CN110289842B - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN110289842B
CN110289842B CN201910062242.6A CN201910062242A CN110289842B CN 110289842 B CN110289842 B CN 110289842B CN 201910062242 A CN201910062242 A CN 201910062242A CN 110289842 B CN110289842 B CN 110289842B
Authority
CN
China
Prior art keywords
terminal
voltage
zener diode
clamp
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910062242.6A
Other languages
English (en)
Other versions
CN110289842A (zh
Inventor
岩水守生
山科普士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of CN110289842A publication Critical patent/CN110289842A/zh
Application granted granted Critical
Publication of CN110289842B publication Critical patent/CN110289842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7815Vertical DMOS transistors, i.e. VDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/047Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using a temperature responsive switch
    • H02H5/048Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using a temperature responsive switch additionally responsive to excess current due to heating of the switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08104Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08108Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in thyristor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • H01L27/0733Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors in combination with capacitors only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K2017/0806Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

本发明的半导体装置抑制有源钳位电路因由感应性负载产生的反电动势电压而动作所导致的功率半导体元件的温度上升。在功率半导体元件(14)的栅极端子与漏极端子之间,连接有具有反向串联连接的齐纳二极管(23)以及二极管(24)的有源钳位电路(22)。钳位电压切换电路(25)检测在功率半导体元件(14)从导通状态被关断时在输出端子(12)产生的电压变化,通过切换有源钳位电路(22)的齐纳二极管(23)的齐纳电压,从而将钳位电压从元件耐压的第一钳位电压切换为比第一钳位电压低的第二钳位电压。由此,功率半导体元件(14)的钳位耐量提高,能够抑制功率半导体元件(14)的温度上升。

Description

半导体装置
技术领域
本发明涉及半导体装置,特别是涉及根据控制信号对马达、机械继电器、螺线管等感应性负载进行驱动控制的半导体装置。
背景技术
在搭载于车辆的各种电子装置中,已知有作为根据来自电子控制单元(ECU:Electronic Control Unit)的控制信号来驱动感应性负载的装置而单芯片化而成的半导体装置(例如,参照专利文献1)。
图17是表示以往的半导体装置的构成例的电路图,图18是表示应用有源钳位电路时的半导体装置的动作波形的图。
图17所例示的半导体装置具有输入控制信号的输入端子101、经由感应性负载而与电源(如果是车载的感应性负载则是电池)连接的输出端子102以及接地端子103,构成低侧型的开关装置。在该半导体装置中,作为功率半导体元件104,使用IGBT(Insulated GateBipolar Transistor:绝缘栅双极型晶体管),其栅极端子与输入端子101连接。功率半导体元件104的集电极端子与输出端子102连接,发射极端子与接地端子103连接,感测发射极端子经由感测电阻105与接地端子103连接。在功率半导体元件104的集电极端子与栅极端子之间,连接有将2个齐纳二极管反向串联地连接而构成的有源钳位电路106。
在输入端子101与接地端子103之间,并列地具备保护二极管107、下拉电阻108、过热检测电路109以及开关元件110、过电流检测电路111以及开关元件112、以及浪涌保护齐纳二极管113。对于开关元件110、112,使用N型MOSFET(Metal-Oxide-SemiconductorField-Effect Transistor:金属氧化物半导体场效应晶体管)。应予说明,构成该半导体装置的全部的要素形成于同一个芯片上。另外,输入于输入端子101而将功率半导体元件104导通的导通信号也成为过热检测电路109以及过电流检测电路111的电源。因此,在功率半导体元件104关断时,过热检测电路109以及过电流检测电路111停止。
这里,如果在输入端子101输入低电平的电压VIN,则功率半导体元件104关断,因此,如图18所示,不流通电流IOUT。此时,输出端子102的电压VOUT被施加电池的电压。
如果在输入端子101输入高电平的电压VIN,则功率半导体元件104导通,在感应性负载流通的电流IOUT逐渐增加。此时,输出端子102的电压VOUT几乎成为接地端子103的电位。
另外,如果在输入端子101输入高电平的电压VIN,则以电压VIN为电源的过热检测电路109以及过电流检测电路111开始动作。这里,如果过热检测电路109检测到功率半导体元件104的过热状态,则过热检测电路109使开关元件110导通,将功率半导体元件104的栅极端子的电位下拉,使功率半导体元件104关断。由此,功率半导体元件104的温度上升被抑制而防止因热导致的损坏。
进而,在输入端子101输入高电平的电压VIN时,如果过电流检测电路111接收到由感测电阻105引起的感测发射极电流的电压下降而检测到过电流,则过电流检测电路111使开关元件112导通。由此,功率半导体元件104的栅极端子的电位被下拉而功率半导体元件104关断,功率半导体元件104被防止由过电流导致的损坏。
接下来,如果输入端子101的电压VIN成为低电平,则功率半导体元件104关断,并且过热检测电路109以及过电流检测电路111停止其动作。
另一方面,如果功率半导体元件104关断,则感应性负载在端子两端产生反电动势电压,输出端子102与接地端子103之间的电压VOUT比电池的电压高。此时,如果有源钳位电路106的钳位电压例如被设定为50V,则电压VOUT一旦达到50V,则有源钳位电路106的齐纳二极管被击穿。由此,如果在有源钳位电路106以及下拉电阻108有电流流通而在功率半导体元件104的栅极端子产生栅极电压,则功率半导体元件104导通,在其集电极-发射极流通感应负载的能量。这样,如果有源钳位电路106进行动作,则输出端子102的电压VOUT被钳位到50V而不会高于其以上,所以可防止功率半导体元件104的损坏。因此,有源钳位电路106的钳位电压确定功率半导体元件104的元件耐压。
如果通过功率半导体元件104耗尽感应负载的能量,则在感应性负载中流通的电流IOUT不再流通,此时,输出端子102的电压VOUT恢复到电池电压。
现有技术文献
专利文献
专利文献1:日本特开2016-176401号公报(第〔0006〕~〔0008〕段,图7)
发明内容
技术问题
在以上的单芯片构成的半导体装置中,如果功率半导体元件的导通、关断的周期短,则在将功率半导体元件控制为关断时通过有源钳位电路导通的时间增加,功率半导体元件会发热。如果功率半导体元件接近于过热状态,则在功率半导体元件被控制为导通时过热检测电路进行动作,将功率半导体元件的导通动作强制性停止的可能性增加。另外,如果一旦过热检测电路进行工作,则即使输入将功率半导体元件控制为导通的信号,在功率半导体元件的过热状态被消除之前,也无法使功率半导体元件导通。
本发明鉴于这样的情况而完成,目的在于提供一种抑制有源钳位电路因由感应性负载产生的反电动势电压而动作所导致的功率半导体元件的温度上升的半导体装置。
技术方案
本发明中,为了解决上述的课题,提供一种半导体装置,具备:输入端子;输出端子;接地端子;功率半导体元件,其第一主端子连接于输出端子,第二主端子连接于接地端子,且栅极端子通过被输入到输入端子的信号来驱动;有源钳位电路,其具有在栅极端子与第一主端子之间反向串联地连接的齐纳二极管以及二极管。该半导体装置具备钳位电压切换电路。该钳位电压切换电路在没有检测到输出端子的正向的电压变化时将通过有源钳位电路的齐纳二极管确定的钳位电压设定为第一钳位电压,在检测到正向的电压变化时将通过齐纳二极管确定的钳位电压设定为比第一钳位电压低的第二钳位电压。
发明效果
上述构成的半导体装置由于仅在有源钳位电路的因感应性负载的反电动势电压导致的动作时切换为低钳位电压,所以具有钳位耐量提高,能够抑制功率半导体元件的温度上升的优点。但是,关于针对不是因感应性负载的反电动势电压导致的直流电压的半导体装置的钳位电压,由于设定为有源钳位电路确定半导体装置的钳位电压的高钳位电压,所以维持不变。
附图说明
图1是表示第一实施方式的半导体装置的内部构成例的电路图。
图2是表示钳位电压及其动作波形的图。
图3是表示钳位电压与钳位耐量的关系的图。
图4是表示第二实施方式的半导体装置的主要部分构成例的电路图。
图5是表示第二实施方式的半导体装置的动作波形的图。
图6是表示第二实施方式的半导体装置的元件结构的截面图。
图7是表示第二实施方式的半导体装置的元件结构的变形例的截面图。
图8是表示第三实施方式的半导体装置的主要部分构成例的电路图。
图9是表示第三实施方式的半导体装置的动作波形的图。
图10是表示第三实施方式的半导体装置的元件结构的截面图。
图11是表示第四实施方式的半导体装置的主要部分构成例的电路图。
图12是表示第四实施方式的半导体装置的元件结构的截面图。
图13是表示第五实施方式的半导体装置的主要部分构成例的电路图。
图14是表示第五实施方式的半导体装置的元件结构的截面图。
图15是表示第六实施方式的半导体装置的主要部分构成例的电路图。
图16是表示第六实施方式的半导体装置的元件结构的截面图。
图17是表示以往的半导体装置的构成例的电路图。
图18是表示应用有源钳位电路时的半导体装置的动作波形的图。
符号说明
1、1a、1b、1c、1d、1e 半导体装置
2 感应性负载
3 电池
11 输入端子
12 输出端子
13 接地端子
14 功率半导体元件
15 体二极管
16 控制电路
17 过热检测电路
18 过电流检测电路
19 开关元件
20、21 电阻
22 有源钳位电路
23、23a、23a1、23a2、23b、23b1、23b2 齐纳二极管
24 二极管
25 钳位电压切换电路
26 恒流元件
27 输入电阻
31 电容
32 电阻
33、33a 开关元件
34 恒流元件
41 N型基板
具体实施方式
以下,参照附图,以应用于对车辆用的感应性负载进行控制的半导体装置的情况为例,对本发明的实施方式详细进行说明。应予说明,图中,以同一符号表示的部分表示相同的构成要素。另外,各实施方式可以在不矛盾的范围内将多个实施方式部分地组合而实施。
[第一实施方式]
图1是表示第一实施方式的半导体装置的内部构成例的电路图,图2是表示钳位电压及其动作波形的图,图3是表示钳位电压与钳位耐量的关系的图。
第一实施方式的半导体装置1具有从车载的电子控制单元输入控制信号的输入端子11、连接感应性负载2的一个端子的输出端子12、以及接地端子13。感应性负载2的另一端子与电池3的正极端子连接,电池3的负极端子被连接到与接地端子13连接的地。
半导体装置1在输出级具备功率半导体元件14。在该实施方式中,功率半导体元件14使用N型的功率MOSFET,其漏极端子(第一主端子)与输出端子12连接,源极端子(第二主端子)与接地端子13连接。在功率半导体元件14的漏极端子以及源极端子,反向并联地连接有内置的体二极管15。
功率半导体元件14的栅极端子与控制电路16的输出端子连接,控制电路16的输入端子以及电源端子与输入端子11连接。该控制电路16还与过热检测电路17的输出端子、过电流检测电路18的输出端子以及开关元件19的栅极端子连接。开关元件19的漏极端子与功率半导体元件14的栅极端子连接,源极端子与功率半导体元件14的源极端子连接。过电流检测电路18的输入端子与电阻20、21的共同的连接点连接,电阻20的与共同的连接点相反侧的端子与输出端子12连接,电阻21的与共同的连接点相反侧的端子与接地端子13连接。在控制电路16输出功率半导体元件14的导通信号时,过热检测电路17监视功率半导体元件14的发热状态,如果检测到功率半导体元件14的过热状态,则使开关元件19导通而将功率半导体元件14强制性关断。在将功率半导体元件14控制为导通时,如果过电流检测电路18检测到因感应性负载2的短路事故等由功率半导体元件14的导通电阻导致的电压下降的上升,则使开关元件19导通而将功率半导体元件14强制性关断。
在功率半导体元件14的栅极端子与漏极端子之间,连接有有源钳位电路22。在该实施方式中,有源钳位电路22具有反向串联连接的齐纳二极管23和二极管24。齐纳二极管23的阴极端子与功率半导体元件14的漏极端子连接,二极管24的阴极端子与功率半导体元件14的栅极端子连接。由于在将功率半导体元件14控制为导通时输出端子12降低到接地电平,所以二极管24阻止将功率半导体元件14控制为导通的栅极电压被施加到接地电平的输出端子12。
在有源钳位电路22,连接有钳位电压切换电路25。该钳位电压切换电路25与输出端子12连接,具有根据功率半导体元件14关断时的输出端子12相对于接地端子13的电压变化来切换有源钳位电路22的钳位电压的功能。
并且,在功率半导体元件14的栅极端子与源极端子之间,连接有恒流元件26。该恒流元件26具有下拉功率半导体元件14的导通信号,并且在将功率半导体元件14控制为关断时使从输出端子12经由有源钳位电路22流通的电流流通到接地端子13的功能。
在以上的构成的半导体装置1中,在输入端子11输入将功率半导体元件14控制为关断的低电平的电压信号时,功率半导体元件14关断。此时,如图2所示,输出端子12的电压VOUT成为电池3的12V的电压。应予说明,该图2中示出了有源钳位电路22通过钳位电压切换电路25能够设定为两种钳位电压的情形。即,50V是确定半导体装置1在直流电压下的耐压的钳位电压(第一钳位电压),是被设定为比功率半导体元件14的体二极管15的击穿电压低的值的电压。30V是在钳位电压切换电路25检测到输出端子12处的急剧的正向的电压变化(+dV/dt)时设定的钳位电压(第二钳位电压)。
在时刻t1,如果对输入端子11输入高电平的电压信号,则功率半导体元件14导通,输出端子12的电压VOUT几乎降低到接地电平。
在时刻t2,如果对输入端子11输入低电平的电压信号,则功率半导体元件14关断。于是,感应性负载2在其端子两端产生反电动势电压(浪涌电压),输出端子12的电压VOUT跳升到电池电压加上该反电动势电压而得到的电压。如果检测到该输出端子12的电压VOUT的急剧的电压变化,则钳位电压切换电路25将有源钳位电路22的钳位电压从50V切换到30V。此时,有源钳位电路22的齐纳二极管23被击穿,在恒流元件26流通电流,在功率半导体元件14的栅极端子产生栅极电压。由此,功率半导体元件14导通,输出端子12的电压VOUT被钳位为30V,由感应性负载2产生的反电动势电压通过功率半导体元件14而被处理(消耗)。如果由感应性负载2产生的能量通过功率半导体元件14而被处理,则功率半导体元件14关断,输出端子12的电压VOUT变为电池的电压。
应予说明,图2中为了参考以虚线示出了将有源钳位电路22的钳位电压设为50V的情况下的动作波形(参照图14)。这样,如果将钳位电压设定得较低,则功率半导体元件14处理由感应性负载2产生的反电动势电压的时间变长,与以短时间处理反电动势电压的情况比较,发热量被抑制得较低。
根据图3所示的钳位电压与钳位耐量的关系可知,驱动感应性负载2时的钳位耐量有随着钳位电压越降低而越上升的趋势,通过使钳位电压从50V变为30V,从而获得X[mJ]的耐量改善。然而,如图2所示,由于钳位电压越降低,反电动势电压的处理越耗费时间,所以钳位电压被设定为比以时刻t2-t3的时间所假设的最短的周期反复驱动感应性负载2的情况下的关断时间短的值。
这样,该半导体装置1在维持针对直流电压的钳位电压(50V)的同时,通过降低针对反电动势电压的钳位电压(30V),提高钳位耐量,从而将发热抑制得较低。
[第二实施方式]
图4是表示第二实施方式的半导体装置的主要部分构成例的电路图,图5是表示第二实施方式的半导体装置的动作波形的图,图6是表示第二实施方式的半导体装置的元件结构的截面图。应予说明,在图4中,针对与图1所示的构成要素相同的或者等效的构成要素标记相同的符号,并省略其详细的说明。另外,图4中,从图1所示的半导体装置1中省略包括过热检测电路17以及过电流检测电路18的保护电路,关于控制电路16,仅示出输入电阻27。
在第二实施方式的半导体装置1a中,有源钳位电路22具有2个串联连接的齐纳二极管23a、23b、和二极管24。齐纳二极管23a的阴极端子与功率半导体元件14的漏极端子(输出端子12)连接,齐纳二极管23a的阳极端子与齐纳二极管23b的阴极端子连接。齐纳二极管23b的阳极端子与二极管24的阳极端子连接,二极管24的阴极端子与功率半导体元件14的栅极端子连接。这里,齐纳二极管23a使用具有30V的齐纳电压特性的二极管,齐纳二极管23b使用具有20V的齐纳电压特性的二极管,将该有源钳位电路22的钳位电压设为50V。
钳位电压切换电路25具有电容31、电阻32以及开关元件33。开关元件33使用N型MOSFET。电容31的一个端子与功率半导体元件14的漏极端子(输出端子12)连接,电容31的另一端子连接于电阻32的一个端子与开关元件33的栅极端子的连接点A。电阻32的另一端子与开关元件33的源极端子连接。开关元件33的漏极端子与有源钳位电路22的齐纳二极管23a、23b的共同的连接点连接。开关元件33的源极端子连接于有源钳位电路22的齐纳二极管23b与二极管24的共同的连接点。
如图5所示,在对输入端子11输入低电平的电压信号而使功率半导体元件14关断时,在输出端子12处,成为电池3的电压。此时,由于电压VOUT不变化,所以钳位电压切换电路25的连接点A的电压VA处于接地电平。
如果对输入端子11输入高电平的电压信号而使功率半导体元件14导通,则输出端子12的电压VOUT降低到接地电平,在感应性负载2流通的电流IOUT逐渐上升。此时,由于电压VOUT维持接地电平而不变化,所以钳位电压切换电路25的连接点A的电压VA处于接地电平。
如果对输入端子11输入低电平的电压信号而使功率半导体元件14关断,则为了在感应性负载2中持续流通电流IOUT而在感应性负载2的两个端子产生的反电动势电压被施加到输出端子12。此时,在半导体装置1a中,形成从输出端子12经由电容31、电阻32、二极管24以及功率半导体元件14的栅极电容而到达接地端子13的电路。由此,如果输出端子12的电压VOUT急剧地上升,则钳位电压切换电路25的连接点A的电压VA也急剧地上升,使开关元件33导通。于是,开关元件33通过导通而使齐纳电压为20V的齐纳二极管23b的两个端子短路,将有源钳位电路22的钳位电压从50V切换为30V。
如果输出端子12的电压VOUT通过有源钳位电路22而被钳位为30V,则功率半导体元件14被导通,感应性负载2的反电动势电压的能量被功率半导体元件14处理。如果感应性负载2的反电动势电压的能量被处理,则输出端子12的电压VOUT成为电池的电压。之后,由于输出端子12的电压VOUT的变化消失,所以钳位电压切换电路25的连接点A的电压VA恢复到接地电平。因此,在钳位电压切换电路25中,由其电容31以及电阻32确定的时间常数被设定为比感应性负载2的反电动势电压被处理的时间长。
以上的半导体装置1a具有图6所示的元件结构。根据表示该半导体装置1a的元件结构的截面图,功率半导体元件14通过形成于N型基板41的纵型功率MOSFET构成。有源钳位电路22的齐纳二极管23a、23b以及二极管24通过形成于N型基板41的上表面的多晶硅二极管构成。在钳位电压切换电路25中,电容31通过二极管的pn结电容构成,电阻32通过形成于N型基板41的上表面的多晶硅电阻构成,开关元件33通过形成于N型基板41的上表面侧的N型MOSFET构成。
这里,在钳位电压切换电路25中,构成电容31的二极管通过形成于N型基板41的上表面侧的p阱区和N型基板41形成。另外,开关元件33是N型MOSFET,由此在N型基板41的上表面侧形成p阱区,在该p阱区的上表面侧形成N型MOSFET,将p阱区与接地端子13连接。
[第二实施方式的变形例]
图7是表示第二实施方式的半导体装置的元件结构的变形例的截面图。应予说明,图7中针对与图6所示的构成要素相同的或者等效的构成要素标记相同的符号,并省略其详细的说明。
根据该图7所示的元件结构,通过N型MOSFET构成钳位电压切换电路25的电容31。即,电容31的N型MOSFET与开关元件33的N型MOSFET相同地形成于p阱区的上表面侧,并将该N型MOSFET的漏极端子与源极端子连接。由此,N型MOSFET的栅极-源极间电容与栅极-漏极间电容的组合电容值成为电容31的电容值。
[第三实施方式]
图8是表示第三实施方式的半导体装置的主要部分构成例的电路图,图9是表示第三实施方式的半导体装置的动作波形的图,图10是表示第三实施方式的半导体装置的元件结构的截面图。应予说明,在图8中,针对与图4所示的构成要素相同的或者等效的构成要素标记相同的符号,并省略其详细的说明。
第三实施方式的半导体装置1b与第二实施方式的半导体装置1a比较,如图8所示,分别变更了有源钳位电路22以及钳位电压切换电路25的构成。即,在有源钳位电路22中,将多个齐纳二极管(图示的例子中为2个齐纳二极管23a1、23a2)串联连接而形成30V的齐纳二极管,将多个齐纳二极管(图示的例子中为2个齐纳二极管23b1、23b2)串联连接而形成20V的齐纳二极管。钳位电压切换电路25具有电容31、恒流元件34以及开关元件33。电容31的一个端子与功率半导体元件14的漏极端子(输出端子12)连接,电容31的另一端子连接于恒流元件34的一个端子与开关元件33的栅极端子的连接点A。恒流元件34的另一端子与开关元件33的源极端子连接。开关元件33的漏极端子与有源钳位电路22的齐纳二极管23a2、23b1的共同的连接点连接。开关元件33的源极端子与有源钳位电路22的齐纳二极管23b2和二极管24的共同的连接点连接。虽然在本实施方式中由多个齐纳二极管串联连接而形成20V的齐纳二极管,且由多个齐纳二极管串联连接而形成30V的齐纳二极管,但是也可以仅使该20V的齐纳二极管和30V的齐纳二极管中的任一个由多个齐纳二极管串联连接而形成。
如图9所示,在对输入端子11输入低电平的电压信号而使功率半导体元件14关断时,在输出端子12,施加电池3的电压。此时,由于电压VOUT不变化,所以钳位电压切换电路25的连接点A的电压VA处于接地电平。
如果在输入端子11输入高电平的电压信号而使功率半导体元件14导通,则输出端子12的电压VOUT降低到接地电平,在感应性负载2流通的电流IOUT逐渐上升。此时,由于电压VOUT不变化,所以钳位电压切换电路25的连接点A的电压VA处于接地电平。
如果在输入端子11输入低电平的电压信号而使功率半导体元件14关断,则产生于感应性负载2的两个端子的反电动势电压被施加到输出端子12。由此,由于输出端子12的电压VOUT急剧地上升,所以钳位电压切换电路25的连接点A的电压VA也急剧地上升,使开关元件33导通。于是,开关元件33通过导通而使齐纳电压为20V的串联连接的齐纳二极管23b1、23b2的两个端子短路,将有源钳位电路22的钳位电压从50V切换为30V。
如果输出端子12的电压VOUT通过有源钳位电路22而被钳位为30V,功率半导体元件14处理感应性负载2的反电动势电压的能量,则输出端子12的电压VOUT成为电池的电压。之后,如果电容31的电荷通过恒流元件34放电,则钳位电压切换电路25的连接点A的电压VA恢复到接地电平。
该半导体装置1b的元件结构例如可以形成为图10所示的结构。根据图10所示的结构,钳位电压切换电路25的电容31通过二极管的pn结电容构成。钳位电压切换电路25的恒流元件34通过将耗尽型的N型MOSFET的栅极端子与源极端子连接而构成,耗尽型的N型MOSFET的漏极端子与连接点A连接。耗尽型的N型MOSFET的栅极端子以及源极端子与开关元件33的源极端子连接。
应予说明,该钳位电压切换电路25的电容31虽然通过二极管的pn结电容构成,但也可以如图7所示地由N型MOSFET的栅极-源极间电容与栅极-漏极间电容的组合电容构成。
[第四实施方式]
图11是表示第四实施方式的半导体装置的主要部分构成例的电路图,图12是表示第四实施方式的半导体装置的元件结构的截面图。应予说明,在图11中,针对与图4所示的构成要素相同的或者等效的构成要素标记相同的符号,并省略其详细的说明。
在第四实施方式的半导体装置1c中,与第二实施方式的半导体装置1a相比,变更了钳位电压切换电路25的电阻32的连接位置。即,电阻32的另一端子与功率半导体元件14的源极端子(接地端子13)连接。由此,该钳位电压切换电路25监视输出端子12与接地端子13之间的电压变化,检测急剧的电压变化而将有源钳位电路22的钳位电压从50V切换为30V。
以上的半导体装置1c具有图12所示的元件结构。根据表示该半导体装置1c的元件结构的截面图,虽然元件结构与图6所示的结构相同,但电阻32的另一端子不是开关元件33的源极端子,而是与接地端子13连接。
[第五实施方式]
图13是表示第五实施方式的半导体装置的主要部分构成例的电路图,图14是表示第五实施方式的半导体装置的元件结构的截面图。应予说明,图13中,针对与图8所示的构成要素相同的或者等效的构成要素标记相同的符号,并省略其详细的说明。
在第五实施方式的半导体装置1d中,与第三实施方式的半导体装置1b相比,变更了钳位电压切换电路25的恒流元件34的连接位置。即,恒流元件34的另一端子与功率半导体元件14的源极端子(接地端子13)连接。由此,该钳位电压切换电路25监视输出端子12与接地端子13之间的电压变化,检测急剧的电压变化而将有源钳位电路22的钳位电压从50V切换为30V。
以上的半导体装置1d具有图14所示的元件结构。根据表示该半导体装置1d的元件结构的截面图,虽然元件结构与图10所示的结构相同,但构成恒流元件34的耗尽型的N型MOSFET的栅极端子以及源极端子与接地端子13连接。
[第六实施方式]
图15是表示第六实施方式的半导体装置的主要部分构成例的电路图,图16是表示第六实施方式的半导体装置的元件结构的截面图。应予说明,在图15中,针对与图4所示的构成要素相同的或者等效的构成要素标记相同的符号,并省略其详细的说明。
在第六实施方式的半导体装置1e中,有源钳位电路22与第四实施方式的半导体装置1c的电路不同,使串联连接的齐纳二极管23a、23b的位置相反。即,具有20V的齐纳电压特性的齐纳二极管23b的阴极端子与功率半导体元件14的漏极端子(输出端子12)连接。齐纳二极管23b的阳极端子与具有30V的齐纳电压特性的齐纳二极管23a的阴极端子连接。另外,齐纳二极管23a的阳极端子与二极管24的阳极端子连接。
钳位电压切换电路25具有电阻32、电容31以及开关元件33a。开关元件33a使用P型MOSFET。电阻32的一个端子与功率半导体元件14的漏极端子(输出端子12)连接,电阻32的另一端子与电容31的一个端子和开关元件33a的栅极端子的连接点A连接。电容31的另一端子与功率半导体元件14的源极端子(接地端子13)连接。开关元件33a的源极端子与有源钳位电路22的齐纳二极管23b的阴极端子连接。开关元件33a的漏极端子与有源钳位电路22的齐纳二极管23a和齐纳二极管23b的共同的连接点连接。
该半导体装置1e与第四实施方式的半导体装置1c相同地,在导通状态的功率半导体元件14被关断时,钳位电压切换电路25检测产生于感应性负载2的两个端子的反电动势电压。由此,钳位电压切换电路25导通开关元件33a而使齐纳电压为20V的齐纳二极管23b的两个端子短路,将有源钳位电路22的钳位电压从50V切换为30V。感应性负载2的反电动势电压的能量通过功率半导体元件14被处理,输出端子12的电压VOUT被钳位为30V。
如图16所示,该半导体装置1e的元件结构通过形成于N型基板41的上表面侧的P型MOSFET而构成开关元件33a。电容31与图7所示的结构相同地,通过在形成于N型基板41的p阱区的上表面侧形成的N型MOSFET构成,具有该N型MOSFET的栅极-源极间电容与栅极-漏极间电容的组合电容值。构成电容31的N型MOSFET的漏极端子以及源极端子与接地端子13连接。
应予说明,电容31的另一端子也可以不与功率半导体元件14的源极端子(接地端子13)连接,而是与开关元件33a的漏极端子连接。
并且,在上述的实施方式中,对使用MOSFET作为功率半导体元件14的情况进行了说明,但功率半导体元件14也可以使用IGBT和续流二极管。

Claims (9)

1.一种半导体装置,其特征在于,具备:
输入端子;
输出端子;
接地端子;
功率半导体元件,其第一主端子连接于所述输出端子,第二主端子连接于所述接地端子,且栅极端子通过被输入到所述输入端子的信号来驱动;
有源钳位电路,其具有在所述栅极端子与所述第一主端子之间反向串联地连接的齐纳二极管以及二极管;以及
钳位电压切换电路,其在没有检测到所述输出端子的正向的电压变化时将通过所述有源钳位电路的所述齐纳二极管确定的钳位电压设定为第一钳位电压,在检测到所述正向的电压变化时将通过所述齐纳二极管确定的所述钳位电压设定为比所述第一钳位电压低的第二钳位电压,
所述有源钳位电路的所述齐纳二极管具有串联连接且合计的齐纳电压特性与所述第一钳位电压相等的第一齐纳二极管以及第二齐纳二极管,所述第一齐纳二极管和所述第二齐纳二极管中的一方具有与所述第二钳位电压相等的齐纳电压特性,
所述钳位电压切换电路具有:与所述第一齐纳二极管以及所述第二齐纳二极管的串联电路并联地连接的电容与电阻或者恒流元件的串联连接电路;以及检测所述电容与所述电阻或者所述恒流元件的连接点的所述正向的电压变化而使所述第一齐纳二极管的另一端子与所述第二齐纳二极管的另一端子短路的开关元件。
2.一种半导体装置,其特征在于,
输入端子;
输出端子;
接地端子;
功率半导体元件,其第一主端子连接于所述输出端子,第二主端子连接于所述接地端子,且栅极端子通过被输入到所述输入端子的信号来驱动;
有源钳位电路,其具有在所述栅极端子与所述第一主端子之间反向串联地连接的齐纳二极管以及二极管;以及
钳位电压切换电路,其在没有检测到所述输出端子的正向的电压变化时将通过所述有源钳位电路的所述齐纳二极管确定的钳位电压设定为第一钳位电压,在检测到所述正向的电压变化时将通过所述齐纳二极管确定的所述钳位电压设定为比所述第一钳位电压低的第二钳位电压,
所述有源钳位电路的所述齐纳二极管具有串联连接且合计的齐纳电压特性与所述第一钳位电压相等的第一齐纳二极管以及第二齐纳二极管,所述第一齐纳二极管和所述第二齐纳二极管中的一方具有与所述第二钳位电压相等的齐纳电压特性,
所述钳位电压切换电路具有:与所述功率半导体元件的所述第一主端子以及所述第二主端子连接的电容与电阻或者恒流元件的串联连接电路;以及检测所述电容与所述电阻或者所述恒流元件的连接点的所述正向的电压变化而使所述第一齐纳二极管的另一端子与所述第二齐纳二极管的另一端子短路的开关元件。
3.根据权利要求1或2所述的半导体装置,其特征在于,所述第一齐纳二极管或者所述第二齐纳二极管通过将多个齐纳二极管串联连接而构成。
4.根据权利要求1或2所述的半导体装置,其特征在于,所述功率半导体元件以及所述钳位电压切换电路形成于N型基板。
5.根据权利要求4所述的半导体装置,其特征在于,所述电容由形成于所述N型基板的二极管的pn结电容构成。
6.根据权利要求4所述的半导体装置,其特征在于,所述电容由形成于所述N型基板的MOSFET的栅极-源极间电容与栅极-漏极间电容的组合电容构成。
7.根据权利要求4所述的半导体装置,其特征在于,所述电阻通过形成于所述N型基板的上表面的多晶硅电阻构成。
8.根据权利要求4所述的半导体装置,其特征在于,所述恒流元件通过将形成于所述N型基板的耗尽型的MOSFET的栅极端子与源极端子连接而构成。
9.根据权利要求1或2所述的半导体装置,其特征在于,所述第一钳位电压被设定为比与所述功率半导体元件反向并联地连接的二极管的击穿电压低的值。
CN201910062242.6A 2018-03-19 2019-01-23 半导体装置 Active CN110289842B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-051160 2018-03-19
JP2018051160A JP7052452B2 (ja) 2018-03-19 2018-03-19 半導体装置

Publications (2)

Publication Number Publication Date
CN110289842A CN110289842A (zh) 2019-09-27
CN110289842B true CN110289842B (zh) 2024-06-07

Family

ID=67904073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910062242.6A Active CN110289842B (zh) 2018-03-19 2019-01-23 半导体装置

Country Status (3)

Country Link
US (1) US10620650B2 (zh)
JP (1) JP7052452B2 (zh)
CN (1) CN110289842B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768649B (zh) * 2018-07-26 2023-03-24 台达电子工业股份有限公司 功率半导体开关的门极电路及门极驱动电路
JP7293736B2 (ja) * 2019-03-07 2023-06-20 富士電機株式会社 半導体集積回路
CN111464162B (zh) * 2020-04-28 2023-06-20 山特电子(深圳)有限公司 米勒钳位驱动电路
CN111722072B (zh) * 2020-05-14 2022-02-25 上海交通大学 高耐压的功率半导体器件导通压降在线测量电路及系统
CN113595541B (zh) * 2021-08-03 2024-06-18 珠海格力电器股份有限公司 开关管控制装置及开关管设备
US20230290773A1 (en) * 2022-03-11 2023-09-14 Infineon Technologies Ag Rc snubber with poly silicon resistor and capacitor formed from junction termination edge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1132429A (ja) * 1997-07-09 1999-02-02 Nissan Motor Co Ltd 半導体集積回路
JPH1155937A (ja) * 1997-07-30 1999-02-26 Denso Corp 誘導性負荷の駆動回路
JP2001085618A (ja) * 1999-09-10 2001-03-30 Nissan Motor Co Ltd 半導体集積回路
CN104638893A (zh) * 2013-11-07 2015-05-20 富士电机株式会社 电力供应装置
CN106253753A (zh) * 2015-06-10 2016-12-21 富士电机株式会社 半导体装置
JP6122542B1 (ja) * 2016-12-01 2017-04-26 イサハヤ電子株式会社 アクティブクランプ回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151989A (ja) 2000-11-14 2002-05-24 Toyota Industries Corp クランプ回路
JP4348961B2 (ja) 2003-02-12 2009-10-21 株式会社デンソー 誘導性負荷駆動用ic
JP4866672B2 (ja) 2006-07-27 2012-02-01 ルネサスエレクトロニクス株式会社 負荷駆動回路
JP5223402B2 (ja) 2008-03-19 2013-06-26 株式会社アドヴィックス 車両用電動モータ駆動制御装置
US8040647B2 (en) * 2008-11-11 2011-10-18 Infineon Technologies Austria Ag System and method for protection against loss of battery in reverse battery protected devices
JP2013146008A (ja) 2012-01-16 2013-07-25 Fuji Electric Co Ltd 駆動回路およびパワー集積回路装置
JP5863183B2 (ja) 2012-05-31 2016-02-16 ルネサスエレクトロニクス株式会社 半導体装置
JP6271461B2 (ja) 2015-03-09 2018-01-31 株式会社東芝 半導体装置
JP6565244B2 (ja) 2015-03-20 2019-08-28 富士電機株式会社 イグナイタ用半導体装置、イグナイタシステム及び点火コイルユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1132429A (ja) * 1997-07-09 1999-02-02 Nissan Motor Co Ltd 半導体集積回路
JPH1155937A (ja) * 1997-07-30 1999-02-26 Denso Corp 誘導性負荷の駆動回路
JP2001085618A (ja) * 1999-09-10 2001-03-30 Nissan Motor Co Ltd 半導体集積回路
CN104638893A (zh) * 2013-11-07 2015-05-20 富士电机株式会社 电力供应装置
CN106253753A (zh) * 2015-06-10 2016-12-21 富士电机株式会社 半导体装置
JP6122542B1 (ja) * 2016-12-01 2017-04-26 イサハヤ電子株式会社 アクティブクランプ回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大功率SiC-MOSFET模块驱动技术研究;周帅;张小勇;饶沛南;张庆;施洪亮;;机车电传动;20180310(第02期);全文 *

Also Published As

Publication number Publication date
US10620650B2 (en) 2020-04-14
US20190286181A1 (en) 2019-09-19
CN110289842A (zh) 2019-09-27
JP2019165542A (ja) 2019-09-26
JP7052452B2 (ja) 2022-04-12

Similar Documents

Publication Publication Date Title
CN110289842B (zh) 半导体装置
CN105577153B (zh) 半导体装置
JP5267616B2 (ja) 駆動制御装置
KR101438283B1 (ko) 반도체 스위치 및 전력 변환 장치
US9627878B2 (en) Driving device for semiconductor elements, and semiconductor device
JP2007215389A (ja) パワー半導体素子とこれを用いた半導体回路
JP5383426B2 (ja) 異常検出時急速放電回路
CN108631759B (zh) 晶体管器件
JP2015023774A (ja) ゲート駆動回路
US20160380554A1 (en) Rectifier circuit including a self-clamping transistor
US11711010B2 (en) Drive circuit and inverter device
EP3104527B1 (en) Semiconductor device
US9972992B2 (en) Protection circuit of semiconductor device
JP5534076B2 (ja) 駆動制御装置
CN111030431A (zh) 半导体装置
CN111869068B (zh) 开关装置以及开关装置的控制方法
US7545198B2 (en) Semiconductor device
US11070202B2 (en) Signal transmission circuit, switch driving device, and power module
CN109075781B (zh) 电力用半导体元件的驱动电路以及电动机驱动装置
US12021528B2 (en) Semiconductor device
US11606090B2 (en) Semiconductor device
US11271547B2 (en) Gate drive circuit, drive device, semiconductor device, and gate drive method
WO2024057598A1 (ja) 半導体スイッチング素子のゲート駆動回路、電動機制御システムおよび半導体装置
KR20150018991A (ko) 친환경 자동차용 인버터 보호 장치 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant