μm至10μm,例如0.8μm至5μm的聚合物颗粒。
聚合物颗粒的尺寸和尺寸分布可以如下文标题“分析方法”中所述测定。
本公开包括孔隙率为至少5%,例如至少10%或至少30%的多孔聚合物颗粒。本公开包括孔隙率为20%至95%,特别是30%至95%,例如40%至95%,例如50%至80%的多孔颗粒。
在确定水凝胶聚合物颗粒的密度之后可以计算孔隙率,因为丙烯酰胺和丙烯酸酯聚合物具有约1.3g/mL的密度,而水具有约1g/mL的密度。多孔聚合物颗粒对溶剂化分子可以是可透的,例如多孔聚合物颗粒可以对寡核苷酸和核酸扩增试剂和测序试剂(例如引物、核苷酸和聚合酶)是可透的。虽然这种确定孔隙率的方法对于中间水凝胶聚合物颗粒很有效,但该方法对于确定磁性聚合物颗粒的孔隙率是无效的,因为磁性材料通常具有比聚合物更高的密度。此外,该方法仅适用于涂层颗粒,其中涂层具有与丙烯酰胺和丙烯酸酯聚合物类似的密度。
通过比较溶胀颗粒的质量与干燥颗粒的质量,可以确定在溶胀(即水饱和的水凝胶颗粒)状态下已知尺寸(例如直径)的磁性或涂覆颗粒的孔隙率。可以通过例如将颗粒置于真空干燥器中至少24小时来干燥颗粒。由于溶胀的水凝胶颗粒的孔主要包含水,因此(使用水的密度)可以确定存在于孔中的水的体积。可以将该体积与溶胀的水凝胶颗粒的总体积(由颗粒的直径计算)进行比较,以确定颗粒的孔隙率百分比。据信该方法对磁性聚合物颗粒和涂覆的聚合物颗粒是有效的。
在一个实施方案中,颗粒包含官能团。官能团可选自羟基、羧酸(-COOH)、膦酸(-P(O)(OH)2)、磺酸(-S(O)2(OH))、伯胺和仲胺。官能团可以选自羧酸、膦酸和磺酸(-S(O)2(OH)),例如官能团可以选自羧酸和膦酸。官能团可包含羧酸和/或膦酸和/或磺酸(例如羧酸和/或膦酸)。官能团(例如羧酸和/或膦酸)可以增强磁性材料在包含磁性材料的聚合物颗粒中的沉积水平。官能团可以增强涂层与涂覆的聚合物颗粒的聚合物的结合,例如官能团可以提供用于共价键合、离子键合或氢键键合的化学处理。
在一个实施方案中,官能团由亲水性乙烯基单体(例如式(Ia)或(Ib)化合物)而非交联剂(例如式(IIa)或式(IIb)化合物)提供。可以增强官能团以促进与靶分析物(例如寡核苷酸)或靶受体的结合。本文在涉及“颗粒的用途”的部分中描述了增强本发明的颗粒的官能团的示例性方法。
在一个实施方案中,聚合物颗粒包含磁性材料(例如,颗粒是磁性水凝胶聚合物颗粒)。多孔聚合物颗粒可在孔中包含磁性材料,例如一种或多种磁性材料。本发明不限于磁性材料的特性,例如磁性材料可包括顺磁性、超顺磁性、铁磁性或亚铁磁性材料中的至少一种。聚合物颗粒可包含顺磁性材料。聚合物颗粒可包含超顺磁性材料。聚合物颗粒可包括铁磁材料、亚铁磁材料或两者。
在一个实施方案中,本文所述的聚合物颗粒包含纳米颗粒磁性材料和/或超顺磁性材料,特别是超顺磁性晶体。在本发明的颗粒中使用超顺磁性材料可能是特别有利的,因为在没有施加磁场的情况下缺乏磁性能减少了聚合物颗粒的结块并有助于聚合物颗粒的分散。当磁性聚合物颗粒用于测定时,这是有益的,因为它在测定期间使磁性聚合物颗粒均匀分布,仅当需要将聚合物颗粒与大部分测定溶液隔离时才施加相对强的磁场。
如果颗粒是多孔的,聚合物颗粒的超顺磁性晶体可以是能够以超顺磁性晶体形式沉积在聚合物颗粒上或其孔中的任何材料。磁性材料可包括或者是金属氧化物或合金。磁性材料可包括或者是铁氧化物,例如铁氧体,例如磁铁矿或磁赤铁矿,或其组合。氧化铁中的一部分铁,例如磁铁矿或磁赤铁矿,可以被Al、Mn、Ni、Cu、Co、Zn、Ca、Ge、Te、Ti或Sn或其组合置换(即被其取代)。特别是,磁铁矿或磁赤铁矿的一部分铁可被Mn取代。如上所述,一些颗粒含有磁铁矿和磁赤铁矿的组合;在这种情况下,磁铁矿或磁赤铁矿或两者都可能具有铁含量的部分取代。另外或可替代地,本公开的颗粒可包括铁基金属纳米颗粒和FeNi合金纳米颗粒,在任一种情况下都可增加颗粒的饱和磁化度。当一部分铁被一种或多种其他元素取代时,取代的总量可以为至多5mol%,例如在0.1至5mol%的范围内,例如0.5至4mol%,例如1至3mol%。
在一个实施方案中,聚合物颗粒是亚铁磁性的,并且特别地,磁性材料可以包含或者是亚铁磁性铁氧化物晶体。因此,本公开包括如本文所述的聚合物颗粒,其包含选自亚铁磁性铁氧化物晶体、超顺磁性铁氧化物晶体及其组合的磁性材料。
存在的磁性材料的总量通常大于20%,优选大于25%,期望大于或等于30%,例如至多85%wt或至少50wt%,例如30至80wt%。百分比是基于颗粒的总干重基于磁性材料(例如金属氧化物)的重量计算的重量百分比。因此,在磁性材料由超顺磁性材料构成的情况下,存在的超顺磁性材料的总量通常大于20%,优选大于25%,期望大于或等于30%,例如至多85%wt或至少50%wt,例如30至80wt%,百分比各自是基于颗粒的总干重基于磁性材料(例如金属氧化物)的重量计算的重量百分比。
在一个实施方案中,聚合物颗粒包含涂层。包含涂层的聚合物颗粒可包含磁性材料,或包含涂层的聚合物颗粒可不包含磁性材料。涂层通常设置在颗粒的外表面上,对于多孔颗粒,涂层也可以设置在孔的溶剂可及的表面上。涂层可以是聚合物涂层。涂层可以是二氧化硅涂层。涂层可以完全覆盖聚合物颗粒的表面。涂层可以覆盖聚合物颗粒表面的一部分。涂层的使用可提供许多优点。例如,在适当的情况下,可以使用涂层来改变聚合物颗粒的表面化学性质,以用于不同的应用。在聚合物颗粒包含磁性材料的情况下,涂层可用于将磁性材料与颗粒悬浮在其中的溶液的大部分隔离,例如以防止磁性材料从颗粒中浸出和/或防止磁性材料与溶液中存在的组分反应。
在一个实施方案中,涂层是聚合物涂层。在涂层是聚合物涂层的情况下,涂层(或其至少一部分)可以通过接枝提供。在一个实施方案中,涂层是由至少一种环氧化物单体形成的有机涂层。所述至少一种环氧化物单体可包含环氧化物单体例如至少两种或至少三种环氧化物单体的混合物。所述至少一种环氧化物单体(或环氧化物单体的混合物)可选自表氯醇,表溴醇,异丙基缩水甘油醚,丁基缩水甘油醚,烯丙基缩水甘油醚,1,4-丁二醇二缩水甘油醚(1,4-双(2,3-环氧丙氧基)丁烷),新戊二醇二缩水甘油醚,乙二醇二缩水甘油醚,甘油二缩水甘油醚,缩水甘油,以及甲基丙烯酸缩水甘油酯,乙基己基缩水甘油醚,甲基缩水甘油醚,甘油丙氧基化三缩水甘油醚,聚(丙二醇)二缩水甘油醚,1,3丁二醇二缩水甘油醚,叔丁基缩水甘油醚,1,4-环己烷二甲醇二缩水甘油醚,二乙二醇二缩水甘油醚,十二烷基缩水甘油醚,O-(2,3环氧丙基)-O’-甲基聚乙二醇缩水甘油醚,缩水甘油基四氟乙基醚,1,6-己二醇二缩水甘油醚,辛基缩水甘油醚,癸基缩水甘油醚,聚(表氯醇-共-环氧乙烷-共-烯丙基缩水甘油醚),聚乙二醇二缩水甘油醚,三羟甲基乙烷三缩水甘油醚,三羟甲基丙烷,三缩水甘油醚,叔丁基二甲基甲硅烷基缩水甘油醚,1,2-环氧丁烷,1,2-环氧戊烷,1,2-环氧-5-己烯,1,2-环氧己烷,1,2-环氧-7-辛烯,1,2-环氧辛烷,1,2,7,8-二环氧辛烷,1,2-环氧-9-癸烯,1,2-环氧癸烷,1,2-环氧十二烷,1,2-环氧十四烷,或其组合。所述至少一种环氧化物单体(或环氧化物单体的混合物)可选自1,4-丁二醇二缩水甘油醚、缩水甘油、甲基丙烯酸缩水甘油酯或其组合。
在一个实施方案中,涂层包含二氧化硅。二氧化硅涂层可以通过硅酸盐(例如Na2SiO3)在聚合物颗粒存在下在小于约11的pH下反应而形成。二氧化硅涂层可以通过原硅酸盐(例如原硅酸四乙酯)在聚合物颗粒存在下在至少80℃的温度(例如至少90℃或100℃的温度)下反应来形成。
在一个实施方案中,可以是磁性和/或被涂覆的颗粒可以与亲和配体结合,亲和配体的性质将基于其对待确定样品中存在或不存在的特定分析物的亲和力来选择。亲和配体可包含能够与颗粒连接的任何分子,该颗粒也能够特异性识别特定分析物。亲和配体包括单克隆抗体、多克隆抗体、抗体片段、核酸、寡核苷酸、蛋白质、寡肽、多糖、糖、肽、编码核酸分子的肽、抗原、药物和其他配体。合适的亲和配体的实例可在公开的文献中获得并且是众所周知的。本领域常规使用的其他结合配偶体、第二亲和配体和连接基团的使用在本文中将不再进一步讨论,但是应当理解,如果需要,可以将这些物质与本发明的颗粒一起使用。
在水溶液的典型温度范围内,本发明的颗粒在水溶液中可以是稳定的(即,耐聚合物降解)。单分散交联的水凝胶聚合物颗粒可以在高达约100℃的温度下稳定。例如,单分散交联的水凝胶聚合物颗粒可以在约0℃至约100℃的温度范围内稳定。
种子颗粒
聚合物颗粒可以通过聚合物颗粒形成过程制备,从特定的种子颗粒开始。申请人已经确定通常用于其他过程的种子颗粒例如聚苯乙烯种子颗粒与本发明的方法和本公开内容不相容。因此,本公开内容提供了适用于本发明和本公开的聚合物颗粒形成方法中的种子颗粒。
种子颗粒可以(并且优选)是单分散的。种子颗粒包含多个聚N,N-二甲基丙烯酰胺的非交联低聚物,z均直径为100nm-1,500nm。每个种子颗粒可包含多于1×105(例如多于1×106)个的聚N,N-二甲基丙烯酰胺的非交联低聚物,例如每个种子颗粒可包含多于5×106个聚N,N-二甲基丙烯酰胺的非交联低聚物。
种子颗粒的z均直径可以为150nm至1,300nm。例如,种子颗粒可具有300nm至1,100nm的z均直径。
当通过GPC相对于聚苯乙烯标准物测量时,低聚物的重均分子量(Mw)为约2,000Da至约100,000Da。对于特定的Mw范围另外地或替代地,每种低聚物的聚合物可包含约30至2,000(例如约60至约1,000或约80至约500)的单体单元。
种子颗粒低聚物的Mw可小于100,000Da,任选小于50,000Da,进一步任选小于40,000Da,例如小于30,000Da。Mw可以大于4,000Da,任选地大于5,000Da,进一步任选地大于6,000Da,如在大于8,000Da例如大于10,000Da的情况下。例如,Mw可以是5,000Da至70,000Da,例如6,000Da至60,000Da,例如7,000Da至50,000Da或8,000Da至40,000Da。
不希望受任何理论束缚,据信种子颗粒的低聚物的Mw是种子颗粒的重要特征。例如,可能需要具有特定范围内的种子颗粒低聚物的Mw以提供在本文所述的颗粒形成过程中形成单分散聚合物颗粒的种子颗粒。如果种子颗粒聚合物具有更高的分子量,例如因为在种子颗粒形成期间没有使用链转移剂(例如M.Babic和D.Horak,Macromolecular ReactionEngineering,2007,1,86-94的单分散微球),颗粒不适合用于本发明方法,例如因为由这种方法得到的颗粒可能不是单分散的,例如CV可能大于20%。
种子颗粒可具有根据本文公开的形成种子颗粒的方法形成的种子颗粒的特征。例如,种子颗粒可具有通过在稳定剂和链转移剂存在下在有机溶剂中自由基引发的N,N-二甲基丙烯酰胺聚合形成的种子颗粒的特征。
种子颗粒的制备
聚合物颗粒可以通过本文所述的方法制备,从特定的种子颗粒开始。因此,本公开提供了制备单分散种子颗粒的方法。
单分散种子颗粒可以通过包括将N,N-二甲基丙烯酰胺、稳定剂、自由基引发剂和链转移剂溶解在有机溶剂中以形成反应混合物;并加热反应混合物以活化引发剂,从而形成单分散种子颗粒的方法制备。
在该方法中,一旦在合适的容器中形成反应混合物,通常在加热步骤期间将反应混合物例如用搅拌器混合。
优选地,聚合反应将在包含最少量氧的反应混合物中进行。因此,在加热反应混合物之前,可以吹扫反应混合物中的氧气。吹扫可包括用化学惰性气体鼓泡。惰性气体可以是氮气或惰性气体(例如氦气、氖气、氩气、氪气或氙气)。例如,惰性气体可以是氩气、氦气或氮气,例如氩气或氮气。
该方法可以被认为是反向沉淀聚合,其中亲水性种子颗粒从有机溶剂中沉淀出来。稳定剂可以防止种子颗粒的聚集,有助于形成单分散的种子颗粒。合适的稳定剂的选择取决于稳定剂溶解在有机溶剂中的能力。稳定剂可以是苯乙烯和聚烯烃的嵌段共聚物,例如基于苯乙烯和乙烯/丁烯的三嵌段共聚物,例如由苯乙烯和乙烯/丁烯组成的线性三嵌段共聚物。稳定剂可以是三嵌段共聚物,其由聚(乙烯-共-丁烯)的中间嵌段和聚苯乙烯的外嵌段组成。示例性稳定剂包括Kraton A1535H、Kraton G1650M、Kraton G1652M或KratonG1657M,或其组合。
自由基引发剂可以是过氧化物引发剂或偶氮引发剂,例如在升高的温度下分解的过氧化物引发剂或偶氮引发剂。示例性的自由基引发剂包括2,2'-偶氮二(2-甲基丙腈)、2,2'-偶氮二(2-甲基丁腈)、2,2'-偶氮二(2,4-二甲基戊腈)、过氧化二苯甲酰等。自由基引发剂可以是2,2'-偶氮双(2-甲基丙腈)。自由基引发剂可以是2,2'-偶氮二(2-甲基丁腈)。可以加热反应混合物的温度取决于自由基引发剂活化的温度。加热反应混合物以活化引发剂可包括将反应混合物加热至至少40℃的温度,例如加热至至少50℃的温度,例如加热至至少60℃的温度,或例如,加热至至少70℃的温度。例如,当自由基引发剂是2,2'-偶氮双(2-甲基丙腈)时,可以将反应混合物加热至至少50℃的温度或至少60℃的温度。
链转移剂的加入通过与增长的聚合物链的自由基反应来终止链并将单电子转移到衍生自链转移剂的自由基种类,从而降低了种子颗粒的聚合物的分子量。然后,衍生自链转移剂的自由基种类可与单体反应以从单体形成自由基,然后单体可与另一单体反应以开始形成新的聚合物链。链转移剂可以是硫醇或卤代烷。例如,链转移剂可选自硫醇(例如1-辛硫醇、己烷硫醇、6-巯基-1-己醇、苄基硫醇),烷基硫醇(例如1-辛硫醇、己烷硫醇),四氯化碳和溴三氯甲烷。例如,链转移剂可以是1-辛硫醇。链转移剂的总加入量可以是每10mol单体1mol至每300mol单体1mol,例如每20mol单体1mol至每100mol单体1mol,例如每30mol单体约1mol链转移剂的范围。加入链转移剂的时间对于获得单分散种子颗粒是重要的:链转移剂应在聚合开始之前(即在活化自由基引发剂之前)存在于反应混合物中。该发现是出乎意料的,对于在常规Ugelstad方法中使用的种子颗粒(例如聚苯乙烯种子颗粒),如果添加链转移剂,则应在颗粒形成开始之后添加,如WO2010/125170中所教导的,其通过引用并入本文。
有机溶剂可包括烷烃组分和芳族组分的混合物。有机溶剂可包含单一组分,例如烷烃组分或芳族组分。烷烃组分可以是或包含己烷、庚烷或辛烷。芳族组分可以是或包含C1-C10烷基取代的苯基或C1-C8二烷基取代的苯基,例如C1-C4烷基取代的苯基,例如甲苯。当有机溶剂包含单一组分且该组分是芳族组分时,芳族组分可以是C4-C12烷基取代的苯基,或C2-C8二烷基取代的苯基。烷烃组分可以是庚烷,芳族组分可以是甲苯。烷烃组分和芳族组分可以以烷烃组分:芳族组分的重量比为约0.5:1至约20:1存在,例如烷烃组分:芳族组分的重量比可以为约1:1至约15:1,例如约1:1至约10:1。
反应混合物可包含:N,N-二甲基丙烯酰胺,其量为约2%wt至约5%wt;稳定剂的量为约1%wt至约5%wt;自由基引发剂的量为约0.01%wt至约4%wt(例如约0.05%wt至约0.25%wt);链转移剂的量为约0.05%wt至约0.25%wt。
然后可以对单分散种子颗粒进行颗粒形成过程,例如如下所述:
颗粒的制备
本公开提供形成单分散的交联水凝胶聚合物颗粒的方法。Ugelstad方法不能用于直接形成这样的颗粒,例如因为Ugelstad方法要求颗粒在水包油乳液的油相中形成,而水凝胶聚合物颗粒和相应的亲水单体将优先溶解在水中(如由log P和/或R原子提供的)。申请人通过提供本公开的方法解决了这个问题,本发明的方法提供了使用油(连续相)系统中的水性(不连续相)的颗粒形成方法。据信这代表了形成单分散交联聚合物颗粒的首次这种方法。
本公开提供形成单分散的交联水凝胶聚合物颗粒的方法。该方法包括:形成溶液(a):至少2%wt的亲水性乙烯基单体的水溶液,该水溶液还包含含有至少两个乙烯基的交联剂;形成稳定剂在有机溶剂中的溶液(b),其中所述有机溶剂不与水混溶,并且其中溶液(a)和(b)的至少一种包含自由基引发剂;混合溶液(a)和(b)以形成油包水乳液(c)并向乳液中加入单分散种子颗粒;允许单分散种子颗粒在所述乳液中形成溶胀颗粒;和聚合溶胀颗粒以形成单分散交联水凝胶聚合物颗粒。如下所述,该方法可以被认为是单阶段方法,因为它包括单个溶胀步骤和单个聚合步骤。
溶液(a)可以通过首先在水溶液中形成至少2%wt亲水性乙烯基单体的溶液,然后加入交联剂来形成;交联剂可在亲水性乙烯基单体之前加入;或者可以在大约同时将亲水性乙烯基单体和交联剂加入到溶液中。类似地,稳定剂和自由基引发剂可以在大约同时或顺序地加入到溶液(b)中。
在本公开的上下文中,当至少5%wt的水的量与有机溶剂混合时,当有机溶剂和水分离成两个单独的相时,有机溶剂被认为与水不混溶。
该方法包括在油连续相中用含水不连续相溶胀种子颗粒。该方法的示意图在图1(用特定单体说明)和图2(更一般地说明)中提供,其可以被认为是单阶段方法,因为其包括单一的溶胀步骤和单一聚合步骤。在图1和2中图解的方法被方便地划分为2个步骤,单分散种子颗粒100的溶胀,以形成溶胀的颗粒110和在溶胀的晶种颗粒中单体的聚合以形成交联的水凝胶聚合物颗粒120。在第一步之前,形成油包水乳液。通过将包含示例性单体丙烯酰胺101和示例性交联剂1,2-二羟基双丙烯酰胺102的水溶液与包含空间稳定剂的油相混合形成油包水乳液,在搅动(例如通过搅拌)水相和油相时形成所述乳液。如果需要(非常)高度交联的颗粒,也可以用交联剂代替单体,使得油包水乳液中存在的唯一单体是交联单体(即交联剂,例如1,2-二羟基双丙烯酰胺102)。油包水乳液通常还含有引发剂,其可以加入到油相中。引发剂是一种化合物,其在活化后将引发单体和交联剂的聚合。单分散种子颗粒100包含聚N,N-二甲基丙烯酰胺131的非交联低聚物,并且被认为是“活化的种子颗粒”。种子颗粒100可以如本申请其他地方所述制备。在第一步中,将单分散种子颗粒100加入到油包水乳液中,并将乳液搅拌一段时间(例如至少30分钟或至少1小时,通常4-48小时)。在此期间,单体101和交联剂102扩散到活化的种子颗粒100中以形成溶胀的种子颗粒110。溶胀的种子颗粒110包含至少单体101、交联剂102和来自活化的种子颗粒100的聚合物的混合物。溶胀的种子颗粒110还可以包括其他组分,例如一种或多种致孔剂,如果包含在油包水乳液中,它们可以进入颗粒。例如,在所示的方法中,水也存在于溶胀的种子颗粒110中,并且该水可以被认为是致孔剂。第二步包括聚合单体101和交联剂102以形成交联的水凝胶聚合物颗粒120。在第二步中,通过活化引发剂,例如通过加热乳液来引发聚合。
提供活化种子颗粒是Ugelstad成功过程的关键特征。通常通过添加溶解度非常低的有机化合物作为乳液来提供种子颗粒的活化,以产生熵活化的种子颗粒。然而,申请人出人意料地确定,在例如种子颗粒包含聚N,N-二甲基丙烯酰胺的低聚物的方法中不需要额外活化步骤。
膨胀是颗粒形成过程的关键。在该方法中,要求单体和(当存在时)致孔剂在连续相中具有有限的溶解度。如果单体和致孔剂在连续相中具有过高的溶解度,则溶解度将不会有助于驱使单体(和任选的致孔剂)进入种子并形成溶胀的颗粒。另一方面,如果单体(和任选的致孔剂)在连续相中的溶解度不足,则通过连续相的扩散可以忽略不计,因此不可能将单体质量传递到种子,从而防止形成溶胀的颗粒。可以用log P方便地测量溶解度。完全溶胀的时间,即直到所有单体(和任选的致孔剂)共同定位于种子颗粒的时间,将在很大程度上取决于诸如温度、溶解度和粘度等因素,因此会因系统而异。因此,允许单分散种子颗粒形成溶胀颗粒的步骤的典型时间尺度将在30分钟至48小时之间变化。例如,允许单分散种子颗粒溶胀的步骤可以进行至少30分钟,例如至少1小时。允许单分散种子颗粒溶胀的步骤可以进行至少4小时、至少8小时或至少12小时。不认为溶胀时间的上限是关键的,例如认为可以使用几天,例如3天或2天的溶胀时间。
使单分散种子颗粒形成溶胀颗粒的步骤可包括混合乳液,例如将乳液混合持续基本上所有溶胀时间。允许单分散种子颗粒形成溶胀颗粒的步骤可以在约10℃至约60℃的温度下进行,例如在约10℃至约40℃的温度下进行,例如在温度在约15℃至约30℃之间。例如,混合可以在约10℃至约60℃的温度下进行,例如在约10℃至约40℃的温度下进行,例如在约15℃至约30℃的温度下进行。
溶液(a)在水溶液中包含至少2%wt的亲水性乙烯基单体。水溶液可以是水。水溶液可包含水和至多50%wt(例如至多30%wt或至多25%wt,例如至多20%wt,任选至多10%wt)的水混溶性有机溶剂。与水混溶的有机溶剂可以是C1-C4醇,例如乙醇或甲醇,例如甲醇。与水混溶的有机溶剂可以是C2-C4腈,例如乙腈。
亲水性乙烯基单体可包含任选被取代的概况性乙烯基,-CR=CR'H,其中R为H或烷基(例如其中R为-CH3或-CH2CH3),且其中R'为H、烷基(例如-CH3或-CH2CH3)或官能团(例如羧酸、膦酸、伯胺或仲胺)。亲水性乙烯基单体可包含概况性乙烯基,-CR=CH2,其中R为烷基(例如其中R为-CH3或-CH2CH3)。亲水性乙烯基单体可包含乙烯基,-CH=CH2。亲水性乙烯基单体可以是具有小于约1的log P值例如小于约0.5的log P的乙烯基单体。单体可以是logP小于约0.6(例如小于约0.52)的乙烯基单体。单体可以是log P小于约0.5的乙烯基单体。例如,单体可以是log P小于约0.3或小于约0.2的乙烯基单体,例如单体可以是log P小于约0.1的乙烯基单体。单体可以是log P小于约0的乙烯基单体,例如log P小于约-0.2。单体可以是log P大于约-3.8的乙烯基单体,例如log P大于约-3或约-2。单体可以是log P为0.6至-3的乙烯基单体。单体可以是log P为0.5至-2的乙烯基单体,例如log P为0至-2,例如log P为-0.2至-2。特别地,单体可以是乙烯基单体,其也包含亲水基团,例如丙烯酰胺单体或丙烯酸酯单体。
单体可具有R原子的特定值。当单体是丙烯酰胺、乙烯基咪唑、丙烯酰基吗啉、乙烯基膦酸和乙烯基磺酸时,特定的R原子可以是R原子<2.75。当单体是其他单体类别的丙烯酸酯时,特定的R原子可以是R原子≤2并且单体具有水溶解度(例如在25℃下)≥50g/L。
用于该方法的单体可以是至少一种式(I)化合物,其中R1为-H、-CH3、-CH2CH3或-CH2C(O)OH;R1a为-H、-CH3、-CH2CH3、-CH2C(O)OH或-C(O)R2;R1b为-C(O)R2、–P(O)(OH)2、-S(O)2OH或具有3至8个环原子的杂环,其中杂原子选自N、O或S;或R1b与R1a或R1组合为-C(O)-OC(O)-;R2选自-OR3、–N(R4)R5或-N连接的氨基酸;R3选自-H、-C1-C6烷基或-C1-C6醇;和R4和R5各自独立地选自-H、-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇;或R4和R5与它们所连接的氮一起形成具有3至8个环原子的杂环,其中杂原子选自N、O或S。
用于该方法的单体可以是至少一种式(I)化合物,其中R1为-H、-CH3、-CH2CH3或-CH2C(O)OH;R1a为-H或-C(O)R2;R1b为-C(O)R2、–P(O)(OH)2或-S(O)2OH;或R1b与R1a或R1组合为-C(O)-OC(O)-;R2是-OR3或–N(R4)R5;R3是-H、-C1-C6烷基或-C1-C6醇;和R4和R5各自独立地选自-H、-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇。
当R3是-C1-C6烷基或-C1-C6醇时,在化学上可能的情况,烷基或醇可以被1至5个取代基(例如1、2、3或4个)取代,取代基在每次出现时各自独立地选自:氧代,=NRa,=NORa,卤代,硝基,氰基,NRaRa,NRaS(O)2Ra,NRaCONRaRa,NRaCO2Ra,ORa;SRa,S(O)Ra,S(O)2ORa,S(O)2Ra,S(O)2NRaRa,CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基。例如,当R3是-C1-C6烷基或-C1-C6醇时,在化学上可能的情况,烷基或醇可以被1至5个(例如1、2、3或4个)取代基取代,取代基在每次出现时各自独立地选自ORa或CO2Ra,任选地其中Ra是H。
在R4和/或R5是-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇的情况,在化学上可能的情况下,每个可以独立地被取代1至5个(例如1、2、3或4个)取代基取代,取代基在每次出现时各自独立地选自:氧代,=NRa,=NORa,卤代,硝基,氰基,NRaRa,NRaS(O)2Ra,NRaCONRaRa,NRaCO2Ra,ORa;SRa,S(O)Ra,S(O)2ORa,S(O)2Ra,S(O)2NRaRa,CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基。例如,当R4和/或R5是-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇时,在化学上可能的情况,每个可以独立地被1至5个(例如1、2、3或4个)取代基取代,取代基在每次出现时各自独立地选自ORa或CO2Ra,任选地其中Ra是H。
R1可以是-H、-CH3或-CH2CH3。R1可以是-H或-CH3。例如,R1可以是-H。R1可以是-CH2C(O)OH。
R1a可以是-H、-CH3或-CH2CH3。R1a可以是-H。R1a可以是-C(O)R2。R1a可以是-CH2C(O)OH。
R1b可以是-C(O)R2。R1b可以是-P(O)(OH)2。R1b可以是-S(O)2OH。当R1b是-C(O)R2时,R1a可以是-H。当R1b是-C(O)R2时,R1a可以是-C(O)R2,并且R2可以任选地是-OR3。当R1b是-P(O)(OH)2时,R1a可以是-H,R1可以是-H、-CH3或-CH2CH3(例如–H)。当R1b是-S(O)2OH时,R1a可以是-H,R1可以是-H、-CH3或-CH2CH3(例如–H)。
R1b可以是具有3至8个环原子的杂环,其中杂原子选自N、O或S。R1b可以是咪唑基。
R1b与R1a或R1的组合可以是-C(O)-OC(O)-。
R2可以是-OR3。R2可以是-N(R4)R5。R2可以是-NH2、-NHCH3、-NHCH2CH3,或-NH(CH3)2。R2可以是N-连接的氨基酸。N-连接的氨基酸可选自精氨酸、组氨酸、赖氨酸、天冬氨酸、谷氨酸、丝氨酸、苏氨酸、天冬酰胺、谷氨酰胺、半胱氨酸、甘氨酸、脯氨酸、丙氨酸、β-丙氨酸和甲硫氨酸。
R3可以是-H。R3可以是-C1-C6烷基。例如,R3可以是被1或2个取代基取代的-C1-C6烷基,它们各自独立地在每次出现时选自:氧代,卤代,氰基,NRaRa,NRaCONRaRa,NRaCO2Ra,ORa;CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基,例如其中Ra是-H。R3可以是-C1-C6醇。例如,R3可以是被1或2个取代基取代的-C1-C6醇,它们各自独立地在每次出现时选自:氧代,卤代,氰基,NRaRa,NRaCONRaRa,NRaCO2Ra,ORa;CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基,例如其中Ra是-H。
R4可以是-H或-C1-C6烷基。R4可以是-C1-C6烷基。例如,R4可以是被1或2个取代基取代的-C1-C6烷基,它们各自独立地在每次出现时选自:氧代,卤代,氰基,NRaRa,NRaCONRaRa,NRaCO2Ra,ORa;CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基,例如其中Ra是-H。
R5可以是-H或-C1-C6烷基。R5可以是-C1-C6烷基。例如,R5可以是被1或2个取代基取代的-C1-C6烷基,它们各自独立地在每次出现时选自:氧代,卤代,氰基,NRaRa,NRaCONRaRa,NRaCO2Ra,ORa;CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基,例如其中Ra是-H。
R4和R5与它们所连接的氮一起可形成具有3至8个环原子(例如4、5或6个环原子)的杂环,其中杂原子选自N、O或S。R4和R5与它们所连接的氮一起形成吗啉代杂环。
用于该方法的单体可以是至少一种式(I)、(Ia)、(Ib)或(1c)化合物。
式(I)、(Ia)、(Ib)或(Ic)化合物的log P值可小于约1,例如log P小于约0.5。式(I)、(Ia)、(Ib)或(1c)化合物可具有小于约0.6(例如小于约0.52)的log P。式(I)、(Ia)、(Ib)或(1c)化合物可具有小于约0.5的log P。例如,式(I)、(Ia)、(Ib)或(1c)的化合物可具有小于约0.3或小于约0.2的log P,例如式(I)、(Ia))、(Ib)或(1c)的化合物可具有小于约0.1的log P。式(I)、(Ia)、(Ib)或(1c)化合物可具有小于约0的log P,例如log P小于约-0.2。式(I)、(Ia)、(Ib)或(Ic)化合物的log P大于约-3.8,例如log P大于约-3或约-2。式(I)、(Ia)、(Ib)或(1c)化合物的log P为0.6至-3。式(I)、(Ia)、(Ib)或(1c)化合物的log P为0.5至-2,例如log P为0至-2,例如log P为-0.2到-2。
式(I)或(Ia)化合物可具有R原子<2.75,其中化合物是丙烯酰胺、乙烯基咪唑、丙烯酰基吗啉、乙烯基膦酸或乙烯基磺酸;或R原子≤2且水溶解度≥50g/L,其中化合物是丙烯酸酯或其他单体类。式(Ib)或(Ic)化合物可具有<2.75的R原子
单体可包含至少一种亲水性乙烯基单体,其包含选自-C(O)NH2、-C(O)NHCH3、-C(O)NHCH2CH3或-C(O)N(CH3)2的酰胺基团。单体可包含至少一种包含伯酰胺基团(-C(O)NH2)的亲水性乙烯基单体。
特别可提及丙烯酰胺单体和/或丙烯酸单体。合适的单体包括丙烯酰胺(丙-2-烯酰胺),N-(羟甲基)丙烯酰胺,N-羟乙基丙烯酰胺,N-[三(羟甲基)甲基]丙烯酰胺,4-丙烯酰基吗啉,3-丙烯酰胺丙酸,甲基丙烯酰胺,N-(2-羟乙基)甲基丙烯酰胺,N-(3-氨基丙基)甲基丙烯酰胺,羟丙基丙烯酰胺,N,N-二甲基丙烯酰胺,丙烯酸2-羟乙酯,甲基丙烯酸2-羟乙酯,丙烯酸;log P值小于约1(例如log P值小于约0.5)的其它丙烯酰胺单体,丙烯酸单体,甲基丙烯酰胺单体或甲基丙烯酸单体;R原子<2.75的其他丙烯酰胺单体或甲基丙烯酰胺单体;和R原子≤2且水溶解度(例如在25℃)≥50g/L的其他丙烯酸单体或甲基丙烯酸单体。
溶液(a)可包含不超过60%wt的亲水性乙烯基单体。例如,溶液(a)可包含不超过55%wt或50%wt的亲水性乙烯基单体。例如,溶液(a)可包含不超过45%wt或40%wt的亲水性乙烯基单体;例如,溶液(a)可包含不超过30%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt的亲水性乙烯基单体。溶液(a)可包含至少5%wt的亲水性乙烯基单体。溶液(a)可包含至少8%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过60%wt的亲水性乙烯基单体,例如溶液(a)可包含至少8%wt的亲水性乙烯基单体和不超过60%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过50%wt的亲水性乙烯基单体,例如溶液(a)可包含至少8%wt的亲水性乙烯基单体和不超过50%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过45%wt的亲水性乙烯基单体,例如溶液(a)可包含至少8%wt的亲水性乙烯基单体并且不超过45%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过30%wt的亲水性乙烯基单体,例如溶液(a)可包含至少8%wt的乙烯基单体和不超过30%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过15%的亲水性乙烯基单体,例如溶液(a)可包含约10%wt的亲水性乙烯基单体。
亲水性乙烯基单体可包含单体混合物。例如,单体可包含至少一种如上定义的单体和至少一种相容的官能单体。示例性官能单体是如本文所定义的亲水性乙烯基单体,其包含羧酸(-COOH)、膦酸(-P(O)(OH)2)、磺酸(-S(O)2OH)、伯胺或仲胺。例如,单体可包含至少一种式(I)、(Ia)或(Ib)的单体,其不包含羧酸(-COOH)、膦酸(-P(O)(OH)2)、磺酸(-S(O)2OH)、伯胺或仲胺;和式(I)、(Ia)、(Ib)或(Ic)的单体,其包含至少一种羧酸(-COOH)、膦酸(-P(O)(OH)2)、磺酸(-S(O))2OH)、伯胺或仲胺(例如包含至少一种羧酸(-COOH)或膦酸(-P(O)(OH)2))。
官能单体可以是乙烯基单体,其log P值小于约1(例如log P小于约0.5),其包含羧酸或伯胺。官能单体可以是乙烯基单体,其log P小于约0.6。官能单体可以是乙烯基单体,其log P小于约0.52。官能单体可以是乙烯基单体,其log P小于约0.5。例如,官能单体可以是log P小于约0.3或小于约0.2的乙烯基单体,例如,官能单体可以是log P小于约0.1的乙烯基单体。官能单体可以是乙烯基单体,其log P小于约0,例如log P小于约-0.2。官能单体可以是乙烯基单体,其log P大于约-3.8,例如log P大于约-3或约-2。官能单体可以是乙烯基单体,其log P为0.6至-3。官能单体可以是乙烯基单体,其log P为0.5至-2,例如logP为0至-2,例如log P为-0.2至-2。官能单体可以是包含羧酸或伯胺的式(I)、(Ia)或(Ib)化合物。官能单体可以是丙烯酰胺单体,其包含羧酸、膦酸、磺酸或伯胺。官能单体可包含羧酸、膦酸或磺酸,例如可包含羧酸或膦酸。合适的官能单体包括3-丙烯酰胺基丙酸、4-丙烯酰胺基丁酸、5-丙烯酰胺戊酸、N-(3-氨基丙基)甲基丙烯酰胺、丙烯酸、富马酸、衣康酸、乙烯基膦酸、乙烯基磺酸和1-乙烯基咪唑。其他合适的官能单体包括酸酐,例如马来酸酐或衣康酸酐,其可在聚合过程后水解以提供羧酸基团。
当存在至少一种官能单体时,官能单体的量可为约0.1至约100%摩尔,例如约0.2至约50%摩尔,例如约0.5至约40%摩尔或约1至约30%摩尔(例如约2至约20%摩尔)。例如,官能单体的量可以是至少约2至约100%摩尔,例如约2至约50%摩尔,例如约4至约40%摩尔或约4至约30%摩尔(例如约2至约20%摩尔)。官能单体的量可为约5至约100%摩尔,例如约5至约80%摩尔。%摩尔可以指官能单体的量,以总亲水性乙烯基单体的摩尔%计。官能单体的量可为约0.1至约60%摩尔,例如约0.2至约50%摩尔,例如约0.5至约40%摩尔。官能单体的量可以为约1至约60%wt,例如约2至约50%wt,例如约2或3至约40%wt。官能单体的量可以为约0.1至约10%wt,例如约0.2至约5%wt,例如约0.5至约2%wt。%摩尔可以指在溶液(a)(即,在水中包含至少2重量%的亲水性乙烯基单体的溶液)的总亲水性乙烯基单体中包括的官能化单体的摩尔%。
在高度交联的颗粒中,单体可以是或包含交联剂。例如,单体可以是或包含至少一种式(IIa)或(IIb)的化合物。
在方法中使用的交联剂可以包括至少两个(例如2个)乙烯基(-CH=CH2)在该方法中中使用的交联剂可以是式(IIa)或式(IIb)的至少一种化合物,其中R6选自-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6羟烷基-,-C1-C6醚-,或包含2至100个C2-C3醚单元的聚醚;和R7和R8各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基,-C1-C6羟烷基或-C1-C6醚;或R7和R8连接在一起形成-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6羟烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;R9是-N(R11)C(O)CH=CH2;R10选自-H和–N(R12)C(O)CH=CH2;和R11和R12各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基,-C1-C6羟烷基或-C1-C6醚。
交联剂可以是至少一种式(IIa)化合物。交联剂可以是至少一种式(IIb)化合物。
在化学上可能的情况下,R6、R7、R8、R9、R10、R11和R12可以独立地被1至5个取代基取代,所述取代基各自独立地选自:氧代,=NRa,=NORa,卤代,硝基,氰基,NRaRa,NRaS(O)2Ra,NRaCONRaRa,NRaCO2Ra,ORa;SRa,S(O)Ra,S(O)2ORa,S(O)2Ra,S(O)2NRaRa,CO2RaC(O)Ra,CONRaRa,C1-C4-烷基,C2-C4-烯基,C2-C4-炔基,C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H、C1-C4烷基和C1-C4烯基。
R6可以选自-C1-C6烷基-、-C1-C6杂烷基-、-C1-C6环烷基-、-C1-C6羟烷基-和-C1-C6醚-。R6可以选自-C1-C6烷基-和-C1-C6羟烷基-。R6可以是-C1-C6烷基-,例如-CH2-、-(CH2)2-、-(CH2)3-或-(CH2)4-,例如-(CH2)2-。R6可以是-C1-C6羟烷基-,例如-C(OH)H-、-(C(OH)H)2-、-(C(OH)H)3-、或-(C(OH)H)4-,例如-(C(OH)H)2-。
R6可以是-C1-C6杂烷基-,任选地其中杂原子是胺(例如叔胺)。例如,在杂原子上被C(O)Ra取代的-C1-C6杂烷基-,任选地其中杂原子是胺,例如R6可以是-CH2CH2N(C(O)CH=CH2)CH2CH2-。
当R6是聚醚时,聚醚可以是直链或支链的。R6可以是包含2至100个C2-C3醚单元的聚醚,例如包含2至50个C2-C3醚单元的聚醚。R6可以是包含2至100个C2醚单元的聚醚,例如包含2至50个C2醚单元的聚醚。例如,R6可以是-(CH2)r(OCH2CH2)nO(CH2)s,其中r和s各自独立地为2或3(例如2);n为1至100(例如5至50或5至25)的整数。不希望受任何理论束缚,据信包含聚醚(例如其中R6是聚醚)的交联剂在水相中具有优异的溶解性。这意味着,虽然这种交联剂可用于提供具有低水平交联的颗粒(例如1-20%wt交联剂,或1-10%wt交联剂),但这种包含交联剂的聚醚特别适合于提供包含相对高的交联水平的颗粒,例如>20%wt交联剂,>25%wt交联剂,或>30%wt交联剂。例如,交联水平可以是10-90%wt交联剂,20-80%wt交联剂或25-75%wt交联剂,例如25-60%wt交联剂或30-50%wt交联剂。
R7和/或R8和/或R11和/或R12可以是H。例如,R7和/或R8可以是H。例如,R11和/或R12可以是H。
R7和R8可以连接在一起形成-C1-C6烷基-、-C1-C6杂烷基-、-C1-C6环烷基-、-C1-C6羟烷基-、-C1-C6醚-、包含2至100个C2-C3醚单元的聚醚。当R7和R8连接在一起形成-C1-C6烷基-时,由R7和R8定义的基团可以与R6相同。例如,R6可以是-C1-C6烷基-并且R7和R8可以是-C1-C6烷基-。
R6可以选自-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;R7和R8可以各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基或-C1-C6醚;或R7和R8连接在一起形成-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;和R11和R12各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基或-C1-C6醚。
式(IIa)或(IIb)化合物的log P值可小于约1,例如log P小于约0.5。式(IIa)或(IIb)化合物的log P小于约0.6。式(IIa)或(IIb)化合物可具有小于约0.5的log P。例如,式(IIa)或(IIb)的化合物可具有小于约0.3或小于约0.2的log P,例如式(IIa)或(IIb)的化合物可具有小于约0.1的log P。式(IIa)或(IIb)化合物可具有小于约0的log P,例如logP小于约-0.2。式(IIa)或(IIb)化合物可具有大于-3.8的log P,例如大于约-3或约-2的logP。式(IIa)或(IIb)化合物的log P为0.6至-3。式(IIa)或(IIb)化合物的log P为0.5至-2,例如log P为0至-2,例如log P为-0.2至-2。
式(IIa)或(IIb)化合物可具有R原子<2.75。
用于本方法的实施方案的示例性交联剂包括N,N'-(1,2-二羟基亚乙基)双丙烯酰胺,N,N'-亚甲基双(丙烯酰胺),N,N'-亚乙基双(丙烯酰胺),哌嗪二丙烯酰胺,甘油1,3-二甘醇酯二丙烯酸酯。N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺,聚乙二醇二丙烯酰胺(MW≤2000),4-臂PEG-丙烯酰胺(MW≤2000),N,N-双(2-丙烯酰胺基乙基)丙烯酰胺。示例性交联剂N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺、聚乙二醇二丙烯酰胺(MW≤2000)和4-臂PEG-丙烯酰胺(MW)≤2000),(例如N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺)特别适用于高度交联的颗粒和机械上更稳定的颗粒,即具有至少20%wt交联剂的交联水平的颗粒(例如至少30%wt交联剂的交联水平)。实施方案还可包括使用交联剂的组合。
交联剂可包括N,N'-亚甲基双(丙烯酰胺),N,N'-亚乙基双(丙烯酰胺),哌嗪二丙烯酰胺,N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺,聚乙二醇二丙烯酰胺(MW≤2000),4-臂PEG-丙烯酰胺(MW≤2000),N,N-双(2-丙烯酰胺基乙基)丙烯酰胺。
交联剂可以是不包含伯胺、仲胺、羟基或羧酸的化合物。交联剂可以是式(IIa)或式(IIb)的化合物,其不包含伯胺、仲胺、羟基或羧酸。
通过该方法形成的在交联的水凝胶聚合物颗粒中的交联水平可表示为包括在聚合中使用的总单体中的交联剂单体的重量百分比(重量%)。典型的交联水平包括>5%wt交联剂,例如>10%wt交联剂,或>15%wt交联剂,例如>20%wt交联剂。交联水平也可以是例如5-60%wt交联剂,例如10-50%wt交联剂。交联水平也可以是例如15-40%wt交联剂,例如20-40%wt交联剂,例如20-30%wt交联剂。因此,溶液(a)可以包含相当于亲水性乙烯基单体量的5-60%,例如亲水性乙烯基单体的量的10-50%的交联剂的%wt量。因此,溶液(a)可包含以%wt计的交联剂量,其对应于例如亲水性乙烯基单体量的15-40%,例如亲水性乙烯基单体量的20-40%,例如亲水性乙烯基单体量的20-30%。
交联水平可以是>30%wt交联剂或>40%wt交联剂(例如,>50%wt交联剂),例如在高度交联的颗粒中。交联水平可以是10-90%wt交联剂,20-80%wt交联剂或25-75%wt交联剂,例如25-60%wt交联剂或30-50%wt交联剂。在高度交联的颗粒中,交联水平可以高达100%wt交联剂,例如亲水性乙烯基单体可以是交联剂,例如亲水性乙烯基单体和交联剂可以是相同的化合物。因此,溶液(a)可以包含相当于亲水性乙烯基单体量的20-80%的交联剂量(%wt),例如亲水性乙烯基单体量的25-60%。
作为特别的亲水性乙烯基单体,可以提及丙烯酰胺(丙-2-烯酰胺),其中1,2-二羟基双丙烯酰胺是其合适的交联剂。作为特别的亲水性乙烯基单体,可提及羟甲基丙烯酰胺,其中N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺是其合适的交联剂。作为特别的亲水性乙烯基单体,可以提及羟乙基丙烯酰胺,其中N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺是其合适的交联剂。其他特定的亲水性乙烯基单体和交联剂列于表1中。
稳定剂可以是或包含非离子表面活性剂,例如非离子聚合物表面活性剂。非离子表面活性剂可包含至少一种低聚表面活性剂。例如,非离子表面活性剂可包含低聚表面活性剂。非离子聚合物或低聚表面活性剂可包含至少一个聚氧乙烯基或至少一个聚氧丙氧基。非离子聚合物表面活性剂可包含至少一个聚乙烯氧基。非离子低聚表面活性剂可包含至少一个聚乙烯氧基或至少一个聚丙烯氧基。稳定剂可选自或包括hypermer 2296、AbilWE09、Abil EM90和山梨糖醇单油酸酯(Span 80)。
聚合可包括活化自由基引发剂。自由基引发剂通常通过加热活化以形成将引发聚合反应的自由基,然而可以使用其他活化方法,例如辐射。活化自由基引发剂可包括加热包含溶胀颗粒的乳液。加热通常包括将乳液加热至高于允许单分散种子颗粒形成溶胀颗粒的步骤的温度的温度。加热可包括加热至至少40℃的温度,例如加热至至少50℃的温度,例如至少60℃的温度或至少70℃的温度。
自由基引发剂可以是或包含过氧化物引发剂或偶氮引发剂。例如,自由基引发剂可以是过氧化物引发剂。例如,自由基引发剂可以是偶氮引发剂。示例性的自由基引发剂是2,2'-偶氮二-2,4-二甲基戊腈。示例性的自由基引发剂是2,2'-偶氮二(2-甲基丁腈)。自由基引发剂可以存在于溶液(a)中。自由基引发剂可以存在于溶液(b)中。自由基引发剂在乳液中的含量可为约0.1wt%至约1.5wt%。例如,自由基引发剂在乳液中的含量可为约0.6wt%至约1.2wt%;例如,乳液中自由基引发剂可以约0.8%的量存在于乳液中。
用于形成单分散交联水凝胶聚合物颗粒的方法中的有机溶剂可包含(或由以下组成)脂族烃、脂族碳酸酯、脂族酯、脂族醚、芳族烃或硅氧烷中的至少一种,或它们的组合。例如,有机溶剂可包含(或由以下组成)脂族烃、脂族碳酸酯、脂族酯、脂族醚、芳族烃和硅氧烷中的至少两种;或者,有机溶剂可以包含(或由以下组成)脂族烃、脂族碳酸酯、脂族酯、脂族醚、芳族烃和硅氧烷中的至少三种。有机溶剂可包含庚烷和甲苯的混合物(或由其组成)。有机溶剂可包含脂族烃的混合物(或由其组成)。该有机溶剂可包括双(2-乙基己基)碳酸酯(或由其组成)。该有机溶剂可包括双(2-乙基己基)碳酸酯、脂族烃和芳族烃(或由其组成)。有机溶剂可包含己二酸双(2-乙基己基)酯(或由其组成)。
添加到油包水乳液(c)中的单分散种子颗粒可具有根据本文公开的制备单分散种子颗粒的方法形成的单分散种子颗粒的特征。添加到油包水乳液(c)中的单分散种子颗粒可以是根据本文公开的制备单分散种子颗粒的方法形成的单分散种子颗粒。单分散种子颗粒可以是本公开的单分散种子颗粒,例如本发明的单分散种子颗粒。
在实施方案中,本发明提供形成单分散交联水凝胶聚合物颗粒的方法。该方法包括:形成溶液(a):至少2%wt的亲水性乙烯基单体的水溶液,该水溶液还包含链转移剂;形成稳定剂在有机溶剂中的溶液(b),其中所述有机溶剂不与水混溶,并且其中溶液(a)和溶液(b)的至少一种包含自由基引发剂;混合溶液(a)和(b)以形成油包水乳液(c)并向乳液中加入单分散种子颗粒;允许单分散种子颗粒在所述乳液中形成溶胀颗粒;聚合该溶胀颗粒以形成单分散聚合物颗粒;形成稳定剂在有机溶剂中的溶液(d),其中所述有机溶剂不与水混溶;形成溶液(e):至少2%wt的亲水性乙烯基单体的水溶液,该水溶液还包含含有至少两个乙烯基的交联剂,其中溶液(d)和溶液(e)中的至少一种包含自由基引发剂;混合溶液(d)和(e)以形成油包水乳液(f)并添加单分散聚合物颗粒到所述乳液中;允许单分散聚合物颗粒在乳液中形成溶胀的聚合物颗粒;和聚合该溶胀的聚合物颗粒以形成单分散交联水凝胶聚合物颗粒。如下所述,该方法可以被认为是两阶段方法,因为它包括第一溶胀步骤和第一聚合步骤,然后是第二溶胀步骤和第二聚合步骤。与单阶段方法相比,两阶段方法可以提供大的单分散交联水凝胶交联聚合物颗粒。
与单阶段方法类似,两阶段方法涉及在油连续相中用含水不连续相溶胀种子颗粒。该方法的示意图在图3(用特定单体说明)和图4(更一般地说明)中提供,其可以被认为是两阶段方法,因为其包括两个溶胀步骤和两个聚合步骤。在图3和4图解的方法被方便地划分为4个步骤:用单体103和链转移剂105溶胀单分散种子颗粒100,以形成溶胀的(单分散)的种子颗粒110;在溶胀的种子颗粒中聚合单体以形成(非交联的)亲水聚合物颗粒130;用单体103和交联剂102溶胀亲水性聚合物颗粒,以形成溶胀的亲水性聚合物颗粒140;和在水凝胶聚合物颗粒中聚合单体以形成交联的水凝胶聚合物颗粒150。在第一步之前,形成油包水乳液。通过将包含单体例如羟甲基丙烯酰胺103和链转移剂例如1-硫代甘油105的水溶液与包含空间稳定剂的油相混合来形成油包水乳液,其中所述乳液在搅动水和油相(例如通过搅拌)时形成。油包水乳液通常还含有引发剂,其可以加入油相和/或水相中。引发剂是一种化合物,其在活化后将引发单体的聚合。单分散种子颗粒100包含聚N,N-二甲基丙烯酰胺131的非交联低聚物,并且被认为是“活化的种子颗粒”。种子颗粒100可以如本申请其他地方所述制备。
在第一步中,将单分散种子颗粒100加入到油包水乳液中,并将乳液搅拌一段时间(例如至少30分钟或至少1小时,通常4-48小时)。在此期间,单体103和链转移剂105扩散到活化的种子颗粒100中以形成溶胀的种子颗粒110。溶胀的种子颗粒110包含至少单体103、链转移剂105和来自活化的种子颗粒100的聚合物的混合物。溶胀的种子颗粒110还可以包括其他组分,例如一种或多种致孔剂,如果包含在油包水乳液中,它们可以进入颗粒。例如,在所示的方法中,水也存在于溶胀的种子颗粒110中,并且该水可以被认为是致孔剂。第二步包括聚合单体103以形成(非交联的)亲水聚合物颗粒130。在第二步中,通过活化引发剂,例如通过加热乳液来引发聚合。链转移剂105的存在导致水凝胶聚合物颗粒中聚羟甲基丙烯酰胺132(例如低聚物)的相对短的聚合物。这些相对短的聚合物与缺乏交联相结合意味着亲水性聚合物颗粒130可以用作适合于进一步轮次溶胀和聚合的较大“活化的种子颗粒”。亲水性聚合物颗粒将含有聚羟基甲基丙烯酰胺132聚合物的非交联的相对短的聚合物,以及聚N,N-二甲基丙烯酰胺131的(通常较小比例)的非交联的低聚物。
在第三步之前,形成油包水乳液。通过将包含单体例如羟甲基丙烯酰胺103和交联剂例如1,2-二羟基双丙烯酰胺102的水溶液与包含空间稳定剂的油相混合来形成油包水乳液。如果需要(非常)高度交联的颗粒,也可以用交联剂代替单体,使得油包水乳液中存在的唯一单体是交联单体(即交联剂)。油包水乳液通常还含有引发剂,其可以加入油相或水相中。引发剂是一种化合物,其在活化时将引发单体和交联剂的聚合。在第三步骤(第二轮溶胀)中,将亲水性聚合物颗粒130加入到油包水乳液中,并将乳液搅拌一段时间(例如至少30分钟或至少1小时,通常持续4-48小时)。在此期间,单体103和交联剂102扩散到亲水性聚合物颗粒130中以形成溶胀的水凝胶聚合物颗粒140。溶胀的亲水聚合物颗粒140包含至少单体103、交联剂102和来自亲水聚合物颗粒130的聚合物的混合物。溶胀的水凝胶聚合物颗粒140还可以包括其他组分,例如一种或多种致孔剂,如果包含在油包水乳液中,它们可以进入颗粒。例如,在所示的方法中,水也存在于溶胀的种子颗粒110中,并且该水可以被认为是致孔剂。第四步包括单体103和交联剂102的聚合以形成交联的水凝胶聚合物颗粒104。在第四步中,通过活化引发剂引发聚合,例如通过加热乳液。
单体、链转移剂、自由基引发剂、稳定剂、交联剂、有机溶剂和任选的致孔剂可各自如本文其他地方所定义。单体可以是或包含羟甲基丙烯酰胺或羟乙基丙烯酰胺。链转移剂可以是或包含1-硫代甘油。自由基引发剂可以是或包含偶氮双二甲基戊腈,例如2,2'-偶氮二(2-甲基丁腈)(AMBN)。稳定剂可以是或包含Hydpermer2296、Abil WE09和Abil EM90。交联剂可以是1,2-二羟基双丙烯酰胺或N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺。
溶液(a)可包含不超过60%wt的亲水性乙烯基单体。例如,溶液(a)可包含不超过55%wt或50%wt的亲水性乙烯基单体。例如,溶液(a)可包含不超过45%wt或40%wt的亲水性乙烯基单体;例如,溶液(a)可包含不超过30%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt的亲水性乙烯基单体。溶液(a)可包含至少5%wt的亲水性乙烯基单体。溶液(a)可包含至少8%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过60%wt的亲水性乙烯基单体,例如溶液(a)可包含至少8%wt的亲水性乙烯基单体和不超过60%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过50%wt的亲水性乙烯基单体,例如溶液(a)可包含至少8%wt的亲水性乙烯基单体和不超过50%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过45%wt的亲水性乙烯基单体,例如溶液(a)可包含至少8%wt的亲水性乙烯基单体和不超过45%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过30%wt的亲水性乙烯基单体,例如溶液(a)可包含至少8%wt的乙烯基单体和不超过30%wt的亲水性乙烯基单体。溶液(a)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过15%的亲水性乙烯基单体,例如溶液(a)可包含约10%wt的亲水性乙烯基单体。
溶液(e)可包含不超过60%wt的亲水性乙烯基单体。例如,溶液(e)可包含不超过55%wt或50%wt的亲水性乙烯基单体。例如,溶液(e)可包含不超过45%wt或40%wt的亲水性乙烯基单体;例如,溶液(e)可包含不超过30%wt的亲水性乙烯基单体。溶液(e)可包含至少2%wt的亲水性乙烯基单体。溶液(e)可包含至少5%wt的亲水性乙烯基单体。溶液(e)可包含至少8%wt的亲水性乙烯基单体。溶液(e)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过60%wt的亲水性乙烯基单体,例如溶液(e)可包含至少8%wt的亲水性乙烯基单体和不超过60%wt的亲水性乙烯基单体。溶液(e)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过50%wt的亲水性乙烯基单体,例如溶液(e)可包含至少8%wt的亲水性乙烯基单体和不超过50%wt的亲水性乙烯基单体。溶液(e)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过45%wt的亲水性乙烯基单体,例如溶液(e)可包含至少8%wt的亲水性乙烯基单体和不超过45%wt的亲水性乙烯基单体。溶液(e)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过30%wt的亲水性乙烯基单体,例如溶液(e)可包含至少8%wt的乙烯基单体和不超过30%wt的亲水性乙烯基单体。溶液(e)可包含至少2%wt%(例如5%wt)的亲水性乙烯基单体和不超过15%的亲水性乙烯基单体,例如溶液(e)可包含约10%wt的亲水性乙烯基单体。
在高度交联的颗粒中,溶液(e)的亲水性乙烯基单体可以是或包含交联剂。例如,单体可以是或包含至少一种式(IIa)或(IIb)的化合物。
通过该方法形成的交联的水凝胶聚合物颗粒中的交联水平可以表示为聚合中(即在第二聚合步骤中)使用的总单体中包含的交联剂单体的重量百分比(%wt)。交联剂单体的%wt可以等于基质聚合物中交联剂的%wt(即交联聚合物颗粒的干重中交联剂的%wt)。典型的交联水平包括>5%wt交联剂,例如>10%wt交联剂,或>15%wt交联剂,例如>20%wt交联剂(例如>30%wt交联剂)。交联水平也可以是例如5-60%wt交联剂,例如10-50%wt交联剂。交联水平也可以是例如15-40%wt交联剂,例如20-40%wt交联剂,例如20-30%wt交联剂。交联度可以是20-80%wt交联剂或25-75%wt交联剂,例如25-60%wt交联剂或30-50%wt交联剂;例如,在高密度颗粒中。因此,溶液(e)可以包含相当于亲水性乙烯基单体量的5-60%,例如亲水性乙烯基单体的量的10-50%的交联剂的%wt量。因此,溶液(e)可包含以%wt计的交联剂量,其对应于例如亲水性乙烯基单体量的15-40%,例如亲水性乙烯基单体量的20-40%,例如亲水性乙烯基单体量的20-30%。
交联水平可以是>30%wt交联剂或>40%wt交联剂(例如,>50%wt交联剂),例如在高度交联的颗粒中。交联水平可以是10-90%wt交联剂,20-80%wt交联剂或25-75%wt交联剂,例如25-60%wt交联剂或30-50%wt交联剂。在高度交联的颗粒中,交联水平可以高达100%wt交联剂,例如溶液(e)中亲水性乙烯基单体可以是交联剂,例如亲水性乙烯基单体和交联剂可以是相同的化合物。溶液(e)可以包含相当于亲水性乙烯基单体量的20-80%,例如亲水性乙烯基单体的量的25-60%的交联剂的%wt量。
自由基引发剂在每种或至少一种乳液中的含量可为约0.1wt%至约1.5wt%。例如,自由基引发剂可以以约0.6wt%至约1.2wt%的量存在于每种乳液或至少一种乳液中;例如,自由基引发剂可以以每种或至少一种乳液中约0.8wt%的量存在于每种乳液或至少一种乳液中。
链转移剂的加入通过与增长的聚合物链的自由基反应来终止链并将单电子转移到衍生自链转移剂的自由基种类,从而降低了单分散聚合物颗粒的聚合物的分子量。然后,衍生自链转移剂的自由基种类可与单体反应以从单体形成自由基,然后单体可与另一单体反应以开始形成新的聚合物链。链转移剂可以是硫醇或卤代烷。例如,链转移剂可选自硫醇(例如1-硫代甘油、1-辛硫醇、己烷硫醇、6-巯基-1-己醇和苄基硫醇)、烷基硫醇(例如1-辛硫醇、己烷硫醇)和硫醇(例如1-硫代甘油)。链转移剂可以是或包含1-硫代甘油。链转移剂的总加入量可以是每10mol单体1mol至每300mol单体1mol,例如每20mol单体1mol至每100mol单体1mol,例如每30mol单体约1mol链转移剂的范围。
根据本发明方法形成的单分散交联水凝胶聚合物颗粒可以是多孔的。例如,形成的单分散交联的水凝胶聚合物颗粒可具有至少5%,例如至少10%的孔隙率。本公开包括多孔单分散交联水凝胶聚合物颗粒,其孔隙率为20%至95%,特别是30%至90%,例如40%至90%,例如50%至80%。形成的多孔单分散交联水凝胶聚合物颗粒可以对溶剂化分子是可透的,例如,多孔单分散交联水凝胶聚合物颗粒可以对寡核苷酸和核酸扩增试剂和测序试剂(例如引物、核苷酸和聚合酶)是可透的。
根据本发明的方法形成的单分散交联的水凝胶聚合物颗粒的众数直径可以为0.5μm至10μm,例如0.5μm至5μm。形成的单分散的交联的水凝胶聚合物颗粒具有至少500nm的众数直径,例如至少600nm,任选至少800nm,如在具有直径为至少1微米的颗粒的情况下。根据本发明的方法形成的单分散的交联的水凝胶聚合物颗粒可具有不超过10μm的众数直径,例如不大于5μm,任选地不超过3μm,如在颗粒直径不大于2μm的情况下。如下面标题“分析方法”下描述的,可确定根据本发明的方法形成的单分散交联水凝胶聚合物颗粒的尺寸和尺寸分布。
根据本发明的方法形成的单分散的交联水凝胶聚合物颗粒可以具有小于20%的CV,例如小于15%。例如,所述颗粒可具有小于10%的CV,诸如小于8%的CV,例如小于5%的CV。
根据本发明的方法形成的单分散的交联水凝胶聚合物颗粒可以包含官能团。官能团可以选自羟基、羧酸(-COOH)、伯胺或仲胺。在一个实施方案中,所述官能团由亲水性乙烯基单体(例如式(I)化合物)而不是交联剂(例如式(IIa)或式(IIb)化合物)提供。可以增强官能团以促进与靶分析物(例如寡核苷酸)或靶受体的结合。本文在涉及“颗粒的用途”的部分中描述了增强颗粒的官能团的示例性方法。
根据本发明方法形成的单分散交联水凝胶聚合物颗粒可以包括附接至所述颗粒的寡核苷酸。所述寡核苷酸可以通过接头连接到单分散的交联的水凝胶聚合物颗粒。例如,单分散水凝胶聚合物颗粒中的每一个(或一部分)可包含附着于颗粒的多个寡核苷酸。多个寡核苷酸可以对于每个单独的交联水凝胶聚合物颗粒是相同的。例如,第一交联水凝胶聚合物颗粒可以包括附接到第一颗粒的具有第一序列的多个寡核苷酸,和第二交联水凝胶聚合物颗粒可以包括附接到第二交联水凝胶聚合物颗粒的具有第二序列的多个寡核苷酸。当单分散的交联的水凝胶聚合物颗粒是多孔的,所述寡核苷酸可以连接到颗粒的外表面上或附连在孔的内部。孔可以具有足够的尺寸以使颗粒对寡核苷酸可透,使得寡核苷酸可以部分或完全位于孔内,即使聚合酶与寡核苷酸连接也是如此。
根据本发明的方法形成的单分散交联的水凝胶聚合物颗粒可以在水溶液的典型温度范围内在水溶液中稳定(即,耐聚合物降解)。形成的单分散交联的水凝胶聚合物颗粒可以在高达约100℃的温度下稳定。例如,形成的单分散交联的水凝胶聚合物颗粒可以在约0℃至约100℃的温度范围内稳定。
本发明的一个实施方案提供了通过本文所述的制备方法获得的颗粒或具有通过本文所述的制备方法获得的颗粒的特征的颗粒。
本文所述的聚合物颗粒形成方法可以加工成高度可再现和可放大的。因此,本发明可以实现批次之间和批次之内的一致性,这是工业应用的先决条件。本发明还可以生产中试规模的批次,例如至少300g以及千克规模的工业批次。
本文所述的聚合物颗粒形成方法可以一致地进行,而没有实践中乳液聚合可能产生的问题,例如颗粒的附聚以及产物的变化。
磁性颗粒的制备
在一个实施方案中,提供了形成单分散磁性水凝胶聚合物颗粒的方法,包括形成包含单分散水凝胶聚合物颗粒和磁性材料或磁性材料前体的含水悬浮液。如果存在,磁性材料前体被转换成磁性材料。允许磁性材料与聚合物颗粒结合。磁性材料前体可以通过例如形成pH小于6的水悬浮液来提供,所述水悬浮液包含单分散水凝胶聚合物颗粒和Fe2+和/或Fe3+离子;通过将pH值提高到8以上,可以将其转化为磁性材料;并允许磁性材料沉淀。根据形成本文公开的单分散水凝胶聚合物颗粒的方法可以制备(例如制备)单分散水凝胶聚合物颗粒。
pH小于6的水悬浮液可包含Fe2+和Fe3+离子。pH值小于6的水悬浮液可以包含的FeCl2和FeCl3。pH小于6的水悬浮液可以包含Fe2+和Fe3+离子,并且还可以包含选自Al、Mn、Ni、Cu、Co、Zn、Ca、Ge、Te、Ti或Sn或其组合的金属的多价阳离子。当含水悬浮液包含选自Al、Mn、Ni、Cu、Co、Zn、Ca、Ge、Te、Ti或Sn或其组合的金属的多价阳离子时,多价阳离子的量可以包括Fe2+和Fe3+离子的量的至多5摩尔%。
将pH升高至大于8可包括向含水悬浮液中添加氨(例如氨水)。
磁性材料可以沉淀为纳米颗粒磁性材料和/或超顺磁性材料。磁性材料可以作为顺磁性材料沉淀。磁性材料可以作为超顺磁性材料沉淀。磁性材料可以作为铁磁材料、亚铁磁材料或两者沉淀。在单分散水凝胶聚合物颗粒是多孔的情况下,磁性材料可以在孔中沉淀,例如磁性材料可以作为超顺磁性材料在孔中沉淀。
磁性材料存在于通过该方法形成的单分散磁性水凝胶聚合物颗粒的总量通常大于20%,优选大于25%,期望大于或等于30%,例如至多85%wt或至少50wt%,例如30至80wt%。百分比是基于颗粒的总干重基于磁性材料(例如金属氧化物)的重量计算的重量百分比。在磁性材料由超顺磁性材料构成的情况下,存在的超顺磁性材料的总量可以大于20%,优选大于25%,期望大于或等于30%,例如至多85%wt或至少50%wt,例如30至80wt%,百分比各自是基于颗粒的总干重基于磁性材料(例如金属氧化物)的重量计算的重量百分比。
涂层颗粒的制备
在一个实施方案中,提供了一种形成涂覆的单分散水凝胶聚合物颗粒的方法,包括:形成包含单分散水凝胶聚合物颗粒和至少一种环氧化物或硅酸盐或原硅酸盐的悬浮液;使所述至少一种环氧化物的环氧基与所述颗粒的表面官能团反应;或使硅酸盐或硅烷反应形成二氧化硅涂层。根据形成本文公开的单分散水凝胶聚合物颗粒的方法可以制备单分散水凝胶聚合物颗粒。单分散水凝胶聚合物颗粒可以根据本文公开的形成单分散磁性水凝胶聚合物颗粒的方法制备。
在实施方案中,该方法包括所述至少一种环氧化物的环氧基与颗粒的表面官能团反应。悬浮液可包含有机溶剂(例如有机腈,例如乙腈;或醇,例如异丙醇)。反应可包括接枝反应。所述至少一种环氧化物单体可包含环氧化物单体的混合物,例如至少两种或至少三种环氧化物单体。所述至少一种环氧化物单体(或环氧化物单体的混合物)可选自表氯醇,表溴醇,异丙基缩水甘油醚,丁基缩水甘油醚,烯丙基缩水甘油醚,1,4-丁二醇二缩水甘油醚(1,4-双(2,3-环氧丙氧基)丁烷),新戊二醇二缩水甘油醚,乙二醇二缩水甘油醚,甘油二缩水甘油醚,缩水甘油,以及甲基丙烯酸缩水甘油酯,乙基己基缩水甘油醚,甲基缩水甘油醚,甘油丙氧基化三缩水甘油醚,聚(丙二醇)二缩水甘油醚,1,3丁二醇二缩水甘油醚,叔丁基缩水甘油醚,1,4-环己烷二甲醇二缩水甘油醚,二乙二醇二缩水甘油醚,十二烷基缩水甘油醚,O-(2,3环氧丙基)-O’-甲基聚乙二醇缩水甘油醚,缩水甘油基四氟乙基醚,1,6-己二醇二缩水甘油醚,辛基缩水甘油醚,癸基缩水甘油醚,聚(表氯醇-共-环氧乙烷-共-烯丙基缩水甘油醚),聚乙二醇二缩水甘油醚,三羟甲基乙烷三缩水甘油醚,三羟甲基丙烷,三缩水甘油醚,叔丁基二甲基甲硅烷基缩水甘油醚,1,2-环氧丁烷,1,2-环氧戊烷,1,2-环氧-5-己烯,1,2-环氧己烷,1,2-环氧-7-辛烯,1,2-环氧辛烷,1,2,7,8-二环氧辛烷,1,2-环氧-9-癸烯,1,2-环氧癸烷,1,2-环氧十二烷,1,2-环氧十四烷,或其组合。所述至少一种环氧化物单体(或环氧化物单体的混合物)可选自1,4-丁二醇二缩水甘油醚、缩水甘油、甲基丙烯酸缩水甘油酯或其组合。单分散水凝胶聚合物颗粒:至少一种环氧化物单体的质量比可以为1:10至10:1。
表面官能团可包含胺。胺可以源自在形成单分散水凝胶聚合物颗粒的方法中使用的官能单体,或者胺可以使用标准化学引入。例如,聚合物颗粒的(非胺)官能团可以用能够将官能团转化为可以进行亲核或亲电取代的反应性部分的试剂进行改性,通过选择包含亲核试剂或亲电试剂的合适试剂引入胺。
在一个实施方案中,该方法包括使硅酸盐或硅烷反应以形成二氧化硅涂层。水凝胶聚合物颗粒可包含铁氧化物晶体(例如,水凝胶聚合物颗粒可包含含有铁氧化物晶体的磁性材料)和/或羟基。不希望受任何理论的束缚,据信水凝胶聚合物颗粒中铁氧化物晶体和/或羟基的存在增强了二氧化硅涂层的形成。
在一个实施方案中,该方法包括使硅酸盐反应以形成二氧化硅涂层。硅酸盐可以是偏硅酸盐,例如Na2SiO3。悬浮液可包含含水溶剂(例如溶剂可以是水)。使硅酸盐反应以形成二氧化硅涂层可包括将悬浮液的pH降低至小于约11(例如小于11、10或7)。单分散水凝胶聚合物颗粒:硅酸盐的质量比可以为1:10至10:1。
在一个实施方案中,该方法包括使硅烷反应以形成二氧化硅涂层。硅烷可以是有机硅烷,例如原硅酸四乙酯。悬浮液可包含有机溶剂,例如溶剂可为或包含二丙二醇二甲醚。使原硅酸盐反应以形成二氧化硅涂层可以包括将悬浮液的温度升高至至少80℃(例如至少90℃或100℃的温度)。使原硅酸盐反应以形成二氧化硅涂层可以包括将悬浮液的温度升高至80℃至155℃的温度,例如100℃至150℃的温度,例如100℃到150℃的温度,如110℃到150℃的温度(例如约130℃的温度)。单分散水凝胶聚合物颗粒:原硅酸盐的质量比可在1:10至10:1的范围内。
颗粒的用途
该颗粒可用于许多应用,例如多核苷酸测序、生物测定、信息存储、彩色成像、体外诊断、生物加工、诊断微生物学、生物传感器和药物递送。包含磁性材料的聚合物颗粒在测定中特别有用(例如,其中聚合物颗粒与靶分析物例如亲和配体缀合),因为通过施加磁场,磁性材料允许颗粒(和与其结合的任何物质)与本体溶液分离。
可以活化聚合物颗粒以促进与靶分析物(例如多核苷酸或其他亲和配体)的缀合。亲和配体包括单克隆抗体、多克隆抗体、抗体片段、核酸、寡核苷酸、蛋白质、寡肽、多糖、糖、肽、编码核酸分子的肽、固定化金属亲和色谱(IMAC)剂、抗原、药物和其他配体。当亲和配体具有临床意义时,与亲和配体缀合的聚合物颗粒可用于体外诊断。除了下面所描述的方法,激活和生物缀合的合适的方法在G.T.Hermanson,Bioconjugate Techniques,2013(第三版),Academic Press也有描述,其内容在此通过引用将其整体并入本文。
例如,可以增强聚合物颗粒上的官能团以允许与靶分析物或分析物受体结合。在一个具体实例中,聚合物颗粒的官能团可以用能够将官能团转化为可以进行亲核或亲电取代的反应性部分的试剂进行改性。例如,聚合物颗粒上的羟基可以通过用磺酸基团或氯取代至少一部分羟基来活化。示例性的磺酸基团可衍生自三氟代乙烷磺酰基(tresyl)、甲磺酰基、甲苯磺酰基或甲苯磺酰氯,或其任何组合。磺酸盐可以起到使亲核试剂取代磺酸盐的作用。磺酸盐可以进一步与释放的氯反应以提供氯化基团,该氯化基团可以用于缀合颗粒的过程中。在另一个实例中,其中聚合物颗粒包含胺基团或羧酸基团(例如来自官能单体),可以活化胺基团或羧酸基团。
例如,靶分析物或分析物受体可通过磺酸盐基团或其他活化基团的亲核取代与聚合物颗粒结合。在一个具体实例中,用亲核试剂(例如胺或硫醇)封端的靶分析物受体可经历亲核取代以取代聚合物颗粒表面上的磺酸盐基团。作为活化的结果,可以形成缀合的颗粒。
用亲核试剂终止的这种靶分析物受体的实例是链霉抗生物素蛋白,其理想地适用于许多不同的测定。例如,与链霉抗生物素蛋白缀合的颗粒结合的生物素化的单链寡核苷酸探针可用于分离序列特异性DNA。通过将适量的聚合物颗粒与过量的生物素化探针混合,将生物素化的探针与缀合的颗粒结合。然后在适合于探针和DNA的长度和序列的条件下,将颗粒/探针与杂交缓冲液(例如SSPE或SSC)中的DNA样品一起温育。在使用磁性聚合物颗粒的情况下,利用聚合物颗粒的磁性洗去过量和不需要的DNA。可以通过PCR或任何其他合适的技术检测/定量捕获的DNA。例如,与链霉抗生物素蛋白缀合的聚合物颗粒结合的生物素化的双链DNA片段可用于分离DNA序列特异性结合蛋白。通过将适量的珠子与过量的生物素化的DNA片段混合,将生物素化的DNA与缀合的聚合物颗粒结合。然后在适合于研究中的蛋白质的条件下,将颗粒/DNA与蛋白质样品一起在杂交缓冲液中温育。在使用磁性聚合物颗粒的情况下,利用聚合物颗粒的磁性洗去过量和不需要的蛋白质。捕获的蛋白质可以从探针中洗脱(通过高盐、低盐、高温、低pH等)用于下游应用和检测。
在另一个实例中,磺化颗粒可以进一步与单官能或多官能单或多亲核试剂反应,所述单官能或多官能试剂可以形成与颗粒的附着,同时保持包含亲电子基团的寡核苷酸(例如马来酰亚胺)的亲核活性。此外,通过连接到包含多亲电子基团的试剂,可以将残留的亲核活性转化为亲电子活性,所述多亲电子基团随后连接到包含亲核基团的寡核苷酸上。
在另一个实例中,含有官能团的单体(官能单体)可以在聚合期间包含在单体混合物中。官能单体可包括例如含羧酸、膦酸、磺酸、酯、卤素或其它胺反应性基团的丙烯酰胺。酯基可在与胺寡核苷酸或其它含胺亲和配体反应之前水解。
含有亲和配体的示例性胺是下式的化合物
其中每个R独立地是氢或保护基,且X表示C2-C20亚烷基连接基(例如C5或C6亚烷基)。这种亲和配体提供了一种羧甲基化的天冬氨酸(Cm-Asp)基团,其可以被附接到颗粒(MPP)、脱保护(如果R是保护基团)和络合金属离子,以形成IMAC试剂
此配体因此能够结合重组蛋白中的组氨酸标签或天然蛋白质或肽中金属蛋白活性位点中存在的His、Cys、Met、Gln、Asn、Lys或Tyr残基,以及能够结合磷酸化蛋白质或多肽。制备、缀合和在测定中(例如用磁性聚合物颗粒)使用该亲和配体描述于US2010/0222508A1中,其内容通过引用整体并入本文。
其他活化化学包括结合多个步骤以转换特定的官能团以适应特定的期望连接。例如,磺酸盐改性的羟基可以通过几种方法转化为亲核基团。在一个实例中,磺酸盐与叠氮阴离子的反应产生叠氮化物取代的亲水聚合物。叠氮化物可以通过“CLICK”化学直接用于与乙炔取代的生物分子结合,该化学可以在有或没有铜催化的情况下进行。任选地,叠氮化物可以通过例如用氢催化还原或用有机膦还原而转化成胺。然后可以用各种试剂将所得胺转化为亲电子基团,例如二异氰酸酯、双-NHS酯、氰尿酰氯或其组合。在一个实例中,使用二异氰酸酯在聚合物和接头之间产生脲键,其产生残余的异氰酸酯基团,其能够与氨基取代的生物分子反应以在接头和生物分子之间产生脲键。在另一个实例中,使用双-NHS酯产生聚合物和接头之间的酰胺键和残余的NHS酯基,其能够与氨基取代的生物分子反应以在接头和生物分子之间产生酰胺键。在另一个实例中,使用氰尿酰氯在聚合物和连接基之间产生氨基-三嗪连接和两个残留的氯-三嗪基团,其中一个能够与氨基取代的生物分子反应以在连接基和生物分子之间产生氨基-三嗪连接。其他亲核基团可通过磺酸盐活化掺入颗粒中。例如,磺化颗粒与硫代苯甲酸阴离子的反应和随后的硫代苯甲酸酯的水解将硫醇结合到颗粒中,随后可以与马来酰亚胺取代的生物分子反应以产生与生物分子的硫代-琥珀酰亚胺键。硫醇也可以与溴-乙酰基反应。
生物分子与耐性基底或聚合物基底的共价连接可以使用基底上的亲电子部分与生物分子上的亲核部分或与生物分子上的与亲电子键连接的基底上的亲核键连接而产生。由于最常见的目标生物分子的亲水性,这些偶联所选择的溶剂是水或含有一些水溶性有机溶剂的水,以便将生物分子分散到基底上。特别地,多核苷酸通常由于其多阴离子性质而与水系统中的基底偶联。因为水通过将亲电子试剂水解成无活性部分用于缀合而与亲核试剂竞争,所以含水体系通常导致偶联产物的低产率,其中产率基于该对的亲电子部分。当需要高产率的反应对的亲电子部分时,需要高浓度的亲核试剂来驱动反应并减轻水解,导致亲核试剂的低效使用。在多核酸的情况下,磷酸盐的金属抗衡离子可以用亲脂性抗衡离子代替,以帮助将生物分子溶解在极性、非反应性、非水性溶剂中。这些溶剂可包括酰胺或脲,例如甲酰胺,N,N-二甲基甲酰胺,乙酰胺,N,N-二甲基乙酰胺,六甲基磷酰胺,吡咯烷酮,N-甲基吡咯烷酮,N,N,N',N'-四甲基脲,N,N'-二甲基-N,N'-三亚甲基脲或其组合;碳酸酯如碳酸二甲酯,碳酸亚丙酯或其组合;醚类如四氢呋喃;亚砜和砜如二甲基亚砜,二甲基砜或其组合;受阻醇如叔丁醇;或其组合。亲脂性阳离子可包括四烷基铵或四芳基铵阳离子,例如四甲基铵、四乙基铵、四丙基铵、四丁基铵、四戊基铵、四己基铵、四庚基铵、四辛基铵及其烷基和芳基混合物,四芳基鏻阳离子如四苯基鏻,四烷基胂或四芳基鎓如四苯基胂,和三烷基锍阳离子如三甲基锍,或其组合。通过用亲脂阳离子交换金属阳离子将多核酸转化成有机溶剂可溶性材料可以通过各种标准阳离子交换技术进行。
可以活化聚合物颗粒以促进与靶分析物(例如多核苷酸或其他亲和配体)的缀合。例如,可以增强交联的水凝胶聚合物颗粒上的官能团以允许与靶分析物或分析物受体结合。在一个具体实例中,聚合物的官能团可以用能够将亲水性聚合物官能团转化为可以进行亲核或亲电取代的反应性部分的试剂进行改性。特别地,在聚合物颗粒具有羧基官能团的情况下,这些可以被活化以促进缀合至例如生物分子,例如核酸。
在用包含羟基的共聚单体形成颗粒的实施方案中,亲水性颗粒上的羟基可以通过用磺酸盐基团或氯取代至少一部分羟基来活化。示例性的磺酸基团可衍生自三氟代乙烷磺酰基(tresyl)、甲磺酰基、甲苯磺酰基或甲苯磺酰氯,或其任何组合。磺酸盐可以起到使亲核试剂取代磺酸盐的作用。磺酸盐可以进一步与释放的氯反应以提供氯化基团,该氯化基团可以用于缀合颗粒的过程中。在另一个实例中,可以活化亲水聚合物上的胺基。
例如,靶分析物或分析物受体可通过磺酸盐基团的亲核取代与亲水聚合物结合。在一个具体实例中,用亲核试剂(例如胺或硫醇)封端的靶分析物受体可经历亲核取代以取代亲水聚合物表面上的磺酸盐基团。作为活化的结果,可以形成缀合的颗粒。
在另一个实例中,其中颗粒包含胺(例如,其中颗粒由包含胺的单体形成或包含含胺的涂层),亲核氨基可以用双官能双亲电子部分修饰,例如二-异氰酸酯或双-NHS酯,产生了对亲核试剂具有反应性的亲水性颗粒。
当缀合至多核苷酸,聚合物颗粒可以包括多核苷酸的密度,称为核苷酸密度,至少为7×104/μm3。例如,核苷酸密度可以是至少105/μm3,如至少106/μm3,至少5×106/μm3,至少8×106/μm3,至少1×107/μm3,或甚至至少3×107/μm3。在进一步的例子,核苷酸密度可以是不大于1015/μm3
这种聚合物颗粒可用于各种分离技术和分析技术。特别地,聚合物颗粒可用于结合多核苷酸。此类结合多核苷酸可用于从溶液中分离多核苷酸或可用于分析技术,例如测序。在图5中所示的特定实例中,此类聚合物颗粒可在测序技术期间用作多核苷酸的载体。例如,颗粒可以使用荧光测序技术固定多核苷酸用于测序。
通常,可以处理聚合物颗粒以包括生物分子,包括核苷、核苷酸、核酸(寡核苷酸和多核苷酸)、多肽、糖、多糖、脂质或其衍生物或类似物。例如,聚合物颗粒可以结合或附着于生物分子。生物分子的末端或任何内部部分可以结合或附着于聚合物颗粒。聚合物颗粒可以使用连接化学结合或附着到生物分子上。连接化学包括共价键或非共价键,包括离子键、氢键、亲和键、偶极-偶极键、范德华键和疏水键。连接化学包括结合配偶体之间的亲和力,例如以下之间:抗生物素蛋白部分和生物素部分;抗原表位和抗体或其免疫反应性片段;抗体和半抗原;地高辛部分和抗地高辛抗体;荧光素部分和抗荧光素抗体;操纵子和抑制物;核酸酶和核苷酸;凝集素和多糖;类固醇和类固醇结合蛋白;活性化合物和活性化合物受体;激素和激素受体;酶和底物;免疫球蛋白和蛋白A;或寡核苷酸或多核苷酸及其相应的互补物。
如图5中所示,多个聚合物颗粒204(例如本公开的单分散交联的水凝胶聚合物颗粒)可以与多个多核苷酸202一起置于溶液中。可以激活或以其他方式制备多个颗粒204以与多核苷酸202结合。举例来说,颗粒204可包括与多个多核苷酸202的一部分多核苷酸互补的寡核苷酸。
在一个具体实施方案中,对聚合物颗粒和多核苷酸进行聚合酶链式反应(PCR)扩增,例如乳液PCR。例如,分散相液滴206或208形成为乳液的一部分,并且可包括颗粒或多核苷酸。在一个实例中,多核苷酸202和亲水性颗粒204以相对于彼此的低浓度和比率提供,使得单个多核苷酸202可能与单个聚合物颗粒204一起存在于相同的分散相液滴内。其他液滴,例如液滴208,可包括单个聚合物颗粒而不包含多核苷酸。每个液滴206或208可包括足以促进多核苷酸复制的酶、核苷酸、盐或其他组分。或者,可以使用扩增技术,例如使用或不使用乳液的重组酶聚合酶扩增(RPA)。
在一个方面,本发明提供了本发明的水凝胶聚合物颗粒在核酸扩增中的用途。核酸扩增可以是乳液PCR。
在实施方案中,用于核酸扩增的方法包括:对多核苷酸进行引物延伸反应,所述多核苷酸与附着于聚合物颗粒的寡核苷酸杂交。在实施方案中聚合物颗粒是本公开的单分散交联水凝胶聚合物颗粒。在实施方案中,用于核酸扩增的方法包括:(a)提供与单链寡核苷酸(例如,引物寡核苷酸)连接的聚合物颗粒;(b)提供单链模板多核苷酸;(c)将单链寡核苷酸与单链模板多核苷酸杂交;(d)在适合聚合酶的条件下使单链模板多核苷酸与聚合酶和至少一个核苷酸接触,以催化至少一个核苷酸聚合到单链寡核苷酸上,从而产生延伸的单链寡核苷酸。在实施方案中,该方法还包括:(e)从延伸的单链寡核苷酸中去除(例如,变性)单链模板多核苷酸,使得单链寡核苷酸保持附着于聚合物颗粒;(f)将剩余的单链寡核苷酸与第二单链模板多核苷酸杂交;和(g)在适合于第二聚合酶的条件下使第二单链模板多核苷酸与第二聚合酶和第二至少一个核苷酸接触,以催化第二至少一个核苷酸聚合到单链寡核苷酸上,从而产生随后的延伸的单链寡核苷酸。在实施方案中,步骤(e)、(f)和(g)可以重复至少一次。在实施方案中,聚合酶和第二聚合酶包含热稳定聚合酶。在实施方案中,适合于核苷酸聚合的条件包括在升高的温度下进行核苷酸聚合步骤(例如,步骤(d)或(g))。在实施方案中,适合于核苷酸聚合的条件包括在交替温度(例如,升高的温度和相对较低的温度)下进行核苷酸聚合步骤(例如,步骤(d)或(g))。在实施方案中,交替温度范围为60-95℃。在实施方案中,温度周期可为约10秒至约5分钟,或约10分钟,或约15分钟,或更长。在实施方案中,核酸扩增的方法可产生一个或多个各自连接到多个模板多核苷酸的聚合物颗粒,所述模板多核苷酸包含与单链模板多核苷酸或第二单链模板多核苷酸互补的序列。在实施方案中,每个聚合物颗粒可以与多个单链寡核苷酸连接(例如,捕获寡核苷酸)。在实施方案中,步骤(b)、(c)、(d)、(e)、(f)或(g)可以用多个单链多核苷酸进行。在实施方案中,至少一部分单链寡核苷酸包含与单链多核苷酸的至少一部分互补(或部分互补)的核苷酸序列。在实施方案中,用于核酸扩增的方法(如上所述)可以在油相(例如,分散相液滴)的水相溶液中进行。
在PCR之后,形成颗粒,例如颗粒210,其可以包括聚合物颗粒212和多核苷酸的多个拷贝214。出于清楚的目的,大多数多核苷酸214被示出在颗粒210的外表面上。然而,多核苷酸可以在颗粒210内延伸(或位于颗粒210内),也如图所示。例如,水凝胶和亲水性颗粒相对于水可具有低浓度的聚合物,因此可以是相对多孔的。它们可以在颗粒210的内部和整个颗粒210中包括多核苷酸区段,并且多核苷酸可以存在于孔和其他开口中。特别地,颗粒210可以允许酶、核苷酸、引物和用于监测反应的反应产物的扩散。每个颗粒的大量多核苷酸产生更好的信号。
在实施方案中,可以收集来自破乳过程的聚合物颗粒并洗涤以准备测序。收集可以通过使生物素部分(例如,与附着于聚合物颗粒的扩增的多核苷酸模板连接)与抗生物素蛋白部分接触,并与缺乏生物素化模板的聚合物颗粒分离来进行。携带双链模板多核苷酸的收集的聚合物颗粒可以被变性以产生用于测序的单链模板多核苷酸。变性步骤可包括用碱(例如NaOH)、甲酰胺或吡咯烷酮处理。
另一种测序系统是Applied Biosystems的SOLiDTM测序系统(通过寡核苷酸连接和检测测序),其使用逐步循环连接进行高通量DNA测序。在该基于珠子的系统中,负载有DNA模板的珠子(即聚合物颗粒)使用4色荧光标记的八聚体探针进行连续的连接和切割反应。这些探针被连续递送并用于询问DNA链上的二核苷酸位置。期望支持更高的珠子密度,其促进每个仪器运行的珠子事件数量增加和改进的探针化学性质,从而提供增加的测序保真度。
通过寡核苷酸连接和检测的测序涉及将核酸靶标连接到交联的聚合物颗粒(珠粒)上,然后将多个颗粒固定在表面上。每种核酸-珠子缀合物包含独特的DNA序列,这种类型的测序技术公开在国际公开号WO2006/084132A2(通过引用并入本文)中。
将珠粒附着到载体的方法利用了不可逆地涂有链酶亲和素的扁平玻璃显微镜载片。使载有核酸的珠子与生物素化的核苷酸(例如,通过生物素化的dNTP和末端脱氧转移酶在连接珠子后的DNA靶标上的作用获得)接触。与链霉亲和素涂覆的载片温育生物素化的珠粒导致珠粒通过生物素与链霉亲和素的相互作用固定到载片上。虽然动力学上这是一种非常有效的附着方案,但有时在DNA序列测定所需的条件下观察到珠子在载片上的移动。当珠子在载玻片上以高密度存在(例如,高达100,000珠子/mm2)并且多次询问(例如,高达25次)时,任何显著的珠子移动都可能妨碍在密集的珠子的随后扫描中对特定珠子的稳健识别。
US 2009/0099027(相应于WO2009/026546,二者均通过引用并入本文)因此描述了一种用于固定珠子的共价系统,其在测序和其他形式的遗传分析的过程中减小珠子移动。该方法包括:使基底表面上的亲核基团与包含多个亲电子基团的分子反应,从而在基底表面上提供一个或多个游离的亲电子基团;和使颗粒材料表面上的亲核基团与基底表面上的一个或多个游离的亲电子基团反应,以将颗粒材料共价连接到基底上。
US 2009/0099027描述了用多官能亲电试剂修饰亲核(更具体地,氨基官能)表面。例如,通过使表面基团与(氨基丙基)三烷氧基硅烷反应,可以容易地将硅酸盐玻璃显微镜载玻片的亲电表面转化为亲核表面。
已经共价连接到交联聚合物珠粒上的DNA靶核酸可以通过氨基烷基dNTP和末端脱氧转移酶在连接珠子后的DNA靶标上的作用进行修饰。然后,DNA靶上的亲核氨基可以与载体表面的残留亲电子基团反应,在珠子和玻璃表面之间形成多个稳定的共价键。
已经发现,在含有亲电子基团的表面和含有亲核基团的颗粒之间可以形成稳定的共价键。另外,在DNA靶上含有氨基-dNTP和末端脱氧转移酶作用的亲核氨基的珠子可以在含水碱性条件下固定在修饰的表面上。例如,包含已用1,4-二异硫氰酸苯活化的氨基的表面可用于固定具有亲核基团的珠子。此外,共价附着似乎非常稳定,并且没有观察到珠子运动。
表面固定的珠子可用于基于通过连接沿单链模板的双链体延伸的重复循环分析核酸序列的方法中。这种类型的测序方法公开在美国专利5,750,341;5,969,119;和6,306,597B1和国际公开号WO2006/084132A2中。这些出版物中的每一篇均通过引用整体并入本文。此外,上述出版物中描述的技术可用于分析(例如测序)附着于与本文所述的载体结合的颗粒的核酸模板。固定的珠子可以用于不一定采用连接步骤的测序方法中,例如使用具有阻止多核苷酸链延伸的可去除的阻断基团的标记的核苷酸测序(例如,美国专利6,664,079;6,232,465;和7,057,026,其每一篇以其全部内容通过引用并入本文)。固定化珠粒可用于多种技术中,其中通过多个循环重复检测珠粒上的信号。
用于SOLiD测序的珠子可以是本公开的单分散磁性和/或涂覆的水凝胶颗粒。因此,一个实施方案包括在前一段中提到的出版物中公开的方法和产品中使用单分散颗粒,并且本申请的申请人认为所有这些用途、方法和产品都属于本发明并且保留要求保护它们的权利。在SOLiD测序中使用亚微米颗粒能够将更大密度的颗粒附着到玻璃表面(例如玻璃板或显微镜载玻片)。进一步包括在实施方案中的是进行SOLiD测序的方法,其使用本公开的单分散颗粒,例如其中本公开的单分散亚微米与核酸靶偶联并固定在表面上,例如玻璃表面。固定方法并不重要,并且可以是共价或非共价的,非共价偶联的实例是通过链霉抗生物素蛋白/抗生物素蛋白-生物素结合。例如,共价偶联可以如US2009/0099027和WO2009026546中所述,但是可以使用用于共价偶联的任何其他合适的技术。因此,在一个实施方案中包括形成产品(制品)的方法,包括将本公开的单分散亚微米颗粒偶联到核酸上并任选地进一步包括将得到的载有核酸的颗粒固定在表面上,例如玻璃表面。核酸可以用作测序中的靶标,例如使用SOLiD测序。
例如,提供了一种方法,其包括:
(a)杂交第一初始化寡核苷酸探针与靶多核苷酸以形成探针-靶双链体,其中所述寡核苷酸探针具有可延伸的探针末端,其中所述靶多核苷酸连接于聚合物颗粒,其是如本文所公开的聚合物颗粒群的成员,并且其中所述颗粒共价连接至固体载体的表面;
(b)将延伸寡核苷酸探针与所述可延伸的探针末端连接,从而形成含有延伸的寡核苷酸探针的延伸的双链体,其中所述延伸寡核苷酸探针包含切割位点和可检测标记;
(c)通过检测连接于刚连接的延伸寡核苷酸探针上的标记识别所述靶多核苷酸的一个或多个核苷酸;
(d)在所述切割位点切割所述刚连接的延伸寡核苷酸探针,以产生可延伸的探针末端,其中切割去除了所述刚连接的延伸寡核苷酸探针的一部分,所述部分包括来自探针-靶双链体的标记;和
(e)重复步骤(b)、(c)和(d),直到靶多核苷酸中的核苷酸的序列被确定。
还提供了测序核酸的方法,包括:
(a)将引物杂交至靶多核苷酸以形成引物-靶双链体,其中所述靶多核苷酸在5'末端连接至聚合物颗粒,其是本文所公开的聚合物颗粒群的成员,并且其中所述聚合物颗粒共价连接到载体表面;
(b)使引物-靶双链体与聚合酶和一种或多种不同的核苷酸类似物接触以将核苷酸类似物掺入引物的3'末端,从而形成延伸的引物链,其中掺入的核苷酸类似物终止聚合酶反应并且其中所述一种或多种核苷酸类似物中的每一种包含(i)选自腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶及其类似物的碱基,(ii)通过可切割接头与所述碱基或其类似物连接的独特标记;(iii)脱氧核糖;和(iv)可切割的化学基团,其在所述脱氧核糖的3'位置封闭-OH基团;
(c)清洗载体表面以除去任何未掺入的核苷酸类似物;
(d)检测附着于刚掺入的核苷酸类似物的独特标记,从而鉴定刚掺入的核苷酸类似物;
(e)任选地,永久性地封闭所述延伸的引物链上的任何未反应的-OH基团;
(f)切割刚掺入的核苷酸类似物和所述独特标记之间的可切割接头;
(g)切割封闭刚掺入的核苷酸类似物的脱氧核糖的3'-位上的-OH基团的化学基团以解封所述-OH基团;
(h)洗涤载体表面以除去切割的化合物;
(i)重复步骤(b)-(h)。
本发明的聚合物颗粒可用于涉及聚合物颗粒的任何核酸测序方法中。一个实施方案包括与核酸偶联的本公开内容的颗粒以及核酸测序方法,其包括将核酸偶联至本公开内容的颗粒群。核酸可以是DNA或RNA。
本公开包括产品(例如制品),其包含多个本公开的单分散颗粒,其偶联到基底,例如玻璃表面,例如通过链霉抗生物素蛋白-生物素连接、抗生物素蛋白-生物素连接或通过共价连接,例如如US2009/0099027和WO2009/026546中所述。颗粒可以通过核酸与基底偶联。本公开包括使用本公开的单分散颗粒来制备这种产品。一个实施方案包括使用在US2009/0099027和WO2009/026546中描述的连接化学将本公开的单分散颗粒附接到基底,并且申请人保留要求使用保护使用这样的化学的方法和其产品的权利。因此,本说明书通过引用包括了US2009/0099027和WO2009026546的公开内容。
因此,实施方案包括其中使本公开的官能化单分散聚合物颗粒经历一个或多个进一步反应以获得所需产物的方法。其他实施方案包括在应用中使用这些产品。
鉴于本公开的颗粒可具有的质量和特征的一致性,它们可用于包括进行与缀合物质相关的过程的方法中,缀合物质例如选自标记、生物分子和生物结构,例如通过将两种或更多种这样的单体(例如多肽、蛋白质、多糖、寡核苷酸和核酸)缩合在一起而制备的生物分子,例如氨基酸、糖类、核苷酸和核苷以及多聚体。作为标记,可以提及染料,例如荧光染料、猝灭剂、酶和半导体纳米晶体。本发明的实施方案包括这样的用途以及:
i)包含本公开的颗粒群的缀合物,其至少一部分与缀合物质偶联,例如刚刚描述的那种
ii)一种方法,包括将本公开内容的颗粒群的至少一部分偶联到物质上,例如刚刚描述的那种
iii)一种方法,包括将本公开的颗粒群的至少一部分偶联到基底上。
分析方法
分子量测量
种子颗粒中低聚物的重均分子量(Mw)可以通过使用凝胶渗透色谱法(GPC)进行的测量来确定。在GPC中,运行一系列聚合物颗粒标准品并用于产生校准曲线。低聚物的Mw可通过GPC使用具有0.01M LiBr的DMF作为洗脱液相对于聚苯乙烯标准进行测量。由于这些Mw值是相对于与种子颗粒的标准不同的聚合物(聚苯乙烯)的标准计算的,因此计算的Mw表示相对值,而不是绝对值。因此,测量结果是可重复的,但不会提供实际的Mw。
在此提供的实施例中使用的GPC方法的概述如下。使用以下实验条件:
洗脱液:具有0.01M LiBr的DMF
前置柱:PSS GRAM,10μm,保护ID 8.0mm x 50mm
色谱柱:PSS GRAM,10μm,线型M ID 8.0mm x 300mm PSS GRAM,
10μm,线型M ID 8.0mm x 300mm
温度:70℃
泵:PSS SECcurity 1260HPLC泵
流速:1.0mL/min进样
系统:PSS SECcurity 1260自动进样器
注射体积:50μL样品
浓度:3.0g/L
检测器:PSS SECcurity 1260折光率检测器(RID)
色谱数据系统:PSS WinGPC UniChrom版本8.2
在上述实验条件下测定具有不同分子量的聚苯乙烯标准,以获得校准曲线。然后运行样品。然后基于PS校准曲线计算样品的Mw。
尺寸和尺寸分布
样品的尺寸分布可以使用盘式离心,采用仪器制造商提供的方案来测量,例如在盘式离心机型号DC20000上的CPS Disc CentrifugationTM。准确的结果需要使用与所分析的样品具有相似密度的标准进行校准,因此仅用于可获得合适的聚合物标准的情况,例如用于本发明的颗粒的一组紧凑的聚苯乙烯颗粒标准物,其主要包含聚苯乙烯。在被测样品具有未知密度的情况下,例如对于多孔颗粒,通过CPS盘式离心获得的测量将是可再现的,但不提供实际直径。
在本文提供的实施例中使用的CPSDisc CentrifugationTM的概述如下。本领域技术人员能够容易地采用这种方法,其中适合于对其他样品这样做,例如通过基于待分析颗粒的尺寸和孔隙率选择合适的梯度、圆盘速度和标准颗粒。
用10000rpm的盘速和1.5g/L SDS(水溶液)中8-24wt%蔗糖的梯度,在来自CPS仪器的CPS DC20000上执行盘式离心机分析。使用来自CPS仪器的Auto Gradient泵形成梯度,并且注入梯度的体积为16-17mL。在注射之前将样品在MilliQ-H2O中稀释至约0.01wt%。
用于分析的方法具有以下设置:最大直径4.0μm,最小直径0.1μm,颗粒密度1.6g/mL,颗粒折射率1.592,颗粒吸收0.2,颗粒非球形度1,校准标准直径1.098,校准标准密度1.6,标准半宽0.2μm,液体密度1.06g/mL,液体折射率1.355。
报告的大小是吸收峰直径,CV通过设置主峰周围的边界来确定。
光子相关光谱(PCS)可用于以z均值的形式获得颗粒的流体动力学直径。测量与颗粒密度无关,并且基于小颗粒的布朗运动。可以获得纳米尺寸颗粒的PCS测量值,例如使用Malvern Zetasizer Nano-ZS,Model ZEN3600。进一步的细节和方法可以在MalvernZetasizer Nano系列手册中找到(通过引用整体并入本文)。
可用于确定颗粒尺寸和尺寸分布的另一种技术是光学显微镜。可通过将包含珠子的水溶液置于显微镜载玻片上制备珠子群,然后以合适的放大倍数(例如100倍或更高)捕获珠子的图像,并使用图像分析软件分析珠子的大小。
在此提供的实施例中使用的光学显微镜方法的概述如下。通过在盖玻片和Secure-SealTM杂交室垫片之间夹入0.12mm,9mm直径的Secure-SealTM间隔物来制备显微镜样品。在形成的腔中填充8μL稀释在150mM NaCl中的珠子,然后短暂离心并附着到显微镜载玻片上。然后使用100X透镜在Olympus IX81倒置显微镜上进行相差光学显微镜检查。使用基于Matlab的宏为μManager自动收集多个图像。收集失焦图像作为背景并从相差图像中减去。然后使用Otsu方法对背景减去的图像进行阈值处理以识别用于尺寸分析的单个珠子。使用具有标准尺寸的绿色荧光聚苯乙烯珠粒通过荧光显微镜校准测量的珠粒尺寸。然后使用一系列Alexa 488标记的水凝胶珠来校准相差尺寸至荧光尺寸。
光学显微镜是测量颗粒尺寸的优选方法,因为它提供的测量与颗粒的密度无关。盘式离心分析是测量颗粒尺寸分布(CV)的优选方法,因为光学显微镜基于图像分析,并且图像中伪影的存在可导致人为高的CV。
磁化率
使用MS3计量仪,来自Bartington Instruments的配备有MS2B双频传感器的磁化率系统,测定磁化率。通过称量100.0±20.0mg颗粒(其在7.0000±0.1000g氧化铝中稀释)来制备用于测量的样品。使用以下设置对每批进行一式两份的分析,进行质量特异性校正:测量周期1s,迭代次数1和循环次数100。
振动样品磁力仪(VSM)
VSM在LakeShore 7400上进行。称出3-10mg样品并置于锁环明胶胶囊(Torpac)中。为了防止在测量过程中移动,用胶水固定胶囊并使其干燥过夜。通过设定磁场最初为10000Oe然后逐渐变为-10000Oe并最终逐渐变为10000Oe来收集滞后曲线。
铁含量
通过将0.11g颗粒溶解在5mL王水中然后微波加热,由Alcontrol LaboratoriesNorway进行磁性颗粒的铁含量的定量测定。用H2O将样品稀释至50mL,最后稀释250倍。然后通过使用Varian 720-ES仪器进行的电感耦合等离子体原子发射光谱(ICP-AES)分析,测定铁的浓度。
实施例
种子颗粒的合成
实施例1
向装有机械锚式搅拌器和冷凝器的2L夹套圆底烧瓶中加入34.6g蒸馏的N,N-二甲基丙烯酰胺、27.6g Kraton G1650、1.5g 2,2'-偶氮双(2-甲基丙腈)、747.9g庚烷、187.0g甲苯和1.2g 1-辛硫醇。一旦所有物质溶解,将反应混合物用Ar(g)吹扫60分钟。然后使用连接到反应器的温控水浴将反应加热至71℃并加热16小时,同时以400rpm搅拌。通过动态光散射分析所得分散体,得到360nm的z均直径。
实施例2
向装有机械锚式搅拌器和冷凝器的2L夹套圆底烧瓶中加入34.6g蒸馏的N,N-二甲基丙烯酰胺、27.7g Kraton G1650、1.4g 2,2'-偶氮双(2-甲基丙腈)、747g庚烷、187g甲苯和2.5g 1-辛硫醇。一旦所有物质溶解,将反应混合物用Ar(g)吹扫60分钟。然后使用连接到反应器的温控水浴将反应加热至71℃并加热16小时,同时以400rpm搅拌。通过动态光散射分析所得分散体,得到z均直径为970nm。
由低分子量种子颗粒合成聚合物颗粒
实施例3
溶液1(单体相):向250mL Duran烧瓶中加入7.4g丙烯酰胺(AAm)、2.5g N,N'-(1,2-二羟基亚乙基)双丙烯酰胺(DHEBAAm)和14.9g H2O。将混合物在61℃下摇动直至全部溶解。
溶液2(稳定剂):将33g Abil WE09、36g矿物油和145g碳酸二乙基己酯(TegosoftDEC)加入到400mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将66g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和9.5g PDMAAm种子(实施例1)装入250mL装有冷凝器、机械搅拌器和气体入口的3颈圆底烧瓶中,并在60℃下以100rpm搅拌1小时。最后,将烧瓶用Ar(g)吹扫15分钟,然后加入溶解在2.6g甲苯中的2.6g 2,2'-偶氮二(2-甲基丁腈)(AMBN)并加热至70℃,同时以50rpm搅拌7小时。
再分散:将30g粗产物加入250mL离心烧瓶中并用N-甲基-2-吡咯烷酮(NMP)填充。将烧瓶摇动2小时,然后以2000rpm离心5分钟。除去上清液,用NMP再洗涤产物两次,用H2O洗涤3次,最后再分散在H2O中。
实施例4
溶液1(单体相):向250mL Duran烧瓶中加入7.4g的N-[三(羟甲基)甲基]丙烯酰胺(THMAAm)、2.5g的N,N'-(1,2-二羟基亚乙基)双丙烯酰胺(DHEBAAm))和14.9克H2O。将混合物在61℃下摇动直至全部溶解。
溶液2(稳定剂)、溶液3(乳液)和再分散体:如实施例3中所述。
实施例5
溶液1(单体相):向250mL Duran烧瓶中加入7.4g羟乙基丙烯酰胺(HEAAm)、2.5gN,N'-(1,2-二羟基亚乙基)双丙烯酰胺(DHEBAAm)和14.9g H2O。将混合物在61℃下摇动直至全部溶解。
溶液2(稳定剂)、溶液3(乳液)和再分散体:如实施例3中所述。
实施例6
溶液1(单体相):向250mL Duran烧瓶中加入7.5g羟甲基丙烯酰胺(HMAAm)、5.0gN,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和12.4gH2O。搅拌混合物直至全部溶解。
溶液2(稳定剂):将35g Abil WE09、38g矿物油和152g碳酸二乙基己酯(TegosoftDEC)加入到400mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将71g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和4.2g PDMAAm种子(实施例1)装入250mL装有冷凝器、机械搅拌器和气体入口的3颈圆底烧瓶中,并在19℃下以100rpm搅拌1小时。最后,将烧瓶用Ar(g)吹扫15分钟,然后加热至70℃,同时以50rpm搅拌7小时。
再分散:将50g粗产物加入250mL离心烧瓶中并用N-甲基-2-吡咯烷酮(NMP)填充。将烧瓶摇动1小时,然后以4000rpm离心5分钟。除去上清液,用NMP再洗涤产物两次,用H2O洗涤5次,最后最终再分散在H2O中。
实施例7
溶液1(单体相):向250mL Duran烧瓶中加入7.5g羟甲基丙烯酰胺(HMAAm)、2.5g哌嗪二丙烯酰胺和15.0g H2O。搅拌混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液)和再分散体:如实施例6中所述。
实施例8
溶液1(单体相):向250mL Duran烧瓶中加入7.5g羟甲基丙烯酰胺(HMAAm)、5.0gN,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和12.4gH2O。搅拌混合物直至全部溶解。
溶液2(稳定剂):将24g Abil WE09、26g矿物油和104g碳酸二乙基己酯(TegosoftDEC)加入到250mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):如实施例6中所述。
再分散:将25g粗产物加入250mL离心烧瓶中并用N-甲基-2-吡咯烷酮(NMP)填充。将烧瓶摇动3天,然后以5000rpm离心10分钟。除去上清液,用NMP再洗涤产物两次,用H2O洗涤4次,最后最终再分散在H2O中。
实施例9
溶液1(单体相):向500mL Duran烧瓶中加入36.8g羟甲基丙烯酰胺(HMAAm)、2.6g丙烯酸、39.4g N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和118.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂):将7.6g 2,2'-偶氮二(2-甲基丁腈)(AMBN)、95.6g Abil WE09、104.3g矿物油和417.2g碳酸二乙基己酯(Tegosoft DEC)加入到1L烧杯中并用磁力搅拌棒混合直至所有溶解。
溶液3(乳液):将520g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和40g PDMAAm种子(实施例2)加入装有冷凝器、机械搅拌器和气体入口的1L夹套圆柱形反应器中,并在22℃下以100rpm搅拌80分钟。最后,将烧瓶用Ar(g)吹扫30分钟,然后加热至70℃,同时以55rpm搅拌20小时。
再分散和分析:将粗产物分成2×1L离心烧瓶并以3600rpm离心15分钟。除去上清液,将颗粒再分散在异丙醇中。然后将再分散的颗粒分成总共4×1L离心瓶,用异丙醇洗涤4次,用H2O洗涤8次,最后再分散在H2O中。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准的关系确定为1.62μm,CV=16.1。
实施例10
溶液1(单体相):向250mL Duran烧瓶中加入3.7g丙烯酸、3.7g N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂):将2.6g 2,2'-偶氮二(2-甲基丁腈)(AMBN)、33g Abil WE09、36g矿物油和144g碳酸二乙基己酯(Tegosoft DEC)加入到400mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将66g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和9.9g PDMAAm种子(实施例1)装入250mL装有冷凝器、机械搅拌器和气体入口的3颈圆底烧瓶中,并在20℃下以100rpm搅拌1小时。最后,将烧瓶用Ar(g)吹扫15分钟,然后加热至70℃,同时以62rpm搅拌7小时。
再分散和分析:将77g粗产物加入250mL离心烧瓶中并以5000rpm离心20分钟。除去上清液,将颗粒再分散于异丙醇中,在异丙醇中共洗涤3次,然后洗涤。将颗粒再分散在H2O中,将再分散的颗粒转移到1L离心烧瓶中并用H2O洗涤2次。随后将批料转移至3×250mL离心烧瓶中,并在最终再分散于H2O中之前另外洗涤一次。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准测定为0.37μm,CV=5.4%。
实施例11
溶液1(单体相):向250mL Duran烧瓶中加入1.9g羟甲基丙烯酰胺(HMAAm)、1.9g丙烯酸、3.7g N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液):如实施例10中。
再分散和分析:如实施例10中所述,但使用78g粗产物。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准值的关系为0.43μm,CV=5.6%。
实施例12
溶液1(单体相):向250mL Duran烧瓶中加入2.8g羟甲基丙烯酰胺(HMAAm)、0.9g丙烯酸、3.7g N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液):如实施例10中。
再分散和分析:如实施例10中所述,但使用78g粗产物。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准值的关系为0.43μm,CV=5.2%。
实施例13
溶液1(单体相):向250mL Duran烧瓶中加入3.7g羟甲基丙烯酰胺(HMAAm)、3.7gN,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3gH2O。摇动混合物直至全部溶解。
溶液2(稳定剂):将2.6g 2,2'-偶氮二(2-甲基丁腈)(AMBN)、33g Abil WE09、36g矿物油和144g碳酸二乙基己酯(Tegosoft DEC)加入到400mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将66g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和9.9g PDMAAm种子(实施例1)装入250mL装有冷凝器、机械搅拌器和气体入口的3颈圆底烧瓶中,并在20℃下以100rpm搅拌1小时。最后,将烧瓶用Ar(g)吹扫15分钟,然后加热至70℃,同时以62rpm搅拌7小时。
再分散和分析:将78g粗产物加入250mL离心烧瓶中并以5000rpm离心20分钟。除去上清液,将颗粒再分散在异丙醇中并以3000rpm离心15分钟。将再分散的颗粒用异丙醇洗涤3次。将颗粒再分散在H2O中并分成总共3×250mL离心瓶并以5000rpm离心20分钟。将再分散的颗粒用H2O洗涤3次,最后再分散在H2O中。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准的关系确定为0.43μm,CV=5.4%。
实施例14
溶液1(单体相):向250mL Duran烧瓶中加入3.4g羟乙基丙烯酰胺(HEAAm)、0.3g丙烯酸(AA)、3.7g N,N'-((乙烷-1,2-二基双)(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液):如实施例13中。
再分散和分析:将77g粗产物加入250mL离心烧瓶中并以5000rpm离心20分钟。除去上清液,将颗粒再分散在异丙醇中并以3000rpm离心15分钟。将再分散的颗粒用异丙醇洗涤3次。将颗粒再分散在H2O中并分成总共3×250mL离心瓶并以5000rpm离心20分钟。将再分散的颗粒用H2O洗涤3次,最后再分散在H2O中。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准的关系确定为0.41μm,CV=6.1%。
实施例15
溶液1(单体相):向250mL Duran烧瓶中加入3.4g N-[三(羟甲基)甲基]丙烯酰胺(THMAAm)、0.3g丙烯酸(AA)、3.7g N,N'-((乙烷-1,2-二基双)(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液):如实施例13中。
再分散和分析:将78g粗产物加入250mL离心烧瓶中并以5000rpm离心20分钟。除去上清液,将颗粒再分散在异丙醇中并以3000rpm离心15分钟。将再分散的颗粒用异丙醇洗涤3次。将颗粒再分散在H2O中并分成总共3×250mL离心瓶并以5000rpm离心20分钟。将再分散的颗粒用H2O洗涤3次,最后再分散在H2O中。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准的关系确定为0.42μm,CV=5.7%。
实施例16
溶液1(单体相):向250mL Duran烧瓶中加入3.2g羟甲基丙烯酰胺(HMAAm)、0.5g富马酸、3.7g N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。将混合物加热至40℃并用磁力搅拌棒混合直至全部溶解。
溶液2(稳定剂):将2.6g 2,2'-偶氮二(2-甲基丁腈)(AMBN)、33g Abil WE09、35g矿物油和140g碳酸二乙基己酯(Tegosoft DEC)加入到250mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将66g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和9.9g PDMAAm种子(实施例1)装入250mL装有冷凝器、机械搅拌器和气体入口的3颈圆底烧瓶中,并在20℃下以100rpm搅拌1小时。最后,将烧瓶用Ar(g)吹扫15分钟,然后加热至70℃,同时以65rpm搅拌7小时。
再分散和分析:将77g粗产物加入250mL离心烧瓶中并以5000rpm离心20分钟。除去上清液,将颗粒再分散在异丙醇中并以3000rpm离心15分钟。
将再分散的颗粒用异丙醇洗涤3次。将颗粒再分散在H2O中并分成总共3×250mL离心瓶并以5000rpm离心20分钟。将再分散的颗粒用H2O洗涤3次,最后再分散在H2O中。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准的关系确定为0.44μm,CV=5.5%。
实施例17
溶液1(单体相):向250mL Duran烧瓶中加入3.1g羟甲基丙烯酰胺(HMAAm)、0.6g衣康酸、3.7g N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液):如实施例16中。
再分散和分析:将77g粗产物加入250mL离心烧瓶中并以5000rpm离心20分钟。除去上清液,将颗粒再分散在异丙醇中并以3000rpm离心15分钟。将再分散的颗粒用异丙醇洗涤3次。将颗粒再分散在H2O中并分成总共3×250mL离心瓶并以5000rpm离心20分钟。将再分散的颗粒用H2O洗涤3次,最后再分散在H2O中。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准的关系确定为0.47μm,CV=5.4%。
实施例18
溶液1(单体相):向250mL Duran烧瓶中加入3.2g羟甲基丙烯酰胺(HMAAm)、0.5g乙烯基膦酸、3.7g N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液):如实施例16中。
再分散和分析:将77g粗产物加入250mL离心烧瓶中并以5000rpm离心20分钟。除去上清液,将颗粒再分散在异丙醇中并以3000rpm离心15分钟。将再分散的颗粒用异丙醇洗涤3次。将颗粒再分散在H2O中并分成总共3×250mL离心瓶并以5000rpm离心20分钟。将再分散的颗粒用H2O洗涤3次,最后再分散在H2O中。使用光学显微镜和盘式离心机分析产物。相对盘式离心机直径与标准的关系确定为0.42μm,CV=5.3%。
实施例19
溶液1(单体相):向250mL Duran烧瓶中加入0.6g羟甲基丙烯酰胺(HMAAm)、0.7g丙烯酰胺丙酸(AAPA)、1.2g N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和22.2g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂):将2.6g 2,2'-偶氮二(2-甲基丁腈)(AMBN)、32g Abil WE09、35g矿物油和140g碳酸二乙基己酯(Tegosoft DEC)加入到400mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将65g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和9.9g PDMAAm种子(实施例1)装入250mL装有冷凝器、机械搅拌器和气体入口的3颈圆底烧瓶中,并在20℃下以100rpm搅拌1小时。最后,将烧瓶用Ar(g)吹扫15分钟,然后加热至70℃,同时以57rpm搅拌7小时。
再分散和分析:向1L离心烧瓶中加入71g粗产物、500mL H2O和300mL 2-BuOH。将烧瓶置于振动台上,然后离心。除去2-BuOH并加入150mL 2-BuOH。在将颗粒再悬浮于H2O中之前再次重复该操作,将其分到总共4×250mL离心瓶中并离心。洗涤的再分散颗粒用H2O再洗涤3次,最后再分散在H2O中。通过将再分散的产物在150mM NaCl溶液中稀释至0.01wt%的浓度进行明视野显微镜检查,并从23个图像收集图像统计,得到众数直径为0.85μm。
实施例20
溶液1(单体相):向250mL Duran烧瓶中加入1.8g羟甲基丙烯酰胺(HMAAm)、0.7g丙烯酰胺丙酸(AAPA)、2.5g N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和19.7g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液):如实施例19中。
再分散和分析:向1L离心烧瓶中加入70g粗产物、500mL H2O和300mL 2-BuOH。将烧瓶置于振动台上,然后离心。除去2-BuOH并加入150mL 2-BuOH。重复2次,然后将颗粒悬浮液分成总共6×250mL离心瓶并离心。将颗粒再分散在H2O中并离心。再分散的颗粒用H2O洗涤5次,最后再分散在H2O中。通过将再分散的产物在150mM NaCl溶液中稀释至0.01wt%的浓度进行明视野显微镜检查,并从25个图像收集图像统计,得到众数直径为0.83μm。
实施例21
溶液1(单体相):向250mL Duran烧瓶中加入4.2g羟甲基丙烯酰胺(HMAAm)、0.7g丙烯酰胺丙酸(AAPA)、4.9g N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和14.8g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂):将2.6g 2,2'-偶氮二(2-甲基丁腈)(AMBN)、33g Abil WE09、35g矿物油和140g碳酸二乙基己酯(Tegosoft DEC)加入到400mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将66g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和9.9g PDMAAm种子(实施例1)装入250mL装有冷凝器、机械搅拌器和气体入口的3颈圆底烧瓶中,并在20℃下以100rpm搅拌1小时。最后,将烧瓶用Ar(g)吹扫15分钟,然后加热至70℃,同时以58rpm搅拌7小时。
再分散和分析:向1L离心烧瓶中加入71g粗产物、500mL H2O和300mL 2-BuOH。将烧瓶置于振动台上,然后离心。除去2-BuOH并加入150mL 2-BuOH。重复2次,然后将颗粒悬浮液分成总共6×250mL离心瓶并离心。将颗粒再分散在H2O中并离心。再分散的颗粒用H2O洗涤5次,最后再分散在H2O中。通过将再分散的产物在150mM NaCl溶液中稀释至0.01wt%的浓度进行明视野显微镜检查,并从18个图像收集图像统计,得到众数直径为0.82μm。
实施例22
溶液1(单体相):向250mL Duran烧瓶中加入5.5g羟甲基丙烯酰胺(HMAAm)、0.7g丙烯酰胺丙酸(AAPA)、6.2g N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和12.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液):如实施例21中。
再分散和分析:向1L离心烧瓶中加入68g粗产物、500mL H2O和300mL 2-BuOH。将烧瓶置于振动台上,然后离心。除去2-BuOH并加入150mL 2-BuOH。重复2次,然后将颗粒悬浮液分成总共6×250mL离心瓶并离心。将颗粒再分散在H2O中并离心。再分散的颗粒用H2O洗涤5次,最后再分散在H2O中。通过将再分散的产物在150mM NaCl溶液中稀释至0.01wt%的浓度进行明视野显微镜检查,并从22个图像收集图像统计,得到众数直径为0.86μm。
实施例23
溶液1(单体相):向250mL Duran烧瓶中加入3.1g羟甲基丙烯酰胺(HMAAm)、0.7g丙烯酰胺丙酸(AAPA)、3.7g N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂):将2.6g 2,2'-偶氮二(2-甲基丁腈)(AMBN)、32g Abil WE09、35g矿物油和140g碳酸二乙基己酯(Tegosoft DEC)加入到400mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将66g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和9.9g PDMAAm种子(实施例1)装入250mL装有冷凝器、机械搅拌器和气体入口的3颈圆底烧瓶中,并在20℃下以100rpm搅拌1小时。最后,将烧瓶用Ar(g)吹扫15分钟,然后加热至70℃,同时以58rpm搅拌7小时。
再分散和分析:向1L离心烧瓶中加入70g粗产物、500mL H2O和300mL 2-BuOH。将烧瓶置于振动台上,然后离心。除去2-BuOH并加入150mL 2-BuOH。重复2次,然后将颗粒悬浮液分成总共6×250mL离心瓶并离心。将颗粒再分散在H2O中并离心。再分散的颗粒用H2O洗涤5次,最后再分散在H2O中。通过将再分散的产物在150mM NaCl溶液中稀释至0.01wt%的浓度进行明视野显微镜检查,并从22个图像收集图像统计,得到众数直径为0.84μm。
实施例24
溶液1(单体相):向250mL Duran烧瓶中加入3.1g羟甲基丙烯酰胺(HMAAm)、0.7g丙烯酰胺丙酸(AAPA)、3.7g N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和17.3g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂)、溶液3(乳液):如实施例23中。
再分散和分析:向1L离心烧瓶中加入71g粗产物、500mL H2O和300mL 2-BuOH。将烧瓶置于振动台上,然后离心。除去2-BuOH并加入150mL 2-BuOH。重复2次,然后将颗粒悬浮液分成总共6×250mL离心瓶并离心。将颗粒再分散在H2O中并离心。再分散的颗粒用H2O洗涤5次,最后再分散在H2O中。通过将再分散的产物在150mM NaCl溶液中稀释至0.01wt%的浓度进行明视野显微镜检查,并从25个图像收集图像统计,得到众数直径为0.85μm。
实施例25
溶液1(单体相):向500mL Duran烧瓶中加入28.6g羟甲基丙烯酰胺(HMAAm)、0.95g丙烯酰胺丙酸(AAPA)、19.7g N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和29.4g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂):将3.8g 2,2'-偶氮二(2-甲基丁腈)(AMBN)、48g Abil WE09、53g矿物油和210g碳酸二乙基己酯(Tegosoft DEC)加入到600mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将262g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和40g PDMAAm种子(实施例1)加入装有冷凝器、机械搅拌器和气体入口的1L夹套圆底烧瓶中,并在22℃下以100rpm搅拌过夜。最后,将烧瓶用Ar(g)吹扫30分钟,然后加热至70℃,同时以64rpm搅拌7小时。
再分散和分析:将粗产物分成2×250mL离心烧瓶,并以5000rpm离心15分钟,以7000rpm离心10分钟。除去上清液,将颗粒再分散在异丙醇中。然后将再分散的颗粒分成总共6×250mL离心瓶,用异丙醇洗涤4次,用H2O洗涤6次,最后再分散在H2O中。然后将颗粒通过三种不同的过滤网织物过滤:SefarNitex 03-64/32,SefarNitex 03-30/18和SefarNitex03-1/1。使用光学显微镜和盘式离心机分析产物。通过在150mMNaCl溶液中将再分散的产物稀释至0.01wt%的浓度来进行明视野显微镜检查,并从18个图像收集图像统计,得到众数直径为0.91μm。使用CPS方法3的相对盘式离心机直径确定为0.54μm,CV=6.2%。
实施例26
溶液1(单体相):向500mL Duran烧瓶中加入27.0g羟甲基丙烯酰胺(HMAAm),2.6g丙烯酰胺丙酸(AAPA),19.7gN,N'-((乙烷-1,2-二基双)(氧))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和49.3g H2O.摇动混合物直至全部溶解。
溶液2(稳定剂),溶液3(乳液):如实施例25中所述。
再分散和分析:将粗产物分成2×250mL离心烧瓶并以5000rpm离心25分钟。除去上清液,将颗粒再分散在异丙醇中。然后将再分散的颗粒分成总共6×250mL离心瓶,用异丙醇洗涤4次,用H2O洗涤5次,最后再分散在H2O中。然后将颗粒通过两种不同的过滤网织物过滤:SefarNitex 03-30/18和SefarNitex 03-1/1。使用光学显微镜和盘式离心机分析产物。通过将再分散的产物在150mMNaCl溶液中稀释至0.01wt%的浓度进行明视野显微镜检查,并从21个图像收集图像统计,得到众数直径为0.90μm。使用CPS方法3的相对盘式离心机直径确定为0.53μm,CV=5.2%。
实施例27
溶液1(单体相):向500mL Duran烧瓶中加入24.8g羟甲基丙烯酰胺(HMAAm),5.0g丙烯酰胺丙酸(AAPA),19.9gN,N'-((乙烷-1,2-二基双)(氧))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和49.7g H2O.摇动混合物直至全部溶解。
溶液2(稳定剂):将3.8g 2,2'-偶氮二(2-甲基丁腈)(AMBN)、52g Abil WE09、57g矿物油和228g碳酸二乙基己酯(Tegosoft DEC)加入到1000mL烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将284g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。使用来自Hielscher Ultrasound Technology的UP 200s进行超声处理,循环设定为0.9,振幅设定为40%,进行进一步的乳化。在下一步骤中,将溶液3和17g PDMAAm种子(实施例1)加入装有冷凝器、机械搅拌器和气体入口的1L夹套圆底烧瓶中,并在25℃下以100rpm搅拌过夜。最后,将烧瓶用Ar(g)吹扫30分钟,然后加热至70℃,同时以62rpm搅拌7小时。
再分散和分析:将粗产物分进2×250mL离心烧瓶,并以3000rpm离心20分钟和5000rpm离心10分钟。除去上清液,将颗粒再分散在异丙醇中。然后将再分散的颗粒分进总共6×250mL离心瓶,用异丙醇洗涤4次,用H2O洗涤6次,最后再分散在H2O中。然后将颗粒通过两种不同的过滤网织物过滤:Sefar Nitex 03-30/18和SefarNitex 03-1/1。使用光学显微镜和盘式离心机分析产物。通过将再分散的产物在150mM NaCl溶液中稀释至0.01wt%的浓度进行明视野显微镜检查,并从30个图像收集图像统计,得到众数直径为1.0μm。使用CPS方法3的相对盘式离心机直径确定为0.57μm,CV=6.3%。
聚合物颗粒的磁化
实施例28
磁化:向装有机械搅拌器的3颈50mL圆底烧瓶中加入9.8g的H2O颗粒悬浮液(实施例3,干燥含量3.1%)并用Ar(g)吹扫20分钟,然后加入0.18g FeCl2x 4H2O和0.20g FeCl3 x6H2O。将混合物在250rpm下搅拌10分钟并加入1.24g NH3(25%)并使反应在Ar(g)下进行1小时。
后处理和分析:将批料加入250mL离心烧瓶中并用H2O洗涤12次。将1mL批次样品加入2mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例29
磁化:向装有机械搅拌器的3颈50mL圆底烧瓶中加入7.5g的H2O颗粒悬浮液(实施例4,干燥含量4.0%)和2.4mL H2O并用Ar(g)吹扫20分钟,然后加入0.18g FeCl2 x 4H2O和0.20g FeCl3 x 6H2O。将混合物在250rpm下搅拌10分钟并加入1.24g NH3(25%)并使反应在Ar(g)下进行1小时。
后处理和分析:将批料加入250mL离心烧瓶中并用H2O洗涤12次。将1mL批次样品加入2mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例30
磁化:向装有机械搅拌器的3颈50mL圆底烧瓶中加入6.0g的H2O颗粒悬浮液(实施例5,干燥含量5.0%)和3.8mL H2O并用Ar(g)吹扫20分钟,然后加入0.18g FeCl2 x 4H2O和0.20g FeCl3 x 6H2O。将混合物在250rpm下搅拌10分钟并加入1.24g NH3(25%)并使反应在Ar(g)下进行1小时。
后处理和分析:将批料加入250mL离心烧瓶中并用H2O洗涤12次。将1mL批次样品加入2mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例31
磁化:向装有机械搅拌器的3颈50mL圆底烧瓶中加入9.7g的H2O颗粒悬浮液(实施例6,干燥含量3.1%)、0.18g FeCl2 x 4H2O和0.20g FeCl3 x 6H2O。将混合物在250rpm下搅拌5分钟,然后进行Ar(g)吹扫25分钟。最后,加入1.24mL NH3(25%)并使反应在Ar(g)下进行1小时。
后处理和分析:将批料加入250mL离心烧瓶中并用H2O洗涤7次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例32
磁化:向装有机械搅拌器的3颈50mL圆底烧瓶中加入9.5g的H2O颗粒悬浮液(实施例7,干燥含量3.1%)、0.18g FeCl2 x 4H2O和0.20g FeCl3 x 6H2O。将混合物在250rpm下搅拌5分钟,然后进行Ar(g)吹扫25分钟。最后,加入1.24mL NH3(25%)并使反应在Ar(g)下进行1小时。
后处理和分析:将批料加入250mL离心烧瓶中并用H2O洗涤7次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例33
磁化:向装有机械搅拌器的3颈50mL圆底烧瓶中加入9.1g的H2O颗粒悬浮液(实施例8,干燥含量3.1%)、0.18g FeCl2 x 4H2O和0.20g FeCl3 x 6H2O。将混合物在250rpm下搅拌5分钟,然后进行Ar(g)吹扫25分钟。最后,加入1.24mL NH3(25%)并使反应在Ar(g)下进行1小时。
后处理和分析:将批料加入250mL离心烧瓶中并用H2O洗涤7次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例34
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入72g的H2O颗粒悬浮液(实施例25,干燥含量5.6%)、2.4g FeCl2 x 4H2O和2.7g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和15g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料分成2×250mL离心烧瓶并用H2O洗涤15次。干燥颗粒中的Fe含量测定为190mg/g,磁化率为64×10-5m3/kg,10000Oe的饱和磁化强度为16.0Am2/kg。
实施例35
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入72g的H2O颗粒悬浮液(实施例25,干燥含量5.6%)、4.8g FeCl2 x 4H2O和5.4g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和30g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料分成2×250mL离心烧瓶并用H2O洗涤30次。干燥颗粒中的Fe含量测定为255mg/g,磁化率为72×10-5m3/kg,10000Oe的饱和磁化强度为21.5Am2/kg。
实施例36
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入72g的H2O颗粒悬浮液(实施例25,干燥含量5.6%)、7.3g FeCl2 x 4H2O和8.2g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和45g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料分成2×250mL离心烧瓶并用H2O洗涤45次。干燥颗粒中的Fe含量测定为336mg/g,磁化率为81×10-5m3/kg,10000Oe的饱和磁化强度为30.5Am2/kg。
实施例37
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入71g的H2O颗粒悬浮液(实施例26,干燥含量5.6%)、7.3g FeCl2 x 4H2O和8.2g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和45g NH3(25%),并使反应在Ar(g)下进行1小时。
处理和分析:将批料分成2×250毫升离心瓶并总计洗涤65次(用H2O洗涤5次,然后用1M乙酸洗涤1次和用H2O洗涤59次)。干燥颗粒中的Fe含量测定为248mg/g,磁化率为62×10-5m3/kg,10000Oe的饱和磁化强度为20.6Am2/kg。
实施例38
磁化:向装有机械搅拌器的3颈100mL圆底烧瓶中加入39g的H2O颗粒悬浮液(实施例27,干燥含量5.1%)、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料分成2×250毫升离心瓶并洗涤65次(用H2O洗涤5次,然后用1M乙酸洗涤1次和用H2O洗涤59次)。磁化率为72×10-5m3/kg,10000Oe的饱和磁化强度为24.7Am2/kg。
实施例39
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入35g的H2O颗粒悬浮液(实施例19,干燥含量1.7%)、33g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移到250毫升离心烧瓶中并用H2O洗涤9次、用0.01M柠檬酸缓冲液(pH5.3)洗涤两次和用H2O另外洗涤28次。干燥颗粒中的Fe含量测定为478mg/g,磁化率为72×10-5m3/kg,10000Oe的饱和磁化强度为37.8Am2/kg。
实施例40
磁化:向装有机械搅拌器的3颈100mL圆底烧瓶中加入42g的H2O颗粒悬浮液(实施例20,干燥含量1.8%)、1.5g H2O、2.3g FeCl2 x 4H2O和2.6g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和14g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移到250毫升离心烧瓶中并用H2O洗涤9次、用0.01M柠檬酸缓冲液(pH5.3)洗涤两次和用H2O另外洗涤27次。干燥颗粒中的Fe含量测定为363mg/g,磁化率为67×10-5m3/kg,10000Oe的饱和磁化强度为31.0Am2/kg。
实施例41
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入58g的H2O颗粒悬浮液(实施例23,干含量4.1%)、9.4g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移到250毫升离心烧瓶中并用H2O洗涤9次、用0.01M柠檬酸缓冲液(pH5.3)洗涤两次和用H2O另外洗涤27次。干燥颗粒中的Fe含量测定为233mg/g,磁化率为53×10-5m3/kg,10000Oe的饱和磁化强度为20.2Am2/kg。
实施例42
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入68g的H2O颗粒悬浮液(实施例21,干燥含量3.5%)、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移到250毫升离心烧瓶中并用H2O洗涤9次、用0.01M柠檬酸缓冲液(pH5.3)洗涤两次和用H2O另外洗涤38次。干燥颗粒中的Fe含量测定为177mg/g,磁化率为42×10-5m3/kg,10000Oe的饱和磁化强度为15.0Am2/kg。
实施例43
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入58g的H2O颗粒悬浮液(实施例22,干含量5.1%)、9.0g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移到250毫升离心烧瓶中并用H2O洗涤9次、用0.01M柠檬酸缓冲液(pH5.3)洗涤两次和用H2O另外洗涤38次。干燥颗粒中的Fe含量测定为205mg/g,磁化率为52×10-5m3/kg,10000Oe的饱和磁化强度为16.6Am2/kg。
实施例44
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入51g的H2O颗粒悬浮液(实施例24,干燥含量3.5%)、17g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移到250毫升离心烧瓶中并用H2O洗涤9次、用0.01M柠檬酸缓冲液(pH5.3)洗涤两次和用H2O另外洗涤27次。干燥颗粒中的Fe含量测定为288mg/g,磁化率为68×10-5m3/kg,10000Oe的饱和磁化强度为23.8Am2/kg。
实施例45
磁化:向装有机械搅拌器的1L圆柱形反应器中加入252g的H2O颗粒悬浮液(实施例9,5.6%干含量)、18.4g FeCl2 x 4H2O和20.5g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和112g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料分成2×1L离心烧瓶并用H2O洗涤33次。
实施例46
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入44g的H2O颗粒悬浮液(实施例10,4.5%干含量)、31g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移至250mL离心烧瓶中并用H2O洗涤21次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例47
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入37g的H2O颗粒悬浮液(实施例11,5.6%干含量)、39g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移至250mL离心烧瓶中并用H2O洗涤30次。
实施例48
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入34g的H2O颗粒悬浮液(实施例12,5.6%干含量)、41g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移至250mL离心烧瓶中并用H2O洗涤30次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例49
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入42g的H2O颗粒悬浮液(实施例13,4.7%干含量)、33g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移至250mL离心烧瓶中并用H2O洗涤34次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例50
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入44g的H2O颗粒悬浮液(实施例14,4.5%干含量)、31g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移至250mL离心烧瓶中并用H2O洗涤40次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例51
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入44g的H2O颗粒悬浮液(实施例15,4.5%干含量)、31g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移至250mL离心烧瓶中并用H2O洗涤40次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例52
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入35g的H2O颗粒悬浮液(实施例16,5.65%干含量)、40g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移至250mL离心烧瓶中并用H2O洗涤27次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例53
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入45g的H2O颗粒悬浮液(实施例17,4.47%干含量)、30g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移至250mL离心烧瓶中并用H2O洗涤27次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
实施例54
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入49g的H2O颗粒悬浮液(实施例18,4.12%干含量)、26g H2O、3.7g FeCl2 x 4H2O和4.1g FeCl3 x 6H2O。将混合物在150rpm下搅拌10分钟,然后进行Ar(g)吹扫30分钟。最后,加入设定为250rpm的搅拌速度和22g NH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移至250mL离心烧瓶中并用H2O洗涤27次。将1.5mL批次样品加入1.5mL Eppendorf管中并置于DynaMagTM-2磁体上,并在1分钟内样品完全迁移至磁体。
环氧涂层聚合物颗粒
实施例55-聚丙烯酰胺颗粒的甲苯磺酰基活化
在搅拌下向13w%实施例9的颗粒在丙酮(46.7mL)中的溶液中加入0.7g吡啶和1.4g对甲苯磺酰氯。然后将反应在室温下进一步搅拌过夜。完成后,除去上清液,通过用4×250mL丙酮洗涤进行后处理。
实施例56-甲苯磺酰化聚丙烯酰胺颗粒的胺化
在丙酮中加入5g实施例55的甲苯磺酰化颗粒除去溶剂,然后重新悬浮在总共75g2,2'-(亚乙基二氧基)双(乙胺)(EDEA)中。将混合物在72℃下搅拌4小时。将反应产物用3×300mL H2O、3×300mL 10mM乙酸(aq)、3×300mL H2O和最后用4×300mL N-甲基吡咯烷酮洗涤。
实施例57-胺化聚丙烯酰胺颗粒的环氧涂层
从在265.5g NMP中的4.1g实施例56的胺化颗粒除去235g溶剂,在搅拌下往剩余物中加入8.5g 1,4-丁二醇二缩水甘油醚、3.3g缩水甘油和6.1g甲基丙烯酸缩水甘油酯。5分钟后,将温度升至87℃并将混合物搅拌20小时。然后,将反应产物冷却30分钟,然后用200mL丙酮、2×200mL甲醇、2×200mL 30:70甲醇:异丙醇和4×200mL异丙醇洗涤。
实施例58-丙烯酸接枝到聚丙烯酰胺颗粒上
通过搅拌将52mg 2,2'-偶氮二(2-甲基丙腈)(AIBN)溶解在20g异丙醇中,并将其加入到4.3g实施例57颗粒的47g异丙醇溶液中。引入1.1mL丙烯酸并在搅拌下将混合物加热至72℃,并在达到所需温度后继续反应20小时。随后,使其冷却20分钟并用2×300mL异丙醇和3×200mL甲醇洗涤。
实施例59-聚丙烯酰胺颗粒的一步法环氧涂层
向10重量%的实施例35颗粒的乙腈(1.42mL)溶液中加入0.12g的1,4-丁二醇二缩水甘油醚、0.05g的缩水甘油和0.09g的甲基丙烯酸缩水甘油酯。此后,还加入0.03g二甲基吡啶和0.05g对甲苯磺酸一水合物,并将反应在70℃下振荡19小时。冷却后,通过用4×5mL丙酮洗涤来处理反应。
二氧化硅涂层聚合物颗粒
实施例60
向装有机械搅拌器的3颈50mL圆底烧瓶中加入1.5gNa2SiO3和10mL H2O。在加入7.8g实施例35的颗粒(干燥含量6.4wt%)之前,将溶液的pH用1M HCl调节至pH12-13。将混合物在200rpm下搅拌10分钟,然后将烧瓶降至预热至60℃的油浴中。然后通过逐滴加入1MHCl将pH调节至pH6。然后将混合物搅拌15分钟,然后将反应混合物转移到100mL Duran烧瓶中并在H2O中进行5次磁移。通过在干燥样品上进行的FTIR光谱中在1094cm-1处出现峰来证实SiO2涂层。
实施例61
向装有机械搅拌器的3颈50mL圆底烧瓶中加入0.5g Na2SiO3和10mL H2O。在加入7.8g实施例35的颗粒(干燥含量6.4wt%)之前,将溶液的pH用1M HCl调节至pH 12-13。将混合物在200rpm下搅拌5分钟,然后将烧瓶降至预热至60℃的油浴中。然后通过逐滴加入1MHCl将pH调节至pH2.5。然后将混合物搅拌5分钟,然后将反应混合物转移到250mL Duran烧瓶中并在H2O中进行7次磁移。通过在干燥样品上进行的FTIR光谱中在1094cm-1处出现峰来证实SiO2涂层。
实施例62
向装有机械搅拌器的3颈50mL圆底烧瓶中加入0.5g Na2SiO3和10mL H2O。在加入8.9g实施例26的颗粒(干燥含量5.6wt%)之前,将溶液的pH用1M HCl调节至pH12-13。将混合物在200rpm下搅拌5分钟,然后将烧瓶降至预热至60℃的油浴中。然后通过逐滴加入1MHCl将pH调节至pH2.5。然后将混合物搅拌5分钟,然后将反应混合物转移到250mL离心烧瓶中并进行H2O中5次离心转移。通过在干燥样品上进行的FTIR光谱中在1094cm-1处出现峰来证实SiO2涂层。
实施例63-硅烷路线
向20mL螺旋盖小瓶中加入7.8g实施例35的颗粒(干含量6.4wt%)和用甲醇磁移3次和在二丙二醇二甲醚中5次磁移。然后将悬浮液转移到配备有机械搅拌器的50毫升三颈圆底烧瓶中,随后加入为4.7g原硅酸四乙酯和80μL的H2O。然后将反应加热至130℃并搅拌过夜。随后将反应混合物转移到20mL螺旋盖小瓶中,在二丙二醇二甲醚中进行5次磁移,并在H2O中进行5次磁移。最后将颗粒悬浮液搅拌3天。通过在干燥样品上进行的FTIR光谱中在1094cm-1处出现峰来证实SiO2涂层。
抗体偶联和功能测定
实施例64
根据以下程序将抗-TnI mAb与实施例34、35和36的颗粒偶联。向2mL Sarstedt管中加入5mg珠粒(500μl的1%储备溶液)。将管置于磁铁上,除去上清液,加入1mL 15mM MES缓冲液(pH6.0)。将MES缓冲液洗涤步骤重复3次,然后再悬浮于205μL的MES缓冲液中。随后,加入45μL的EDC(20mg/mL,在H2O中),将管涡旋,然后在室温下在辊上温育30分钟。将管置于磁体上,除去上清液,然后重悬于200μL的MES缓冲液中。将52μL的抗-TnI mAb SDIX(3.8mg/mL)加入管中,涡旋该管,然后在室温下在辊上温育2小时。然后用1mL TBST缓冲液(50mMTris-HCl pH7.4,含140mMNaCl和0.1%Tween-20)洗涤颗粒两次,接着在37℃下在辊上重悬于TBST缓冲液中过夜。最后,用1mL TBST缓冲液洗涤颗粒最后一次,然后重悬于985μLTBST缓冲液中,得到5mg/mL颗粒悬浮液。
实施例65
根据以下程序将抗-hGH mAb GhG2与实施例34、35和36的颗粒偶联。向2mLSarstedt管中加入5mg颗粒(500μl的1%储备溶液)。将管置于磁铁上,除去上清液,加入1mL15mM MES缓冲液(pH6.0)。将MES缓冲液洗涤步骤重复3次,然后再悬浮于205μL的MES缓冲液中。随后,加入45μL的EDC(20mg/mL,在H2O中),将管涡旋,然后在室温下在辊上温育30分钟。将管置于磁体上,除去上清液,然后重悬于190μL的MES缓冲液中。将60μL的抗-hGH mAbGhG2(3.5mg/mL)加入管中,涡旋该管,然后在室温下在辊上温育2小时。然后用1mL TBST缓冲液(50mM Tris-HCl pH7.4,含140mMNaCl和0.1%Tween-20)洗涤颗粒两次,接着在37℃下在辊上重悬于TBST缓冲液中过夜。最后,用1mL TBST缓冲液洗涤颗粒最后一次,然后重悬于985μLTBST缓冲液中,得到5mg/mL颗粒悬浮液。
实施例66
根据以下程序将抗-TnI mAb与实施例34、37和38的颗粒偶联。向2mL Sarstedt管中加入5mg颗粒(500μl的1%储备溶液)。将管置于磁铁上,除去上清液,加入1mL 15mM MES缓冲液(pH6.0)。将MES缓冲液洗涤步骤重复3次,然后再悬浮于205μL的MES缓冲液中。随后,加入45μL的EDC(20mg/mL,在H2O中),将管涡旋,然后在室温下在辊上温育30分钟。将管置于磁体上,除去上清液,然后重悬于205μL的MES缓冲液中。将42.5μL的抗-TnI mAb SDIX(4.7mg/mL)加入管中,涡旋该管,然后在室温下在辊上温育2小时。然后用1mL TBST缓冲液(50mM Tris-HCl pH7.4,含140mMNaCl和0.1%Tween-20)洗涤颗粒两次,接着在37℃下在辊上重悬于TBST缓冲液中过夜。最后,用1mL TBST缓冲液洗涤颗粒最后一次,然后重悬于985μLTBST缓冲液中,得到5mg/mL珠粒悬浮液。
实施例67
将96微量培养板(Greiner-bio-one)用于实验,每批颗粒4种不同的抗原浓度(牛血清中0、5ng/mL、50ng/mL和100ng/mL重组人生长激素)一式三份筛选。向每个孔中加入50μL抗原溶液和50μL检测抗体(mAb GhB9-AP),将板用胶带密封并在振荡器上于37℃温育15分钟。随后加入100μL与根据实施例65制备的抗-hGHmAb GhG2偶联的悬浮颗粒,将该板用胶带密封并在振荡器上于37℃温育30分钟。将微量培养板置于磁体上,除去上清液,用3×200μL的TBST缓冲液洗涤珠粒,最后重悬于20μL的TBST缓冲液中。最后加入底物(DynaLightSubstrate w/RapidGlow),并在BioTek SynergyTM 4读板器上读板。获得的结果如图6所示。
实施例68
将96微量培养板(Greiner-bio-one)用于实验,每批颗粒4种不同的抗原浓度(牛血清中0、0.5ng/mL、5ng/mL和50ng/mL人心肌肌钙蛋白I-T-C复合物)一式三份进行筛选。向每个孔中加入50μL抗原溶液和50μL检测抗体(mAb 560),将板用胶带密封并在振荡器上于37℃温育10分钟。随后加入100μL与根据实施例6564制备的抗-TnI mAb SDIX偶联的悬浮颗粒,将该板用胶带密封并在振荡器上于37℃温育30分钟。将微量培养板置于磁体上,除去上清液,用3×200μL的TBST缓冲液洗涤珠粒,最后重悬于20μL的TBST缓冲液中。最后加入底物(DynaLight Substrate w/RapidGlow),并在BioTek SynergyTM 4读板器上读板。获得的结果如图7所示。
实施例69
将96微量培养板(Greiner-bio-one)用于实验,每批颗粒4种不同的抗原浓度(牛血清中0、0.5ng/mL、5ng/mL和50ng/mL人心肌肌钙蛋白I-T-C复合物)一式三份进行筛选。向每个孔中加入50μL抗原溶液和50μL检测抗体(mAb 560),将板用胶带密封并在振荡器上于37℃温育10分钟。随后加入100μL与抗-TnI mAb SDIX偶联的实施例6566的悬浮颗粒,将该板用胶带密封并在振荡器上于37℃温育30分钟。将微量培养板置于磁体上,除去上清液,用3×200μL的TBST缓冲液洗涤珠粒,最后重悬于20μL的TBST缓冲液中。最后加入底物(DynaLight Substrate w/RapidGlow),并在BioTek SynergyTM 4读板器上读板。获得的结果如图8所示。
实施例70
将96孔微量培养板(Greiner-bio-one)用于实验,其中评估实施例34、35和36的颗粒的非特异性结合,并与商业MyOneTM Epoxy进行比较。首先将10μL珠悬浮液(10mg/mL)用990μL的TBST缓冲液稀释至微孔,每个颗粒批次一式三份进行评估。随后,加入100μL的AE偶联物(与在30mM MES缓冲液中稀释的吖啶酯(AE)缀合的小鼠IgG),用胶带密封板并在37℃下温育30分钟。将板置于磁体上,除去上清液,然后在TBST缓冲液中洗涤3×300μL。最后,使用振荡器将颗粒重悬浮于20μL的TBST中,接着添加触发溶液75μL的1.32%H2O2和75μL的0.35N NaOH,并在Berthold Centro LB 960微孔板光度计上读取板。
结果如图9所示,其显示实施例34、35和36中每一个的颗粒具有比MyOneTM Epoxy颗粒更低水平的非特异性结合。这些结果与图6-8中所示的结果相结合,表明本发明的颗粒可用于测定中和相关的基于珠粒的分离应用中。种子颗粒的合成
实施例71
向装有机械锚式搅拌器和冷凝器的2L夹套圆底烧瓶中加入34.6g蒸馏的N,N-二甲基丙烯酰胺、27.7g Kraton G1650、1.4g 2,2'-偶氮双(2-甲基丙腈)、747g庚烷、187g甲苯和1.2g 1-辛硫醇。一旦所有物质溶解,将反应混合物用Ar(g)吹扫60分钟。然后使用连接到反应器的温控水浴将反应加热至71℃并加热20小时,同时以350rpm搅拌。通过动态光散射分析所得分散体,得到z均直径为382nm。
由低分子量种子颗粒合成聚合物颗粒
实施例72
溶液1(单体相):向250mL Duran烧瓶中加入5.0g的N-(羟甲基)-丙烯酰胺(HMAAm)、2.4g乙烯基咪唑(VIm)、7.4g的N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和34g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂):将60g Abil WE09,66g矿物油,5.0g 2,2'-偶氮双(2-甲基丁腈)(AMBN)和263g碳酸二乙基己酯(Tegosoft DEC)加入到500mL中烧杯并用磁力搅拌棒混合直至所有溶解。
溶液3(乳液):将127g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。在下一步骤中,将溶液3和24g PDMAAm种子(实施例71)装入配有冷凝器、机械搅拌器和气体入口的500mL夹套反应容器中,并在室温下以100rpm搅拌1小时,随后通过Ar(g)吹扫25分钟。最后,将加热设定为70℃,同时以60rpm搅拌7小时。
再分散:将粗产物加入250mL离心,然后以3000rpm离心15分钟。除去上清液,用异丙醇洗涤产物3次,用H2O洗涤4次,最后再分散于H2O中。
实施例73
溶液1(单体相):向250mL Duran烧瓶中加入6.9g的N-(羟甲基)-丙烯酰胺(HMAAm)、0.48g乙烯基咪唑(VIm)、7.4g的N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和34g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂):如实施例72中。
溶液3(乳液):将127g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。在下一步骤中,将溶液3和24g PDMAAm种子(实施例71)装入配有冷凝器、机械搅拌器和气体入口的500mL夹套反应容器中,并在室温下以100rpm搅拌1小时,随后通过Ar(g)吹扫25分钟。最后,将加热设定为70℃,同时以60rpm搅拌7小时。
再分散:将粗产物加入250mL离心,然后以3000rpm离心15分钟。除去上清液,用异丙醇洗涤产物3次,用H2O洗涤4次,最后再分散于H2O中。
实施例74
溶液1(单体相):向250mL Duran烧瓶中加入5.2g的N-(羟甲基)-丙烯酰胺(HMAAm)、1.2g乙烯基咪唑(VIm)、0.93g og丙烯酸、7.4g的N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺(EGBEAAm)和34g H2O。摇动混合物直至全部溶解。
溶液2(稳定剂):如实施例72中。
溶液3(乳液):将127g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。在下一步骤中,将溶液3和24g PDMAAm种子(实施例71)装入配有冷凝器、机械搅拌器和气体入口的500mL夹套反应容器中,并在室温下以100rpm搅拌1小时,随后通过Ar(g)吹扫25分钟。最后,将加热设定为70℃,同时以60rpm搅拌7小时。
再分散:将粗产物加入250mL离心,然后以3000rpm离心15分钟。除去上清液,用异丙醇洗涤产物3次,用H2O洗涤4次,最后再分散于H2O中。
实施例75
溶液1(单体相):向250mL Duran烧瓶中加入2.875g丙烯酸(AA)、8.651gN-丙烯酰基吗啉、3.820g DHEBA和61.19g H2O。将混合物在61℃下摇动直至全部溶解。
溶液2(稳定剂):将96.62g Abil WE09、105.09g矿物油、420.32g碳酸二乙基己酯(Tegosoft DEC)和7.938g AMBN加入1L烧杯中并用磁力搅拌棒混合直至全部溶解。
溶液3(乳液):将198.20g溶液2加入到溶液1中,然后使用Ultraturrax混合1分钟。在下一步骤中,将溶液3和36.70g PDMAAm种子(实施例71)加入装有冷凝器、机械搅拌器和气体入口的300mL反应器中,并在室温100rpm下搅拌1小时15分钟。最后,将烧瓶用Ar(g)吹扫30分钟,然后加热至70℃,同时以50rpm搅拌7小时。
再分散:将粗产物加入1L离心烧瓶中并以5000rpm离心40分钟。除去上清液,将产物另外用异丙醇洗涤3次,用H2O洗涤3次,最后再分散在H2O中。
聚合物颗粒的磁化
实施例76
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入89g的H2O颗粒悬浮液(实施例72,干燥含量3.4%)、26g H2O、7.3g FeCl2 x 4H2O和8.2g FeCl3x 6H2O。将混合物在100rpm下搅拌1小时,然后进行Ar(g)吹扫45分钟。最后,加入设定为320rpm的搅拌速度和45gNH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移到1L离心烧瓶中并用H2O洗涤35次。干燥颗粒中的Fe含量测定为412mg/g,磁化率为72×10-5m3/kg,10000Oe的饱和磁化强度为33Am2/kg。
实施例77
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入72g的H2O颗粒悬浮液(实施例73,干燥含量4.2%)、43g H2O、7.3g FeCl2 x 4H2O和8.2g FeCl3x 6H2O。将混合物在100rpm下搅拌1小时,然后进行Ar(g)吹扫45分钟。最后,加入设定为320rpm的搅拌速度和45gNH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移到1L离心烧瓶中并用H2O洗涤35次。干燥颗粒中的Fe含量测定为404mg/g,磁化率为76×10-5m3/kg,10000Oe的饱和磁化强度为33Am2/kg。
实施例78
磁化:向装有机械搅拌器的3颈250mL圆底烧瓶中加入91g的H2O颗粒悬浮液(实施例74,干燥含量3.3%)、24g H2O、7.3g FeCl2 x 4H2O和8.2g FeCl3x 6H2O。将混合物在100rpm下搅拌1小时,然后进行Ar(g)吹扫45分钟。最后,加入设定为320rpm的搅拌速度和45gNH3(25%),并使反应在Ar(g)下进行1小时。
后处理和分析:将批料转移到1L离心烧瓶中并用H2O洗涤35次。干燥颗粒中的Fe含量测定为399mg/g,磁化率为70×10-5m3/kg,10000Oe的饱和磁化强度为31Am2/kg。
实施例79
磁化:向装有机械搅拌器的3颈100mL圆底烧瓶中加入36.10g的H2O颗粒悬浮液(实施例75,干燥含量2.81%)、33.02g H2O、2.478g FeCl2 x 4H2O和2.791g FeCl3 x 6H2O。将混合物在100rpm下搅拌50分钟,然后进行Ar(g)吹扫40分钟。最后,加入设定为300rpm的搅拌速度和15.18gNH3(25%),并使反应在Ar(g)下进行1小时20分钟。
后处理和分析:将批料转移到1L离心烧瓶中并用H2O洗涤30次。
其他实施方案
本公开还包括以下编号条款中列出的实施方案:
1.一种单分散磁性水凝胶聚合物颗粒,其包含磁性材料和由以下形成的聚合物:(a)亲水性乙烯基单体,其log Poct/wat(log P)小于约0.6;和(b)包含至少两个乙烯基的交联剂。
2.条款1的聚合物颗粒,其中亲水性乙烯基单体的log P小于约0.3,任选地其中log P小于约0。
3.条款1或条款2的聚合物颗粒,其中亲水性乙烯基单体的log P为0.5至-2,任选地其中log P为0至-2。
4.任一前述条款的聚合物颗粒,其中亲水性乙烯基单体是丙烯酰胺单体和/或丙烯酸酯单体。
5.任一前述条款的聚合物颗粒,其中所述亲水性乙烯基单体包括式(I)的至少一种化合物:
其中:
R1为-H、-CH3、-CH2CH3或-CH2C(O)OH;
R1a为-H或-C(O)R2
R1b为-C(O)R2、–P(O)(OH)2或-S(O)2OH;或R1b与R1a或R1组合为-C(O)-OC(O)-;
R2是-OR3或–N(R4)R5
R3是-H、-C1-C6烷基或-C1-C6醇;和
R4和R5各自独立地选自-H、-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇,
其中R3和/或R4和/或R5在化学上可能的情况下任选地各自独立地被1至5个取代基取代,所述取代基在每次出现时各自独立地选自:氧代、=NRa、=NORa、卤代、硝基、氰基、NRaRa、NRaS(O)2Ra、NRaCONRaRa、NRaCO2Ra、ORa;SRa、S(O)Ra、S(O)2ORa、S(O)2Ra、S(O)2NRaRa、CO2RaC(O)Ra、CONRaRa、C1-C4-烷基、C2-C4-烯基、C2-C4-炔基、C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H和C1-C4烷基。
6.条款4的聚合物颗粒,其中R1a是-H且R1b是-C(O)R2,任选地其中R2是-OR3
7.条款4的聚合物颗粒,其中R1b是-P(O)(OH)2
8.条款5至7中任一项的聚合物颗粒,其中R3是-H。
9.条款5至8中任一项的聚合物颗粒,其中R4是-H或-C1-C6烷基,任选地其中R4是-H。
10.条款5至9中任一项的聚合物颗粒,其中R5可以是-H或-C1-C6烷基,任选地其中R5是-H。
11.任一前述条款的聚合物颗粒,其中所述亲水性乙烯基单体选自或包含丙烯酰胺、羟甲基丙烯酰胺、[三(羟甲基)甲基]丙烯酰胺、3-丙烯酰胺丙酸、甲基丙烯酰胺、2-羟乙基甲基丙烯酰胺、(3-氨基丙基)甲基丙烯酰胺、或丙烯酸2-羟乙酯;任选地,其中所述亲水性乙烯基单体选自或包含丙烯酰胺(丙-2-烯酰胺)、羟甲基丙烯酰胺、三羟甲基甲基丙烯酰胺、甲基丙烯酸2-羟乙酯、丙烯酸、衣康酸、富马酸、乙烯基膦酸、乙烯基磺酸、衣康酸酐和马来酸酐中的至少一种。
12.任一前述条款的聚合物颗粒,其中亲水性乙烯基单体包含伯酰胺基团(-C(O)NH2)。
13.任一前述条款的聚合物颗粒,其中所述交联剂包括式(IIa)或(IIb)的至少一种化合物:
其中R6选自-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6羟烷基-,-C1-C6醚-,或包含2至100个C2-C3醚单元的聚醚;
R7和R8各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基,-C1-C6羟烷基或-C1-C6醚;或R7和R8连接在一起形成-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6羟烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;
R9是-N(R11)C(O)CH=CH2
R10选自-H和–N(R12)C(O)CH=CH2;和
R11和R12各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基,-C1-C6羟烷基或-C1-C6醚;
任选地其中R6、R7、R8、R9、R10、R11和R12中的一个或多个在化学上可能的情况下独立地被1至5个取代基取代,所述取代基在每次出现时各自独立地选自:氧代、=NRa、=NORa、卤代、硝基、氰基、NRaRa、NRaS(O)2Ra、NRaCONRaRa、NRaCO2Ra、ORa;SRa、S(O)Ra、S(O)2ORa、S(O)2Ra、S(O)2NRaRa、CO2Ra C(O)Ra、CONRaRa、C1-C4-烷基、C2-C4-烯基、C2-C4-炔基、C1-C4卤代烷基;其中Ra在每次出现时独立地选自:H、C1-C4烷基和C1-C4烯基。
14.条款13的化合物,其中R6为(CH2)r(OCH2CH2)nO(CH2)s,其中r和s各自独立地是2或3,和n是从1至100的整数;
任选地其中r和s各自是2和n是从1至50的整数。
15.条款13或条款14的聚合物颗粒,其中R7和/或R8是H。
16.任一前述条款的聚合物颗粒,其中交联剂的log P值小于约1,任选log P值小于约0.5,进一步任选地log P值小于约0。
17.任一前述条款的聚合物颗粒,其中交联剂是或包含N,N'-(1,2-二羟基亚乙基)双丙烯酰胺、N,N'-亚甲基双(丙烯酰胺)、N,N'-亚乙基双(丙烯酰胺)、甘油1,3-二甘醇酯二丙烯酸酯、哌嗪二丙烯酰胺、N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺、聚乙二醇二丙烯酰胺(MW≤2000)、4-臂PEG-丙烯酰胺(MW≤2000)和/或N,N-双(2-丙烯酰胺基乙基)丙烯酰胺;或其中所述交联剂是或包含1,2-二羟基双-丙烯酰胺;或其中所述交联剂是或包含N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺、聚乙二醇二丙烯酰胺(MW≤2000)和4-臂PEG-丙烯酰胺(MW≤2000),任选地其中所述交联剂是或包含N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺。
18.任一前述条款的聚合物颗粒,其中所述交联剂不包含伯胺、仲胺、羟基或羧酸。
19.任一前述条款的聚合物颗粒,其中交联水平为1-60%wt交联剂,任选地1-30%wt交联剂;或其中交联水平为10-90%wt交联剂,任选地25-60%wt交联剂。
20.条款1至3中任一项的聚合物颗粒,其中所述亲水性乙烯基单体是如条款13至19中任一项所定义的交联剂。
21.任一前述条款的聚合物颗粒,其中所述聚合物包含孔,并且所述孔包含至少一部分的所述磁性材料,任选地其中所述磁性材料基本上位于所述孔中。
22.条款21的聚合物颗粒,其中所述孔提供所述聚合物的孔隙率水平为40%至95%。
23.任一前述条款的聚合物颗粒,其中所述磁性材料是纳米颗粒磁性材料;和/或其中所述磁性材料是超顺磁性材料。
24.任一前述条款的聚合物颗粒,其中所述磁性材料是金属氧化物或合金;和/或其中所述磁性材料包括铁磁和/或超顺磁铁氧化物晶体。
25.任一前述条款的聚合物颗粒,其中所述聚合物颗粒还包含涂层。
26.条款25的聚合物颗粒,其中所述涂层是由至少一种环氧化物单体形成的聚合物涂层。
27.条款26的聚合物颗粒,其中所述涂层包含二氧化硅。
28.一种单分散涂覆的水凝胶聚合物颗粒,其包含由以下形成的聚合物:(a)亲水性乙烯基单体,其log Poct/wat(log P)小于约0.6;和(b)包含至少两个乙烯基的交联剂;和涂层。
29.条款28的聚合物颗粒,其中所述涂层是或包含有机涂层或二氧化硅涂层。
30.条款28或条款29的聚合物颗粒,其中所述涂层包含由至少一种环氧化物单体形成的有机涂层。
31.条款28或条款29的聚合物颗粒,其中所述涂层包含二氧化硅。
32.条款28-31中任一项的聚合物颗粒,其中所述亲水性乙烯基单体如在条款2至12或20的任一项中进一步定义。
33.条款28-32中任一项的聚合物颗粒,其中所述交联剂如在条款13至19中的任一项中进一步定义。
34.条款28至33中任一项的聚合物颗粒,其中所述聚合物包含孔。
35.任一前述条款的聚合物颗粒,其中所述聚合物颗粒的平均直径为0.5μm至10μm,任选地为0.5μm至5μm。
36.任一前述条款的聚合物颗粒,其中所述聚合物颗粒的平均直径为至少0.5μm,任选地至少0.6μm,进一步任选地至少0.7μm或者至少0.8μm。
37.任一前述条款的聚合物颗粒,其中变异系数(CV)小于20%,任选地其中CV小于15%,进一步任选地其中CV小于10%。
38.任一前述条款的聚合物颗粒,其中所述聚合物颗粒包含官能团,任选地其中所述官能团选自羧酸(-COOH)、伯胺或仲胺。
39.一种形成单分散磁性水凝胶聚合物颗粒的方法,包括:
形成pH小于6的水悬浮液,其包括单分散水凝胶聚合物颗粒和Fe2+和/或Fe3+离子;
将pH升高至大于8;和
允许磁性材料沉淀,
其中单分散水凝胶聚合物颗粒由以下形成
(a)log Poct/wat(log P)小于约0.6的亲水性乙烯基单体;和
(b)包含至少两个乙烯基的交联剂。
40.条款39的方法,其中pH小于6的水悬浮液包含Fe2+和Fe3+离子,任选地其中悬浮液包含FeCl2和FeCl3
41.条款39或40的方法,还包括在磁性水凝胶聚合物颗粒上形成聚合物涂层和/或二氧化硅涂层。
42.条款41的方法,其中形成聚合物涂层包括形成包含单分散磁性水凝胶聚合物颗粒和至少一种环氧化物的悬浮液,并使所述至少一种环氧化物的环氧基团与所述磁性水凝胶聚合物颗粒的表面官能团反应,任选地其中所述表面官能团是胺。
43.条款41的方法,其中形成二氧化硅涂层包括形成包含单分散磁性水凝胶聚合物颗粒和硅酸盐或原硅酸盐的悬浮液,并使硅酸盐或硅烷反应形成二氧化硅涂层。
44.条款43的方法,其中使硅酸盐反应形成二氧化硅涂层包括将悬浮液的pH降低至小于11。
45.条款43的方法,其中使原硅酸盐反应形成二氧化硅涂层包括将悬浮液的温度升至至少80℃。
46.一种形成涂覆的单分散水凝胶聚合物颗粒的方法,包括:
形成包含单分散水凝胶聚合物颗粒和至少一种环氧化物或硅酸盐或原硅酸盐的悬浮液;和
使所述至少一种环氧化物的环氧基与所述颗粒的表面官能团反应;或使硅酸盐或原硅酸盐反应形成二氧化硅涂层;
其中所述单分散水凝胶聚合物颗粒由以下形成
(a)log Poct/wat(log P)小于约0.6的亲水性乙烯基单体;和
(b)包含至少两个乙烯基的交联剂形成。
47.条款46的方法,其中所述表面官能团是胺。
48.条款46的方法,其中使硅酸盐反应形成二氧化硅涂层包括将悬浮液的pH降低至小于11。
49.条款46的方法,其中使原硅酸盐反应形成二氧化硅涂层包括将悬浮液的温度升高到超过90℃。
50.条款39至49中任一项的方法,其中,所述单分散水凝胶聚合物颗粒根据包括以下的方法形成:
形成溶液(a):至少2%wt的亲水性乙烯基单体的水溶液,该溶液还包含含有至少两个乙烯基的交联剂;
形成稳定剂在有机溶剂中的溶液(b),其中所述有机溶剂不与水混溶,并且其中溶液(a)和溶液(b)的至少一种包含自由基引发剂;混合溶液(a)和(b)以形成油包水乳液(c)并向乳液中加入单分散种子颗粒;
允许单分散种子颗粒在所述乳液中形成溶胀颗粒;和聚合溶胀颗粒以形成单分散水凝胶聚合物颗粒。
51.条款50的方法,其中所述亲水性乙烯基单体如在条款2至12或20的任一项中进一步定义。
52.条款50或51的方法,其中,所述交联剂如在条款13至19中的任一项中进一步定义。
53.条款50至52中任一项的方法,其中所述稳定剂是非离子表面活性剂,任选地其中所述非离子表面活性剂是非离子聚合物表面活性剂;
进一步任选地其中所述非离子聚合物表面活性剂包含至少一个聚氧乙烯基或至少一个聚氧丙氧基;和/或
其中所述非离子型聚合物表面活性剂是低聚表面活性剂。
54.条款50至53中任一项的方法,其中所述稳定剂选自hypermer 2296、Abil EM90和山梨糖醇单油酸酯。
55.条款50至53中任一项的方法,其中所述自由基引发剂是过氧化物引发剂或偶氮引发剂,任选地其中所述自由基引发剂是2,2'-偶氮二-2,4-二甲基戊腈。
56.条款50至55中任一项的方法,其中所述有机溶剂包括脂族烃、脂族碳酸酯、脂族酯、脂族醚、芳族烃或硅氧烷中的至少一种,或其组合;和/或其中所述有机溶剂包括庚烷和甲苯的混合物;脂肪烃的混合物;双(2-乙基己基)碳酸酯,任选与脂族和芳族烃混合;或己二酸(2-乙基己基)酯。
57.条款50至56中任一项的方法,其中溶液(a)包含不超过60%wt的亲水性乙烯基单体。
58.条款50至57中任一项的方法,其中溶液(a)包含至少2%wt亲水性乙烯基单体并且不超过60%wt亲水性乙烯基单体,任选其中溶液(a)包含至少5%wt亲水性乙烯基单体并且不超过45%wt亲水性乙烯基单体。
59.条款50至58中任一项的方法,其中溶液(a)包含约10%wt的亲水性乙烯基单体。
60.条款50至59中任一项的方法,其中所述引发剂在乳液中的含量为约0.1%wt至约1.5%wt,任选其中所述引发剂在乳液中的含量为约0.6%wt至约1.2%wt,进一步任选地其中所述引发剂在乳液中的含量为约0.8%wt。
61.条款50至60中任一项的方法,其中所述聚合包括活化所述自由基引发剂。
62.条款39至49中任一项的方法,其中所述单分散水凝胶聚合物颗粒根据包括下述的方法形成:
形成溶液(a):至少2%wt的亲水性乙烯基单体的水溶液,该水溶液还包含链转移剂;
形成稳定剂在有机溶剂中的溶液(b),其中所述有机溶剂不与水混溶,并且其中溶液(a)和溶液(b)的至少一种包含自由基引发剂;
混合溶液(a)和(b)以形成油包水乳液(c)并向乳液中加入单分散种子颗粒;
允许单分散种子颗粒在所述乳液中形成溶胀颗粒;
聚合该溶胀颗粒以形成单分散聚合物颗粒;
形成稳定剂在有机溶剂中的溶液(d),其中所述有机溶剂不与水混溶;
形成溶液(e):至少2%wt的亲水性乙烯基单体的水溶液,该水溶液还包含含有至少两个乙烯基的交联剂,其中溶液(d)和溶液(e)中的至少一种包含自由基引发剂;
混合溶液(d)和(e)以形成油包水乳液(f)并添加单分散聚合物颗粒到所述乳液中;
允许单分散聚合物颗粒在乳液中形成溶胀的聚合物颗粒;和聚合该溶胀的聚合物颗粒以形成单分散水凝胶聚合物颗粒。
63.条款50至62中任一项的方法,其中所述单分散种子颗粒的z均直径为100nm-1500nm,其中每个种子颗粒包含多个聚N,N-二甲基丙烯酰胺的非交联低聚物。
64.条款50至63中任一项的方法,其中所述单分散种子颗粒通过在稳定剂和链转移剂存在下在有机溶剂中自由基引发的N,N-二甲基丙烯酰胺的聚合形成。
65.条款50至63中任一项的方法,其中所述单分散种子颗粒通过以下形成:将N,N-二甲基丙烯酰胺、稳定剂、自由基引发剂和链转移剂溶解在有机溶剂中以形成反应混合物;和加热反应混合物以活化引发剂。
66.条款39至65中任一项的方法,其中形成的所述单分散磁性水凝胶聚合物颗粒或形成的涂覆的单分散水凝胶聚合物颗粒的众数直径为0.5μm至10μm或1μM至10μm,任选地众数直径为0.5μm至5μm或1μm至5μm。
67.条款39至66中任一项的方法,其中形成的所述单分散磁性水凝胶聚合物颗粒或形成的涂覆的单分散水凝胶聚合物颗粒的变异系数(CV)小于20%,任选地其中CV小于15%,进一步任选地其中CV小于10%。
68.条款39至67中任一项的方法,其中形成的所述单分散磁性水凝胶聚合物颗粒或形成的涂覆的单分散水凝胶聚合物颗粒包含官能团;任选地,其中所述官能团选自羟基、羧酸(-COOH)、伯胺或仲胺;进一步任选地其中所述官能团选自羧酸(-COOH)、伯胺或仲胺。
69.单分散磁性水凝胶聚合物颗粒或涂覆的单分散水凝胶聚合物颗粒,其可通过条款39至68中任一项的方法获得。
70.条款1至27、35至38或条款69中任一项的单分散磁性水凝胶聚合物颗粒在测定中的用途。
71.条款28至38或条款69中任一项的单分散涂覆的水凝胶聚合物颗粒在测定中的用途。
72.条款1至27、35至38或条款69中任一项的单分散磁性水凝胶聚合物颗粒在核酸扩增中的用途。
73.条款28至38或条款69中任一项的单分散涂覆的水凝胶聚合物颗粒在核酸扩增中的用途。
74.条款72或73的用途,其中所述核酸扩增是乳液PCR。

Claims (94)

1.单分散磁性水凝胶聚合物颗粒,其包含磁性材料和由以下形成的聚合物:
(a)亲水性乙烯基单体,其log Poct/wat(log P)小于约0.6;和
(b)包含至少两个乙烯基的交联剂
其中所述亲水性乙烯基单体包含选自下述单体的至少一种亲水性乙烯基单体:
(i)其包含-C(O)NH2、-C(O)NHCH3、-C(O)NHCH2CH3或-C(O)N(CH3)2
(ii)式(Ib)的化合物
(iii)式(Ic)的化合物:
其中:
R1和R1a各自独立地选自-H、-CH3、-CH2CH3或-CH2C(O)OH;
(iv)4-丙烯酰基吗啉或1-乙烯基咪唑;和
(v)其包括至少两个乙烯基,其中所述单体不包含伯胺、仲胺、羟基或羧酸。
2.根据权利要求1所述的聚合物颗粒,其中单体(i)包含-C(O)NH2
3.根据权利要求1或权利要求2所述的聚合物颗粒,其中R1a是-H。
4.根据任一前述权利要求所述的聚合物颗粒,其中所述至少一种亲水性单体选自单体(i)、(ii)或(iii)。
5.根据任一前述权利要求所述的聚合物颗粒,其中所述亲水性乙烯基单体的log P小于约0.3,任选地其中log P小于约0。
6.根据任一前述权利要求所述的聚合物颗粒,其中亲水性乙烯基单体的log P为0.5至-2,任选地其中log P为0至-2。
7.根据任一前述权利要求所述的聚合物颗粒,其中log P使用CambridgeSoft公司的Ultra 14.0从所述单体的结构计算。
8.根据任一前述权利要求所述的聚合物颗粒,其中所述亲水性乙烯基单体是或包含丙烯酰胺单体和/或丙烯酸酯单体。
9.根据任一前述权利要求所述的聚合物颗粒,其中所述亲水性乙烯基单体包括具有根据下式的R原子的单体:
其中NC是所述亲水性乙烯基单体中的碳原子数、NN是氮原子数和NO是氧原子数;其中当所述亲水性乙烯基单体是丙烯酰胺、乙烯基咪唑、丙烯酰基吗啉、乙烯基膦酸或乙烯基磺酸时,R原子<2.75;并且其中当所述亲水性乙烯基单体为丙烯酸酯或其它单体类时R原子≤2且所述亲水性乙烯基单体在25℃下的水溶解度≥50g/L。
10.根据任一前述权利要求所述的聚合物颗粒,其中所述亲水性乙烯基单体包括式(I)的至少一种化合物:
其中:
R1为-H、-CH3、-CH2CH3或-CH2C(O)OH;
R1a为-H或-C(O)R2
R1b为-C(O)R2、–P(O)(OH)2、-S(O)2OH或具有3至8个环原子的杂环,其中杂原子选自N、O或S;或R1b与R1a或R1组合为-C(O)-OC(O)-;
R2为-OR3、–N(R4)R5或-N连接的氨基酸;
R3为-H、-C1-C6烷基或-C1-C6醇;和
R4和R5各自独立地选自-H、-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇;或
R4和R5与它们所连接的氮一起形成具有3至8个环原子的杂环,其中杂原子选自N、O或S。
11.根据权利要求10所述的聚合物颗粒,其中R1为-H、-CH3、-CH2CH3或-CH2C(O)OH;
R1a为-H或-C(O)R2
R1b为-C(O)R2、–P(O)(OH)2或-S(O)2OH;或R1b与R1a或R1组合为-C(O)-OC(O)-;
R2是-OR3或–N(R4)R5
R3是-H、-C1-C6烷基或-C1-C6醇;和
R4和R5各自独立地选自-H、-C1-C6烷基、-C1-C6卤代烷基、-C1-C6醇。
12.根据权利要求10或11所述的聚合物颗粒,其中R1a是-H且R1b是-C(O)R2,任选地其中R2是-OR3
13.根据权利要求10或11所述的聚合物颗粒,其中R1b是-P(O)(OH)2
14.-C1-C6醇。
15.根据权利要求10-14中任一项所述的聚合物颗粒,其中R3是-H。
16.根据权利要求10-15中任一项所述的聚合物颗粒,其中R4和/或R5各自独立地选自-H、-C1-C6烷基、-C1-C6醇;或R4和R5与它们所连接的氮一起形成具有3至8个环原子的杂环,其中杂原子选自N、O或S。
17.根据权利要求10-16中任一项所述的聚合物颗粒,其中R4是-H或-C1-C6烷基,任选地其中R4是-H。
18.根据权利要求10-18中任一项所述的聚合物颗粒,其中R5是-H或-C1-C6烷基,任选地其中R5是-H。
19.根据权利要求10或18中任一项所述的聚合物颗粒,其中R1a是-C(O)NH2、-C(O)NHCH3、-C(O)NHCH2CH3或-C(O)N(CH3)2;和/或
R1b是-C(O)NH2、-C(O)NHCH3、-C(O)NHCH2CH3或-C(O)N(CH3)2、-P(O)(OH)2、-S(O)2OH。
20.根据权利要求10-18中任一项所述的聚合物颗粒,其中R3、R4或R5中的至少一个是-C1-C6多元醇。
21.根据任一前述权利要求所述的聚合物颗粒,其中所述亲水性乙烯基单体选自或包含丙烯酰胺、羟甲基丙烯酰胺、[三(羟甲基)甲基]丙烯酰胺、4-丙烯酰基吗啉、3-丙烯酰胺丙酸、甲基丙烯酰胺、2-羟乙基甲基丙烯酰胺、(3-氨基丙基)甲基丙烯酰胺、或丙烯酸2-羟乙酯、甲基丙烯酸2-羟乙酯、丙烯酸、衣康酸、富马酸、乙烯基膦酸、乙烯基磺酸、衣康酸酐、1-乙烯基咪唑和马来酸酐。
22.根据任一前述权利要求所述的聚合物颗粒,其中所述亲水性乙烯基单体选自或包含丙烯酰胺、4-丙烯酰基吗啉、甲基丙烯酰胺和乙烯基膦酸。
23.根据任一前述权利要求所述的聚合物颗粒,其中所述亲水性乙烯基单体包含伯酰胺基团(-C(O)NH2)。
24.根据任一前述权利要求所述的聚合物颗粒,其中所述交联剂包括式(IIa)或(IIb)的至少一种化合物:
其中R6选自-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6羟烷基-,-C1-C6醚-,或包含2至100个C2-C3醚单元的聚醚;
R7和R8各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基,-C1-C6羟烷基或-C1-C6醚;或R7和R8连接在一起形成-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6羟烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;
R9是-N(R11)C(O)CH=CH2
R10选自-H和–N(R12)C(O)CH=CH2;和
R11和R12各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基,-C1-C6羟烷基或-C1-C6醚。
25.根据权利要求24所述的聚合物颗粒,其中R6选自-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;R7和R8各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基或-C1-C6醚;或R7和R8连接在一起形成-C1-C6烷基-,-C1-C6杂烷基-,-C1-C6环烷基-,-C1-C6醚-,包含2至100个C2-C3醚单元的聚醚;和
R11和R12各自独立地选自-H,-C1-C6烷基,-C1-C6杂烷基,-C3-C6环烷基或-C1-C6醚。
26.根据权利要求24或25所述的聚合物颗粒,其中R6为(CH2)r(OCH2CH2)nO(CH2)s,其中r和s各自独立地是2或3,和
n是从1至100的整数;
任选地其中r和s各自是2和n是从1至50的整数。
27.根据权利要求24-26中任一项所述的聚合物颗粒,其中R7和/或R8是H。
28.根据任一前述权利要求所述的聚合物颗粒,其中所述交联剂的log P值小于约1,任选地log P值小于约0.5,进一步任选地log P值小于约0。
29.根据权利要求28所述的聚合物颗粒,其中log P使用CambridgeSoft公司的Ultra 14.0从所述交联剂的结构计算。
30.根据任一前述权利要求所述的聚合物颗粒,其中所述交联剂是或包含N,N'-(1,2-二羟基亚乙基)双丙烯酰胺、N,N'-亚甲基双(丙烯酰胺)、N,N'-亚乙基双(丙烯酰胺)、甘油1,3-二甘醇酯二丙烯酸酯、哌嗪二丙烯酰胺、N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺、聚乙二醇二丙烯酰胺(MW≤2000)、4-臂PEG-丙烯酰胺(MW≤2000)和/或N,N-双(2-丙烯酰胺基乙基)丙烯酰胺;或其中所述交联剂是或包含1,2-二羟基双-丙烯酰胺;或其中所述交联剂是或包含N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺、聚乙二醇二丙烯酰胺(MW≤2000)和4-臂PEG-丙烯酰胺(MW≤2000),任选地其中所述交联剂是或包含N,N'-((乙烷-1,2-二基双(氧基))双(乙烷-2,1-二基))二丙烯酰胺。
31.根据任一前述权利要求所述的聚合物颗粒,其中所述交联剂是或包括N,N'-亚甲基双(丙烯酰胺),N,N'-亚乙基双(丙烯酰胺),哌嗪二丙烯酰胺,N,N'-((乙烷-1,2-二基双(氧))双(乙烷-2,1-二基))二丙烯酰胺,聚乙二醇二丙烯酰胺(MW≤2000),4-臂PEG-丙烯酰胺(MW≤2000),N,N-双(2-丙烯酰胺基乙基)丙烯酰胺。
32.根据任一前述权利要求所述的聚合物颗粒,其中所述交联剂不包含伯胺、仲胺、羟基或羧酸。
33.根据任一前述权利要求所述的聚合物颗粒,其中交联水平为1-60%wt交联剂,任选地1-30%wt交联剂;或其中交联水平为10-90%wt交联剂,任选地25-60%wt交联剂。
34.根据权利要求1-9中任一项所述的聚合物颗粒,其中所述亲水性乙烯基单体是如权利要求24至32中任一项所定义的交联剂。
35.根据任一前述权利要求所述的聚合物颗粒,其中所述聚合物包含孔,并且所述孔包含至少一部分的所述磁性材料,任选地其中所述磁性材料基本上位于所述孔中。
36.根据权利要求35所述的聚合物颗粒,其中所述孔提供所述聚合物的孔隙率水平为40%至95%。
37.根据任一前述权利要求所述的聚合物颗粒,其中所述磁性材料是纳米颗粒磁性材料;和/或其中所述磁性材料是超顺磁性材料。
38.根据任一前述权利要求所述的聚合物颗粒,其中所述磁性材料是金属氧化物或合金;和/或其中所述磁性材料包括铁磁和/或超顺磁铁氧化物晶体。
39.根据任一前述权利要求所述的聚合物颗粒,其中所述聚合物颗粒还包含涂层。
40.根据权利要求39所述的聚合物颗粒,其中所述涂层是由至少一种环氧化物单体形成的聚合物涂层。
41.根据权利要求40所述的聚合物颗粒,其中所述涂层包含二氧化硅。
42.单分散涂覆的水凝胶聚合物颗粒,其包含由以下形成的聚合物
(a)亲水性乙烯基单体,其log Poct/wat(log P)小于约0.6;和
(b)包含至少两个乙烯基的交联剂;和
涂层,
其中所述亲水性乙烯基单体包含选自下述单体的至少一种亲水性乙烯基单体:
(i)其包含-C(O)NH2、-C(O)NHCH3、-C(O)NHCH2CH3或-C(O)N(CH3)2
(ii)式(Ib)的化合物:
(iii)式(Ic)的化合物:
其中:
R1和R1a各自独立地选自-H、-CH3、-CH2CH3或-CH2C(O)OH;
(iv)4-丙烯酰基吗啉或1-乙烯基咪唑;和
(v)其包括至少两个乙烯基,其中所述单体不包含伯胺、仲胺、羟基或羧酸。
43.根据权利要求42所述的聚合物颗粒,其中所述涂层是或包含有机涂层或二氧化硅涂层。
44.根据权利要求42或权利要求43所述的聚合物颗粒,其中所述涂层包含由至少一种环氧化物单体形成的有机涂层。
45.根据权利要求42或权利要求43所述的聚合物颗粒,其中所述涂层包含二氧化硅。
46.根据权利要求42-45中任一项所述的聚合物颗粒,其中所述亲水性乙烯基单体如在权利要求2至23或34的任一项中进一步定义。
47.根据权利要求42-46中任一项所述的聚合物颗粒,其中所述交联剂如在权利要求24至33中的任一项中进一步定义。
48.根据权利要求42-47中任一项所述的聚合物颗粒,其中所述聚合物包含孔。
49.单分散水凝胶聚合物颗粒,其包括由以下形成的聚合物:(a)亲水性乙烯基单体,所述单体包含选自4-丙烯酰基吗啉和1-乙烯基咪唑的单体;和(b)包含至少两个乙烯基的交联剂。
50.根据权利要求49所述的单分散水凝胶聚合物颗粒,其中所述交联剂如在权利要求24至33中的任一项中进一步定义。
51.根据权利要求49或权利要求50所述的聚合物颗粒,其中所述聚合物包含孔,任选地其中所述孔为聚合物提供40%至95%的孔隙率水平。
52.根据任一前述权利要求所述的聚合物颗粒,其中所述聚合物颗粒的平均直径为0.5μm至10μm,任选地为0.5μm至5μm。
53.根据任一前述权利要求所述的聚合物颗粒,其中所述聚合物颗粒的平均直径为至少0.5μm,任选地至少0.6μm,进一步任选地至少0.7μm或者至少0.8μm。
54.根据任一前述权利要求所述的聚合物颗粒,其中变异系数(CV)小于20%,任选地其中CV小于15%,进一步任选地其中CV小于10%。
55.根据任一前述权利要求所述的聚合物颗粒,其中所述聚合物颗粒包含官能团,任选地其中所述官能团选自羧酸(-COOH)、伯胺或仲胺。
56.形成单分散磁性水凝胶聚合物颗粒的方法,包括:
形成含水悬浮液,其包括单分散水凝胶聚合物颗粒和磁性材料或磁性材料前体;
当含水悬浮液包括磁材料前体时,将所述磁性材料前体转化为磁性材料;和
允许所述磁性材料与所述聚合物颗粒结合,
其中单分散水凝胶聚合物颗粒由以下形成:
(a)log Poct/wat(log P)小于约0.6的亲水性乙烯基单体;和
(b)包含至少两个乙烯基的交联剂。
57.根据权利要求56所述的方法,其中:
形成含水悬浮液包括形成pH小于6的含水悬浮液,其包含单分散水凝胶聚合物颗粒和Fe2+和/或Fe3+离子;并且
将磁性材料前体转化为磁性材料包括将pH升高至大于8;并允许磁性材料沉淀。
58.根据权利要求57所述的方法,其中pH小于6的水悬浮液包含Fe2+和Fe3+离子,任选地其中悬浮液包含FeCl2和FeCl3
59.根据权利要求56-58中任一项所述的方法,还包括在磁性水凝胶聚合物颗粒上形成聚合物涂层和/或二氧化硅涂层。
60.根据权利要求59所述的方法,其中形成聚合物涂层包括形成包含单分散磁性水凝胶聚合物颗粒和至少一种环氧化物的悬浮液,并使所述至少一种环氧化物的环氧基团与所述磁性水凝胶聚合物颗粒的表面官能团反应,任选地其中所述表面官能团是胺。
61.根据权利要求59所述的方法,其中形成二氧化硅涂层包括形成包含单分散磁性水凝胶聚合物颗粒和硅酸盐或原硅酸盐的悬浮液,并使硅酸盐或硅烷反应形成二氧化硅涂层。
62.根据权利要求61所述的方法,其中使硅酸盐反应形成二氧化硅涂层包括将悬浮液的pH降低至小于11。
63.根据权利要求61所述的方法,其中使原硅酸盐反应形成二氧化硅涂层包括将悬浮液的温度升至至少80℃。
64.一种形成涂覆的单分散水凝胶聚合物颗粒的方法,包括:
形成包含单分散水凝胶聚合物颗粒和至少一种环氧化物或硅酸盐或原硅酸盐的悬浮液;和
使所述至少一种环氧化物的环氧基与所述颗粒的表面官能团反应;或
使硅酸盐或原硅酸盐反应形成二氧化硅涂层;
其中所述单分散水凝胶聚合物颗粒由以下形成:
(a)log Poct/wat(log P)小于约0.6的亲水性乙烯基单体;和
(b)包含至少两个乙烯基的交联剂。
65.根据权利要求64所述的方法,其中所述表面官能团是胺。
66.根据权利要求64所述的方法,其中使硅酸盐反应形成二氧化硅涂层包括将悬浮液的pH降低至小于11。
67.根据权利要求64所述的方法,其中使原硅酸盐反应形成二氧化硅涂层包括将悬浮液的温度升高到超过90℃。
68.根据权利要求56到67中任一权所述的方法,其中所述单分散水凝胶聚合物颗粒根据包括以下的方法形成:
形成溶液(a):至少2%wt的亲水性乙烯基单体的水溶液,该溶液还包含含有至少两个乙烯基的交联剂;
形成稳定剂在有机溶剂中的溶液(b),其中所述有机溶剂不与水混溶,并且其中溶液(a)和溶液(b)的至少一种包含自由基引发剂;混合溶液(a)和(b)以形成油包水乳液(c)并向乳液中加入单分散种子颗粒;
允许单分散种子颗粒在所述乳液中形成溶胀颗粒;和
聚合溶胀颗粒以形成单分散水凝胶聚合物颗粒。
69.根据权利要求68所述的方法,其中所述亲水性乙烯基单体如在权利要求1至23或34的任一项中进一步定义。
70.根据权利要求68或69所述的方法,其中所述交联剂如在权利要求25至34中任一项中进一步定义。
71.根据权利要求68到70中任一项所述的方法,其中所述稳定剂是非离子表面活性剂,任选地其中所述非离子表面活性剂是非离子聚合物表面活性剂;
进一步任选地其中所述非离子聚合物表面活性剂包含至少一个聚氧乙烯基或至少一个聚氧丙氧基;和/或
其中所述非离子型聚合物表面活性剂是低聚表面活性剂。
72.根据权利要求68到71中任一项所述的方法,其中所述稳定剂选自hypermer 2296、Abil EM90和山梨糖醇单油酸酯。
73.根据权利要求68到72中任一项所述的方法,其中所述自由基引发剂是过氧化物引发剂或偶氮引发剂,任选地其中所述自由基引发剂是2,2'-偶氮二-2,4-二甲基戊腈。
74.根据权利要求68到73中任一项所述的方法,其中所述有机溶剂包括脂族烃、脂族碳酸酯、脂族酯、脂族醚、芳族烃或硅氧烷中的至少一种,或其组合;和/或
其中所述有机溶剂包括庚烷和甲苯的混合物;脂肪烃的混合物;双(2-乙基己基)碳酸酯,任选与脂族和芳族烃混合;或己二酸(2-乙基己基)酯。
75.根据权利要求68到74中任一项所述的方法,其中溶液(a)包含不超过60%wt的亲水性乙烯基单体。
76.根据权利要求68到75中任一项所述的方法,其中溶液(a)包含至少2%wt亲水性乙烯基单体并且不超过60%wt亲水性乙烯基单体,任选地其中溶液(a)包含至少5%wt亲水性乙烯基单体并且不超过45%wt亲水性乙烯基单体。
77.根据权利要求68到76中任一项所述的方法,其中溶液(a)包含约10%wt的亲水性乙烯基单体。
78.根据权利要求68到77中任一项所述的方法,其中所述引发剂在乳液中的含量为约0.1%wt至约1.5%wt,任选地其中所述引发剂在乳液中的含量为约0.6%wt至约1.2%wt,进一步任选地其中所述引发剂在乳液中的含量为约0.8%wt。
79.根据权利要求68到78中任一项所述的方法,其中所述聚合包括活化所述自由基引发剂。
80.根据权利要求56到67中任一项所述的方法,其中所述单分散水凝胶聚合物颗粒根据包括下述的方法形成:
形成溶液(a):至少2%wt的亲水性乙烯基单体的水溶液,该水溶液还包含链转移剂;
形成稳定剂在有机溶剂中的溶液(b),其中所述有机溶剂不与水混溶,并且其中溶液(a)和溶液(b)的至少一种包含自由基引发剂;
混合溶液(a)和(b)以形成油包水乳液(c)并向乳液中加入单分散种子颗粒;
允许单分散种子颗粒在所述乳液中形成溶胀颗粒;
聚合该溶胀颗粒以形成单分散聚合物颗粒;
形成稳定剂在有机溶剂中的溶液(d),其中所述有机溶剂不与水混溶;
形成溶液(e):至少2%wt的亲水性乙烯基单体的水溶液,该水溶液还包含含有至少两个乙烯基的交联剂,其中溶液(d)和溶液(e)中的至少一种包含自由基引发剂;
混合溶液(d)和(e)以形成油包水乳液(f)并添加单分散聚合物颗粒到所述乳液中;
允许单分散聚合物颗粒在乳液中形成溶胀的聚合物颗粒;和
聚合该溶胀的聚合物颗粒以形成单分散水凝胶聚合物颗粒。
81.根据权利要求68到80中任一项所述的方法,其中所述单分散种子颗粒的z均直径为100nm-1500nm,其中每个种子颗粒包含多个聚N,N-二甲基丙烯酰胺的非交联低聚物。
82.根据权利要求68到81中任一项所述的方法,其中所述单分散种子颗粒通过在稳定剂和链转移剂存在下在有机溶剂中自由基引发的N,N-二甲基丙烯酰胺的聚合形成。
83.根据权利要求68到82中任一项所述的方法,其中所述单分散种子颗粒通过以下形成:
将N,N-二甲基丙烯酰胺、稳定剂、自由基引发剂和链转移剂溶解在有机溶剂中以形成反应混合物;和
加热反应混合物以活化引发剂。
84.根据权利要求56到83中任一项所述的方法,其中形成的所述单分散磁性水凝胶聚合物颗粒或形成的涂覆的单分散水凝胶聚合物颗粒的众数直径为0.5μm至10μm或1μM至10μm,任选地众数直径为0.5μm至5μm或1μm至5μm。
85.根据权利要求56到84中任一项所述的方法,其中形成的所述单分散磁性水凝胶聚合物颗粒或形成的涂覆的单分散水凝胶聚合物颗粒的变异系数(CV)小于20%,任选地其中CV小于15%,进一步任选地其中CV小于10%。
86.根据权利要求56到85中任一项所述的方法,其中形成的所述单分散磁性水凝胶聚合物颗粒或形成的涂覆的单分散水凝胶聚合物颗粒包含官能团;任选地其中所述官能团选自羟基、羧酸(-COOH)、伯胺或仲胺;进一步任选地其中所述官能团选自羧酸(-COOH)、伯胺或仲胺。
87.单分散磁性水凝胶聚合物颗粒或涂覆的单分散水凝胶聚合物颗粒,其可通过权利要求56至86中任一项所述的方法获得。
88.权利要求1至41、52至55或权利要求87中任一项所述的单分散磁性水凝胶聚合物颗粒在测定中的用途。
89.权利要求42-48、52-55或权利要求87中任一项所述的单分散涂覆的水凝胶聚合物颗粒在测定中的用途。
90.权利要求49至51中任一项所述的单分散水凝胶聚合物颗粒在测定中的用途。
91.权利要求1至41、52至55或权利要求87中任一项所述的单分散磁性水凝胶聚合物颗粒在核酸扩增中的用途。
92.权利要求42-48、52-55或权利要求87中任一项所述的单分散涂覆的水凝胶聚合物颗粒在核酸扩增中的用途。
93.权利要求49至51中任一项所述的单分散水凝胶聚合物颗粒在核酸扩增中的用途。
94.根据权利要求91至93中任一项所述的用途,其中所述核酸扩增是乳液PCR。
CN201880012834.0A 2017-01-20 2018-01-19 聚合物颗粒 Active CN110312742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310457193.2A CN116640245A (zh) 2017-01-20 2018-01-19 聚合物颗粒

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1700983.8 2017-01-20
GBGB1700983.8A GB201700983D0 (en) 2017-01-20 2017-01-20 Polymeric particles
PCT/EP2018/051349 WO2018134374A2 (en) 2017-01-20 2018-01-19 Polymeric particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310457193.2A Division CN116640245A (zh) 2017-01-20 2018-01-19 聚合物颗粒

Publications (2)

Publication Number Publication Date
CN110312742A true CN110312742A (zh) 2019-10-08
CN110312742B CN110312742B (zh) 2023-05-12

Family

ID=58462997

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310457193.2A Pending CN116640245A (zh) 2017-01-20 2018-01-19 聚合物颗粒
CN201880012834.0A Active CN110312742B (zh) 2017-01-20 2018-01-19 聚合物颗粒

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310457193.2A Pending CN116640245A (zh) 2017-01-20 2018-01-19 聚合物颗粒

Country Status (6)

Country Link
US (2) US11680113B2 (zh)
EP (2) EP3872101A1 (zh)
JP (2) JP7271428B2 (zh)
CN (2) CN116640245A (zh)
GB (1) GB201700983D0 (zh)
WO (1) WO2018134374A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241354A1 (ja) * 2019-05-24 2020-12-03 国立研究開発法人理化学研究所 放射線線量測定ゲル、及びそれを放射線線量の計測材料として備える放射線線量計

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812895A (ja) * 1994-04-30 1996-01-16 Kanebo Nsc Ltd 磁性体・高分子複合微粒子およびその製法
US20020106659A1 (en) * 2000-07-11 2002-08-08 Kamelia Karlou-Eyrisch Superparamagnetic bead polymers
US20040018160A1 (en) * 2001-11-15 2004-01-29 Zhibing Hu Synthesis, uses and compositions of crystal hydrogels
EP1431320A1 (en) * 2002-12-20 2004-06-23 Dainippon Ink And Chemicals, Inc. Curable liquid compositions containing acrylate groups and beta-dicarbonyl compounds
CN1631913A (zh) * 2004-11-25 2005-06-29 南开大学 单分散的纳米/微米聚合物微球树脂及其制备方法
CN1832984A (zh) * 2003-08-06 2006-09-13 宝洁公司 已涂敷的水可溶胀材料
US20070054119A1 (en) * 2005-03-04 2007-03-08 Piotr Garstecki Systems and methods of forming particles
CN1947848A (zh) * 2006-01-09 2007-04-18 复旦大学 一种功能化的磁性分离棒及其制备方法
WO2010149150A2 (de) * 2009-06-22 2010-12-29 Deklatec Gmbh Farblose, magnetische polymerpartikel für den hochempfindlichen nachweis von biologischen substanzen und pathogenen im rahmen der bioanalytik und diagnostik
CN102099407A (zh) * 2008-05-16 2011-06-15 悉尼大学 聚合物微凝胶珠
CN102391603A (zh) * 2011-07-22 2012-03-28 西安交通大学 一种新型磁性高分子水凝胶的制备方法
CN102448995A (zh) * 2009-04-29 2012-05-09 茵维特罗根戴纳股份公司 单分散亚微米聚合物粒子
CN102492089A (zh) * 2011-11-17 2012-06-13 西北工业大学 磁性温敏核壳复合微球的制备方法
CN102603971A (zh) * 2012-02-27 2012-07-25 中国地质大学(武汉) 磁性膨胀吸附树脂及其制备方法
WO2013013030A2 (en) * 2011-07-19 2013-01-24 Tennessee Technological University Nanocomposite polymer hydrogel with aligned nanoparticles
CN104549162A (zh) * 2014-11-04 2015-04-29 华文蔚 一种用于分离手性物质的磁场流化床固定相的制备方法
CN104845006A (zh) * 2015-05-11 2015-08-19 东华大学 一种磁性丙烯酰胺类水凝胶及其制备方法
CN105153351A (zh) * 2015-07-31 2015-12-16 莆田学院 一种柠檬酸-聚丙烯酸盐磁性水凝胶、其制备方法及应用
CN105566555A (zh) * 2015-12-17 2016-05-11 三诺生物传感股份有限公司 一种胰岛素抗体印迹聚合物及其制备方法、应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU530410B2 (en) 1978-02-21 1983-07-14 Sintef Preparing aqueous emulsions
NO149108C (no) 1981-10-21 1984-02-15 Sintef Fremgangsmaate for fremstilling av vandige dispersjoner av organisk materiale og eventuelt videre omdannelse til en polymerdispersjon naar det organiske materiale er en polymeriserbar monomer
US6232465B1 (en) 1994-09-02 2001-05-15 Andrew C. Hiatt Compositions for enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides
US5750341A (en) 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
EP1177231B1 (en) 1999-04-09 2009-08-19 Invitrogen Dynal AS Process for the preparation of monodisperse polymer particles
US6414136B1 (en) * 1999-10-06 2002-07-02 Prolinx, Inc. Removal of dye-labeled dideoxy terminators from DNA sequencing reactions
WO2002029003A2 (en) 2000-10-06 2002-04-11 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding dna and rna
US7057026B2 (en) 2001-12-04 2006-06-06 Solexa Limited Labelled nucleotides
US20060189797A1 (en) 2003-06-27 2006-08-24 Pal Songe Magnetic polymer particles
EP2272983A1 (en) 2005-02-01 2011-01-12 AB Advanced Genetic Analysis Corporation Reagents, methods and libraries for bead-based sequencing
US20090099027A1 (en) 2007-08-23 2009-04-16 Applied Biosystems Inc. Methods of Modifying Support Surfaces for the Immobilization of Particles and the Use of the Immobilized Particles for Analyzing Nucleic Acids
JP2011521201A (ja) 2008-05-21 2011-07-21 ブルックス オートメーション インコーポレイテッド リニア駆動を利用した極低温冷凍機
CN104245745B (zh) 2012-02-09 2017-03-29 生命技术公司 亲水性聚合物颗粒及其制备方法
GB201512725D0 (en) * 2015-07-20 2015-08-26 Life Technologies As Polymeric particles

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812895A (ja) * 1994-04-30 1996-01-16 Kanebo Nsc Ltd 磁性体・高分子複合微粒子およびその製法
US20020106659A1 (en) * 2000-07-11 2002-08-08 Kamelia Karlou-Eyrisch Superparamagnetic bead polymers
US20040018160A1 (en) * 2001-11-15 2004-01-29 Zhibing Hu Synthesis, uses and compositions of crystal hydrogels
EP1431320A1 (en) * 2002-12-20 2004-06-23 Dainippon Ink And Chemicals, Inc. Curable liquid compositions containing acrylate groups and beta-dicarbonyl compounds
CN1832984A (zh) * 2003-08-06 2006-09-13 宝洁公司 已涂敷的水可溶胀材料
CN1631913A (zh) * 2004-11-25 2005-06-29 南开大学 单分散的纳米/微米聚合物微球树脂及其制备方法
US20070054119A1 (en) * 2005-03-04 2007-03-08 Piotr Garstecki Systems and methods of forming particles
CN1947848A (zh) * 2006-01-09 2007-04-18 复旦大学 一种功能化的磁性分离棒及其制备方法
CN102099407A (zh) * 2008-05-16 2011-06-15 悉尼大学 聚合物微凝胶珠
CN102448995A (zh) * 2009-04-29 2012-05-09 茵维特罗根戴纳股份公司 单分散亚微米聚合物粒子
WO2010149150A2 (de) * 2009-06-22 2010-12-29 Deklatec Gmbh Farblose, magnetische polymerpartikel für den hochempfindlichen nachweis von biologischen substanzen und pathogenen im rahmen der bioanalytik und diagnostik
WO2013013030A2 (en) * 2011-07-19 2013-01-24 Tennessee Technological University Nanocomposite polymer hydrogel with aligned nanoparticles
CN102391603A (zh) * 2011-07-22 2012-03-28 西安交通大学 一种新型磁性高分子水凝胶的制备方法
CN102492089A (zh) * 2011-11-17 2012-06-13 西北工业大学 磁性温敏核壳复合微球的制备方法
CN102603971A (zh) * 2012-02-27 2012-07-25 中国地质大学(武汉) 磁性膨胀吸附树脂及其制备方法
CN104549162A (zh) * 2014-11-04 2015-04-29 华文蔚 一种用于分离手性物质的磁场流化床固定相的制备方法
CN104845006A (zh) * 2015-05-11 2015-08-19 东华大学 一种磁性丙烯酰胺类水凝胶及其制备方法
CN105153351A (zh) * 2015-07-31 2015-12-16 莆田学院 一种柠檬酸-聚丙烯酸盐磁性水凝胶、其制备方法及应用
CN105566555A (zh) * 2015-12-17 2016-05-11 三诺生物传感股份有限公司 一种胰岛素抗体印迹聚合物及其制备方法、应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIHIKO KONDO,等: "Development and application of thermo-sensitive magnetic immunomicrospheres for antibody purification", 《APPL MICROBIOL BIOTECHNOL》 *
JENNIFER S. LOWE,等: "The preparation and physico-chemical properties of poly( N-ethylacrylamide) microgels", 《POLYMER》 *
JIGUANG ZHANG,等: "Polymer Microgels: Reactors for Semiconductor, Metal, and Magnetic Nanoparticles", 《J. AM. CHEM. SOC.》 *
卢汉民,等: "基于Pickering乳液的磁性高强水凝胶的制备及性能表征", 《高分子学报》 *

Also Published As

Publication number Publication date
CN116640245A (zh) 2023-08-25
US20190359814A1 (en) 2019-11-28
JP7271428B2 (ja) 2023-05-11
US20230272127A1 (en) 2023-08-31
WO2018134374A2 (en) 2018-07-26
US11680113B2 (en) 2023-06-20
GB201700983D0 (en) 2017-03-08
EP3571234A2 (en) 2019-11-27
JP2023065394A (ja) 2023-05-12
WO2018134374A3 (en) 2018-12-13
EP3872101A1 (en) 2021-09-01
EP3571234B1 (en) 2021-05-05
CN110312742B (zh) 2023-05-12
JP2020506260A (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
US11851514B2 (en) Inverse Ugelstad particles
CN105324667B (zh) 生物体分子染色用的荧光纳米粒子及其制造方法
JP2003513093A (ja) 複合ナノスフェアおよびそれらの生体分子との複合体
Ma et al. Well-defined biological sample-compatible molecularly imprinted polymer microspheres by combining RAFT polymerization and thiol–epoxy coupling chemistry
JP2010539320A (ja) 両親媒性重合体およびその形成方法
JP2009139214A (ja) ポリマー微粒子分散物、それを含む測定用組成物及びそれを用いた被検物質の検出方法
US20110207234A1 (en) Synthesis and Use of Cross-Linked Hydrophilic Hollow Spheres for Encapsulating Hydrophilic Cargo
US20230272127A1 (en) Polymeric particles
Basinska et al. Design of polyglycidol-containing microspheres for biomedical applications
JP7045996B2 (ja) ナノ粒子複合体
Audonnet et al. Polymeric coatings on micro-and nanometric particles for bioapplications
KR101807156B1 (ko) 양자점 표면 개질용 랜덤 공중합체의 제조방법 및 이를 이용한 양자점의 표면 개질 방법
JP7384594B2 (ja) 粒子、アフィニティー粒子、及び、これを含む試薬、キット、並びに検出方法
CN100523815C (zh) 内含磁性体的粒子及其制造方法、免疫测定用粒子以及免疫测定方法
CN109438592A (zh) 一种富勒烯改性的聚合物微球及其胶体晶体
Theeranan Mixed polyelectrolyte brush modified adsorbents for the separation of proteins
Keller Functional Core-Shell Nanoparticles for Enzyme Immobilization
JP2005291974A (ja) フェルダジル基を有する磁性有機粒子、粒子固定方法及びマイクロアレイ
Zourna Smart magnetic affinity adsorbents

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant