CN110265228B - 一种空间整形飞秒激光加工石墨烯基超级电容的制作方法 - Google Patents

一种空间整形飞秒激光加工石墨烯基超级电容的制作方法 Download PDF

Info

Publication number
CN110265228B
CN110265228B CN201910465407.4A CN201910465407A CN110265228B CN 110265228 B CN110265228 B CN 110265228B CN 201910465407 A CN201910465407 A CN 201910465407A CN 110265228 B CN110265228 B CN 110265228B
Authority
CN
China
Prior art keywords
femtosecond laser
processing
graphene
shaping
super capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910465407.4A
Other languages
English (en)
Other versions
CN110265228A (zh
Inventor
姜澜
原永玖
李欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201910465407.4A priority Critical patent/CN110265228B/zh
Publication of CN110265228A publication Critical patent/CN110265228A/zh
Application granted granted Critical
Publication of CN110265228B publication Critical patent/CN110265228B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及了一种空间整形飞秒激光加工石墨烯基超级电容的制作方法,属于飞秒激光应用技术领域。本发明的目的是为了解决现有技术加工时间长,且能量密度低的问题,提供一种空间整形飞秒激光加工石墨烯基超级电容的制作方法;该方法是通过空间整形的飞秒激光一步法还原并图案化加工出还原氧化石墨烯和二氧化锰复合材料电极,该方法能实现其高能量密度和高比表面积,同时能够克服其难于微小型和集成化的缺点,也能够实现多种形状超级电容器的高效率加工。

Description

一种空间整形飞秒激光加工石墨烯基超级电容的制作方法
技术领域
本发明涉及了一种空间整形飞秒激光加工石墨烯基超级电容的制作方法,属于飞秒激光应用技术领域。
背景技术
超级电容器是一种介于传统电容器与电池之间,拥有特殊性能的一种储能电源器件。其利用双电层和氧化还原反应进行储能,并能够实现可逆与快速充放电,其能量密度高、循环寿命长、稳定性好、绿色且环保,同时还能够满足可移动、便携式的特点。已经被应用到风能发电、无轨电车、电动汽车以及新型电子设备中去,尤其是微型化电容器,越来越被广泛研究与关注。但是由于其内阻相对较大,不能直接用于交流电路,其微型化和集成化的要求就显得更加严格,另外,其能量密度不足,加工条件苛刻,加工时间长等问题也使超级电容的发展遇到了挑战。
因此,能发明一种高效、简单制备超级电容的方法,同时又能够得到高的能量密度和优异电化学性能,显得十分关键。之前,Maher F.El-Kady等(Maher F.El-Kady,RichardB.Kaner.Scalable fabrication of high-power graphene Micro-supercapacitors forflexible and on-chip energy storage.Nat.Commun.2013,4,1475.)利用激光直写石墨烯基材料制备超级电容,并能在30分钟内加工100个超级电容,虽然被广泛引用,但相比于产业化的要求,效率仍有待提升;Yuqing Liu等(Yuqing Liu,Bo Weng,Qun Xu,YuyangHou,Chen Zhao,Stephen Beirne,Kewei Shu,Rouhollah Jalili,Gordon G.Wallace,Joselito M.Razal,*and Jun Chen.Facile Fabrication of FlexibleMicrosupercapacitor with High Energy Density.Adv.Mater.Technol.2016,1,1600166)同样利用激光加工制备超级电容,加工10个超级电容需要100秒的时间,而DaozhiShen等(Daozhi Shen,Guisheng Zou,Lei Liu,Wenzheng Zhao,Aiping Wu,WalterW.Duley and Y.Norman Zhou.Scalable High-Performance Ultraminiature GrapheneMicroSupercapacitors by a Hybrid Technique Combining Direct Writing andControllable Microdroplet Transfer.ACS Appl.Mater.Interfaces 2018,10,5404-5412)成功利用飞秒激光加工石墨烯基超级电容,但加工时间较长且性能仅为6.3mF cm-2。利用其他方法制备超级电容,需要极为严苛的加工环境(高压、高温、强氧化还原剂)同时会对环境造成影响,加工过程不易控制也导致其加工效率很低。Chuanfang(John)Zhang等(Chuanfang(John)Zhang,Matthias P.Kremer,Andrés Seral-Ascaso,Sang-Hoon Park,Niall McEvoy,Babak Anasori,Yury Gogotsi,and Valeria Nicolosi.Stamping ofFlexible,Coplanar Micro-Supercapacitors Using MXeneInks.Adv.Funct.Mater.2018,28,1705506)创新地利用邮戳印章的方式制备超级电容,最高的效率也只能在15分钟制备12个超级电容。且上述方法中超级电容的能量密度都低于0.01Wh cm-3,而本发明提供的超级电容可以实现每30分钟加工6000个超级电容,且能量密度达到0.1Wh cm-3以上,面积比电容达到128mF cm-2,同时实现高重复率,可复制,能集成化制备超级电容的简单环保的方法,是将超级电容推向产业化的关键。
发明内容
本发明的目的是为了解决现有技术加工时间长,且能量密度低的问题,提供一种空间整形飞秒激光加工石墨烯基超级电容的制作方法;该方法在实现其高功率密度和高比表面积,同时能够克服其难于微小型和集成化的缺点,也能够实现多种形状超级电容器的高效率加工;该方法采用空间整形的飞秒激光一步高效率还原并图案化加工出还原氧化石墨烯/二氧化锰的混合电极材料,同时具有优异的电化学特性,最终实现一种新型石墨烯基超级电容。
本发明的目的是通过下述技术方案实现的。
一种空间整形飞秒激光加工石墨烯基超级电容的制作方法,是通过空间整形的飞秒激光一步法还原并图案化加工出还原氧化石墨烯和二氧化锰复合材料电极,包括下述步骤;
步骤一、制备氧化石墨烯和醋酸锰的混合薄膜;
步骤二、将步骤一得到的混合薄膜放置在基片上;
步骤三、将飞秒激光通过相位调制后,在物镜处形成所需要的电极形状的光场;
步骤四、采用步骤三整形后的飞秒激光在所述混合薄膜(厚度为4~5微米)表面,选择性加工一定深度(2微米~3微米),还原得到石墨烯和二氧化锰的电极材料,同时一步加工出相同形状,即得到超级电容;
步骤三所述的电极形状包括:圆形,平行板型,插指型,插板型。
步骤三所述的相位调制是通过全息相位整形得到指定的灰度图,后加载到空间光调制器中,最终实现光场的图案化整形。
步骤四所述飞秒激光的加工时间为0.02s、加工功率为120μw,每经过一次整形光的加工就实现一个还原氧化石墨烯和二氧化锰的超级电容的制备;
所述超级电容大小可以控制在50μm*50μm~150μm*150μm之间;
实现上述方法的装置,包括:飞秒激光光源,反射镜,电脑,相位图,空间光调制器,第一透镜,第二透镜,成像系统,20倍物镜,样品。
有益效果
1、解决现有技术加工时间长,且能量密度低,本发明提供的方法可在30分钟内加工6000个超级电容,同时能量密度能够达到0.1Wh cm-3以上;
2、通过飞秒激光飞行打点可以实现在任意区域内的连续、集成化加工,实验多个超级电容的串并联;
3、通过空间整形飞秒激光制备超级电容的方法快捷简便,一步法加工成型,不需高温高压等苛刻环境,同时不需要引入化学氧化还原剂,因此本方法绿色环保,符合现代加工工艺的要求。
附图说明
图1为抽滤装置示意图:抽滤机;
图2为抽滤后转移到二氧化硅基片上的混合薄膜;
图3为编程模拟的电极形状光场图,图a插板型为,图b为圆形,图c为平行板型,d为插指型;
图4为加工光路示意图;
图5为实际加工的超级电容光镜图,图a为插指型,图b为圆形,图c为平行板型,图d为插板型;
图6是测试该超级电容在高电压窗口下,不同扫速得到的CV循环,图a、图b分别是在电压窗口为2V、3V时对应的CV循环;
图7是测得其功率密度和能量密度与其他电容器的对比图。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
一种空间整形飞秒激光加工石墨烯基超级电容的制作方法,具体步骤如下:
步骤一、取5mg醋酸锰固体溶于10ml蒸馏水中,后与10ml 0.5mg/ml的氧化石墨烯分散液充分混合,在磁力搅拌机中搅拌0.5h,而后将混合溶液放入超声反应器中超声处理2h,取出超声后的溶液加蒸馏水稀释至50ml;
步骤二、将稀释的混合溶液倒入抽滤装置中,抽滤装置如图1所示,为真空抽滤机。用600nm的乙烯滤膜抽滤,大约5小时左右,便可在滤膜上得到一层均匀的氧化石墨烯/醋酸锰的复合薄膜;
步骤三、用丙酮溶液溶解滤膜,得到4μm左右厚度的复合薄膜,随后用镊子将其转移到二氧化硅基片上以备加工,如图2所示,得到附在二氧化硅基底上的复合薄膜;
步骤四、通过GS算法计算相位图,设计圆形、插指形、插板型和平行板形的超级电容器形状,如图3所示,图a为插板型,图b为圆形,图c为平行板型,d为插指型,并将其加载到空间光整形器中(SLM);
步骤五、设计加工光路,如图4所示,飞秒激光经过反射镜的反射进入到空间光调制器中,而空间光调制器由电脑控制加载相对应的相位图,完成光场的整形涉及,经过整形后的光,经过透镜1,透镜2的搬运,由20倍物镜进行聚焦加工,同时经过成像系统反馈到电脑屏幕上,最终将整形光加工到样品上,一步法加工成所设计形状的超级电容,从而实现材料还原生成电极材料和图案化加工。图5为加工得到不同形状的超级电容,图a为插指型,图b为圆形,图c为平行板型,图d为插板型,黑色的部分为激光加工还原得到的石墨烯和二氧化锰的混合电极材料;
步骤六、将加工后的微小型和集成化的石墨烯/二氧化锰复合超级电容,利用有显微功能的探针台,利用5μm的钨探针连接化学工作站进行电化学的测试,所用的电解液为1mol/L的稀硫酸。得到如图6所示的高电压窗口下不同扫速的CV循环图,a为在电压窗口2V的CV图,b为电压窗口3V时的CV图,通过计算,发现该方法制备的超级电容器有很高的电压窗口,可以达到3V,面积比电容最高可以达到128mF/cm2,循环4000次后容量保持在90%以上,其能量密度最高可以超过0.1Wh cm-3,图7为该方法所得到超级电容的功率密度和能量密度与其他电容器的对比展示图
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种空间整形飞秒激光加工石墨烯基超级电容的制作方法,其特征在于:是通过空间整形的飞秒激光一步法还原并图案化,同时加工出还原氧化石墨烯和二氧化锰复合材料超级电容;包括下述步骤:
步骤一、制备氧化石墨烯和醋酸锰的混合薄膜;
步骤二、将步骤一得到的混合薄膜放置在基片上;
步骤三、将飞秒激光通过相位调制后,在物镜处形成所需要的电极形状的光场,得到整形后的飞秒激光;
步骤四、采用步骤三整形后的飞秒激光在所述混合薄膜表面,选择性加工一定深度,还原得到石墨烯和二氧化锰的电极材料,同时一步加工出相同形状,即得到超级电容;
步骤四所述飞秒激光的加工时间为0.02s、加工功率为120μw,每经过一次整形光的加工就实现一个还原氧化石墨烯和二氧化锰的超级电容的制备。
2.如权利要求1所述的一种空间整形飞秒激光加工石墨烯基超级电容的制作方法,其特征在于:步骤三所述的电极形状包括:圆形、平行板型、插指型或插板型。
3.如权利要求1所述的一种空间整形飞秒激光加工石墨烯基超级电容的制作方法,其特征在于:步骤三所述的相位调制是通过全息相位整形得到指定的灰度图,后加载到空间光调制器中,最终实现光场的图案化整形。
4.如权利要求1所述的一种空间整形飞秒激光加工石墨烯基超级电容的制作方法,其特征在于:所述超级电容大小能够控制在50μm*50μm~150μm*150μm之间。
5.实现如权利要求1至4任意一项方法的装置,其特征在于:包括:飞秒激光,反射镜,空间光调制器,透镜一,透镜二,成像系统和20倍物镜;飞秒激光发出的光源经过反射镜后被空间光调制器调制,调制后的激光依次经过透镜一,透镜二和20倍物镜后照射到样品上。
CN201910465407.4A 2019-05-30 2019-05-30 一种空间整形飞秒激光加工石墨烯基超级电容的制作方法 Active CN110265228B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910465407.4A CN110265228B (zh) 2019-05-30 2019-05-30 一种空间整形飞秒激光加工石墨烯基超级电容的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910465407.4A CN110265228B (zh) 2019-05-30 2019-05-30 一种空间整形飞秒激光加工石墨烯基超级电容的制作方法

Publications (2)

Publication Number Publication Date
CN110265228A CN110265228A (zh) 2019-09-20
CN110265228B true CN110265228B (zh) 2021-07-13

Family

ID=67916094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910465407.4A Active CN110265228B (zh) 2019-05-30 2019-05-30 一种空间整形飞秒激光加工石墨烯基超级电容的制作方法

Country Status (1)

Country Link
CN (1) CN110265228B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148987B (zh) * 2021-04-08 2023-06-30 北京理工大学 一种多维制备石墨烯基上MXene纳米花的方法
CN113314357A (zh) * 2021-05-24 2021-08-27 北京理工大学 一种双脉冲飞秒激光沉积超高频率响应超级电容的方法
CN114093681B (zh) * 2021-11-12 2022-10-25 西安交通大学 硫掺杂石墨烯/MnO-Mn3O4复合电极材料的激光制备方法及应用
CN114289879B (zh) * 2022-01-13 2023-02-17 北京理工大学 一种超快激光单次制备多个微型电容集成化的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098410A (zh) * 2016-06-25 2016-11-09 于有海 激光一步法制备超级电容器用石墨烯/氧化锰柔性电极
WO2018039710A1 (en) * 2016-08-30 2018-03-08 Swinburne University Of Technology Capacitors, electrodes, reduced graphene oxide and methods and apparatuses of manufacture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013155276A1 (en) * 2012-04-12 2013-10-17 Wayne State University Integrated 1-d and 2-d composites for asymmetric aqueous supercapacitors with high energy density
CN103626118A (zh) * 2013-11-30 2014-03-12 吉林大学 一种还原同时实现氮掺杂的氧化石墨烯微结构的激光加工方法
CN104252974A (zh) * 2014-09-18 2014-12-31 电子科技大学 一种制造复合薄膜材料的方法
CN107244669B (zh) * 2017-06-14 2020-12-25 南开大学 一种激光诱导石墨烯微纳结构的加工方法及其系统
CN109590606B (zh) * 2019-01-15 2020-01-21 北京理工大学 一种飞秒激光相位振幅协同整形加工蝶形纳米缝隙的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098410A (zh) * 2016-06-25 2016-11-09 于有海 激光一步法制备超级电容器用石墨烯/氧化锰柔性电极
WO2018039710A1 (en) * 2016-08-30 2018-03-08 Swinburne University Of Technology Capacitors, electrodes, reduced graphene oxide and methods and apparatuses of manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于空间光调制技术的高速高分辨飞秒激光加工;张晨初;《中国博士学位论文全文数据库 信息科技辑》;20160915(第09期);正文第72页倒数第1段-75页倒数第1段、正文第55页图3.8 *

Also Published As

Publication number Publication date
CN110265228A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN110265228B (zh) 一种空间整形飞秒激光加工石墨烯基超级电容的制作方法
Liu et al. A micromolding method for transparent and flexible thin‐film supercapacitors and hybrid supercapacitors
Chen et al. Direct laser etching free‐standing MXene‐MoS2 film for highly flexible micro‐supercapacitor
Yu et al. Ultrathin NiCo 2 S 4@ graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors
Zeng et al. Metal–organic-framework-derived ZnO@ C@ NiCo 2 O 4 core–shell structures as an advanced electrode for high-performance supercapacitors
Qian et al. Interconnected three-dimensional V 2 O 5/polypyrrole network nanostructures for high performance solid-state supercapacitors
CN110299530B (zh) 一种zif-67基钴钼氧化物空心纳米笼/石墨烯复合材料及其制备方法与应用
CN108400021B (zh) 一种超级电容器电极材料及其制备方法
Zeng et al. Construction of hierarchical CoS nanowire@ NiCo 2 S 4 nanosheet arrays via one-step ion exchange for high-performance supercapacitors
CN108305792B (zh) 一种硫化物复合纳米薄膜的制备方法
CN105023768A (zh) 泡沫镍基氧化镍电极材料及其制备方法
CN107221454B (zh) 一种基于多孔碳纤维布的全固态柔性超级电容器及其制备方法
Shinde et al. Chemical synthesis of flower-like hybrid Cu (OH) 2/CuO electrode: application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance
Usui et al. Impacts of MnO2 crystal structures and fe doping in those on photoelectrochemical charge–discharge properties of TiO2/MnO2 composite electrodes
CN108807007B (zh) 三维纳米线状孔碳材料以及高电压微型超级电容器的制作工艺
CN110808171A (zh) 超级电容器电极材料、超级电容器及两者的制备方法
CN111029162B (zh) 一种石墨烯/聚吡咯复合电极材料及制备与其在超级电容器中的应用
CN107221458B (zh) 镍配合物为前躯体的掺碳氧化镍复合电极材料及其制备方法
CN105810456A (zh) 一种活化石墨烯/针状氢氧化镍纳米复合材料及其制备方法
CN103762356B (zh) Ni纳米线、NiO/Ni自支撑膜及其制备方法和应用
Mahajan et al. Manganese oxide and nickel oxide thin films on polyester to enable self-charging wearable supercapacitor
Dong et al. Selective vacuum filtration-induced microelectrode patterning on paper for high-performance planar microsupercapacitor
CN105206429A (zh) 一种柔性薄膜电极材料及其制备方法
CN104795549A (zh) 一种室温下合成石墨烯与镍纳米复合材料的方法
Zhu et al. Planar micro-supercapacitors toward high performance energy storage devices: design, application and prospects

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant