CN110252359B - 一种含硫化镉异质结光解水产氢催化剂的制备方法 - Google Patents

一种含硫化镉异质结光解水产氢催化剂的制备方法 Download PDF

Info

Publication number
CN110252359B
CN110252359B CN201910523343.9A CN201910523343A CN110252359B CN 110252359 B CN110252359 B CN 110252359B CN 201910523343 A CN201910523343 A CN 201910523343A CN 110252359 B CN110252359 B CN 110252359B
Authority
CN
China
Prior art keywords
catalyst
water
preparation
heterojunction
produce hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910523343.9A
Other languages
English (en)
Other versions
CN110252359A (zh
Inventor
楚英豪
方宁杰
宋新橙
岑望来
郭家秀
李建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910523343.9A priority Critical patent/CN110252359B/zh
Publication of CN110252359A publication Critical patent/CN110252359A/zh
Application granted granted Critical
Publication of CN110252359B publication Critical patent/CN110252359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/187Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种含硫化镉异质结光解水产氢催化剂的制备方法,该异质结光催化剂的微观形貌为颗粒状和短棒状的混合形貌,粒径为30nm~100nm,Cu3P颗粒分散于C‑Mn0.5Cd0.5S表面,相界面形成异质结结构,其制备方法包括以下步骤,以Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2和葡萄糖为原料水热合成C掺杂的Mn0.5Cd0.5S,以NaOH、Cu(NO3)2·3H2O和NaH2PO2·H2O为原料高温固相合成Cu3P,将Cu3P按照一定质量比加入到C掺杂的Mn0.5Cd0.5S中,通过超声辅助浸渍法制备C‑Mn0.5Cd0.5S/Cu3P复合异质结光催化剂,本发明制备原料均为常用无机化学试剂、价廉易得,方法工艺较简单、对设备要求较低、可快速合成异质结催化剂,过程简易反应条件可控性强,本发明制备的C‑Mn0.5Cd0.5S/Cu3P光催化剂具有较高的结晶性,通过形成异质结结构增强了光生载流子的分离和传输效率,光解水产氢效率提高3倍以上。

Description

一种含硫化镉异质结光解水产氢催化剂的制备方法
技术领域
本发明涉及光催化技术领域,具体涉及一种含硫化镉异质结光解水产氢催化剂的制备方法。
背景技术
随着人口的不断增加,人们对能源的需求越来越大。但是,化石燃料的快速减少,大气污染等问题也开始逐渐显露出来,作为最紧急的问题和首要的挑战之一是找到可持续再生的能源。光解水产氢以其室温深度反应和可直接利用太阳能作为光源来驱动反应等独特性能,而成为一种理想的环境污染治理技术和洁净能源生产技术。
CdS是n型半导体,其Eg是2.4eV,导带边缘位置比H2/H2O的还原电位更负,并且能够利用可见光,因此可以用硫化镉半导体来进行光解水产氢。为了进一步提高CdS的活性,我们开始研究多组分硫化物固溶体。由MnS和CdS固结形成的MnxCd1-xS固溶体近年来受到相当大的关注。这将有利于被光照激发产生的光生电荷的分离效率,从而提高其光催化分解水的性能,但是通过进一步的研究我们发现固溶体虽然相对各单纯相的光催化产氢性能有所提高但是仍然不够高效,难以满足工业化要求,所以还需要对其进行改进和设计。
这几年来,过渡金属材料在半导体光催化分解水制氢的研究和发展十分迅速,以Co、Ni、Cu和Mo为代表,它们的金属单质、氧化物、氢氧化物、硫化物均被尝试作为助催化剂用于光催化分解水制氢的研究,但是值得注意的是,过渡金属磷化物却从没被应用到光催化分解水产氢的领域。最近,有几篇报道将FeP、Ni2P应用到了电催化产氢当中,发现这些过渡金属磷化物在电催化方面有着不输于氧化物、硫化物等其他过渡金属化合物的性质,表明了过渡金属磷化物同样拥有着很好的产氢活性,使得过渡金属磷化物在应用到半导体光催化分解水产氢的领域当中拥有了一定的可能性。此外,非金属改性也是提高催化剂效率的有效途径之一,被广泛用于催化剂的改性研究。因此,考虑在MnxCd1-xS中引入金属磷化物和非金属元素进行改性。
发明内容
为解决现有技术中存在的问题,本发明提供了一种含硫化镉异质结光解水产氢催化剂的制备方法,以提高光解水产氢效率,满足实际应用的要求,解决了上述背景技术中提到的问题。
为实现上述目的,本发明提供如下技术方案:一种含硫化镉异质结光解水产氢催化剂的制备方法,包括以下步骤:
S1、分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,加入葡萄糖,搅拌,形成均匀的金黄色混合溶液;
S2、将上述S1的混合溶液转入80~100mL不锈钢高压反应釜,再进行水热反应后自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后烘干,即制备得到C-Mn0.5Cd0.5S粉末;
S3、将一定浓度的NaOH和Cu(NO3)2·3H2O溶液混合于烧杯中,持续搅拌0.5~2小时,经过去离子水和无水乙醇交替洗涤、烘干,可得到Cu(OH)2沉淀;
S4、将上述Cu(OH)2沉淀与过量的NaH2PO2·H2O粉末混合,研磨10~30分钟,接着将混合粉末置于瓷舟中,在Ar氛围下于200~400℃煅烧0.5~2小时,升温速率为1~10℃/min,自然冷却至室温,经过水洗和醇洗多次,最后烘干,即得到Cu3P粉末;
S5、分别称取Cu3P和C-Mn0.5Cd0.5S,置于100mL烧杯中,加入无水乙醇,超声,搅拌,最后置于烘箱中烘干,即得到C-Mn0.5Cd0.5S/Cu3P催化剂。
进一步的,在所述步骤S1中,所述Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2的摩尔比为1:1:1~5,所述葡萄糖的加入量为0.05~0.5g,所述的搅拌时间为0.5~2小时。
进一步的,在所述步骤S2中,所述的水热反应温度为160℃~200℃,所述的水热反应时间为16h~24h,所述的烘干温度为60℃~80℃。
进一步的,在所述步骤S5中,所述的Cu3P、C-Mn0.5Cd0.5S的质量比为0.01~0.1:1,所述的无水乙醇加入量为20ml~100ml,所述的超声时间为0.5h~2h,所述的搅拌时间为5h~15h,所述的烘干温度为60℃~80℃。
进一步的,所述的C-Mn0.5Cd0.5S/Cu3P异质结光催化剂的微观形貌为颗粒状和短棒状的混合形貌,粒径为30nm~100nm,Cu3P颗粒分散于C-Mn0.5Cd0.5S表面,相界面形成异质结结构。
本发明的有益效果是:提供的催化剂在制备过程中未引入有毒有害的表面活性剂,所用原料均为常用化学试剂,且来源广泛,价廉易得,本发明制备工艺简单、对设备的要求较低,可快速合成异质结催化剂,过程简易反应条件可控性强,本发明制备的C-Mn0.5Cd0.5S/Cu3P光催化剂具有较高的结晶性,通过形成异质结结构增强了光生载流子的分离和传输效率,较单一Mn0.5Cd0.5S半导体具有更优异的光催化活性,本发明可以使光催化分解水产氢反应速率由纯Mn0.5Cd0.5S的13.7mmol g-1h-1提高到Mn0.5Cd0.5S/Cu3P/C的44.1mmolg-1h-1,性能提高了3.2倍。
附图说明
图1为制备的催化剂的XRD图;
图2为实施例1、2、5制得样品的SEM图;
图3为实施例1-8制得样品在模拟太阳光下的产氢活性图;
图4为催化剂的稳定性测试图;
图5为催化剂的荧光光致发光谱图(PL)。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
室温(20℃~30℃)条件下,按照摩尔比为1:1:2分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,搅拌1小时,形成均匀的金黄色混合溶液;将上述溶液转入100mL不锈钢高压反应釜,于160-180℃条件下反应24小时,自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后于80℃烘干,即制备得到Mn0.5Cd0.5S。
实施例2
室温(20℃~30℃)条件下,按照摩尔比为1:1:2分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,并加入0.5g葡萄糖,搅拌1小时,形成均匀的金黄色混合溶液;将上述溶液转入100mL不锈钢高压反应釜,于160-180℃条件下反应24小时,自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后于80℃烘干,即制备得到C-Mn0.5Cd0.5S。
实施例3
室温(20℃~30℃)条件下,按照摩尔比为1:1:2分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,并加入0.5g葡萄糖,搅拌1小时,形成均匀的金黄色混合溶液;将上述溶液转入100mL不锈钢高压反应釜,于160-180℃条件下反应24小时,自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后于80℃烘干,即制备得到C-Mn0.5Cd0.5S。将一定浓度的NaOH和Cu(NO3)2·3H2O溶液混合于烧杯中,持续搅拌2小时,经过去离子水和无水乙醇交替洗涤、烘干,可得到Cu(OH)2沉淀;将沉淀与过量的NaH2PO2·H2O粉末混合,研磨一段时间,接着将混合粉末置于瓷舟中,在Ar氛围下于300℃煅烧1小时,升温速率为2℃/min;自然冷却至室温,经过水洗和醇洗多次,最后烘干,即得到Cu3P。取0.2g C-Mn0.5Cd0.5S粉末于烧杯中,加入50mL无水乙醇,超声40分钟,然后称取2mg Cu3P,加入上述溶液,继续超声40分钟。之后继续搅拌12小时,于80℃烘箱烘干,得到负载1wt%Cu3P的C-Mn0.5Cd0.5S/1Cu3P。
实施例4
室温(20℃~30℃)条件下,按照摩尔比为1:1:2分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,并加入0.5g葡萄糖,搅拌1小时,形成均匀的金黄色混合溶液;将上述溶液转入100mL不锈钢高压反应釜,于160-180℃条件下反应24小时,自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后于80℃烘干,即制备得到C-Mn0.5Cd0.5S。将一定浓度的NaOH和Cu(NO3)2·3H2O溶液混合于烧杯中,持续搅拌2小时,经过去离子水和无水乙醇交替洗涤、烘干,可得到Cu(OH)2沉淀;将沉淀与过量的NaH2PO2·H2O粉末混合,研磨一段时间,接着将混合粉末置于瓷舟中,在Ar氛围下于300℃煅烧1小时,升温速率为2℃/min;自然冷却至室温,经过水洗和醇洗多次,最后烘干,即得到Cu3P。取0.2g C-Mn0.5Cd0.5S粉末于烧杯中,加入50mL无水乙醇,超声40分钟,然后称取6mg Cu3P,加入上述溶液,继续超声40分钟。之后继续搅拌12小时,于80℃烘箱烘干,得到负载3wt%Cu3P的C-Mn0.5Cd0.5S/3Cu3P。
实施例5
室温(20℃~30℃)条件下,按照摩尔比为1:1:2分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,并加入0.5g葡萄糖,搅拌1小时,形成均匀的金黄色混合溶液;将上述溶液转入100mL不锈钢高压反应釜,于160-180℃条件下反应24小时,自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后于80℃烘干,即制备得到C-Mn0.5Cd0.5S。将一定浓度的NaOH和Cu(NO3)2·3H2O溶液混合于烧杯中,持续搅拌2小时,经过去离子水和无水乙醇交替洗涤、烘干,可得到Cu(OH)2沉淀;将沉淀与过量的NaH2PO2·H2O粉末混合,研磨一段时间,接着将混合粉末置于瓷舟中,在Ar氛围下于300℃煅烧1小时,升温速率为2℃/min;自然冷却至室温,经过水洗和醇洗多次,最后烘干,即得到Cu3P。取0.2g C-Mn0.5Cd0.5S粉末于烧杯中,加入50mL无水乙醇,超声40分钟,然后称取10mg Cu3P,加入上述溶液,继续超声40分钟。之后继续搅拌12小时,于80℃烘箱烘干,得到负载5wt%Cu3P的C-Mn0.5Cd0.5S/5Cu3P。
实施例6
室温(20℃~30℃)条件下,按照摩尔比为1:1:2分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,并加入0.5g葡萄糖,搅拌1小时,形成均匀的金黄色混合溶液;将上述溶液转入100mL不锈钢高压反应釜,于160-180℃条件下反应24小时,自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后于80℃烘干,即制备得到C-Mn0.5Cd0.5S。将一定浓度的NaOH和Cu(NO3)2·3H2O溶液混合于烧杯中,持续搅拌2小时,经过去离子水和无水乙醇交替洗涤、烘干,可得到Cu(OH)2沉淀;将沉淀与过量的NaH2PO2·H2O粉末混合,研磨一段时间,接着将混合粉末置于瓷舟中,在Ar氛围下于300℃煅烧1小时,升温速率为2℃/min;自然冷却至室温,经过水洗和醇洗多次,最后烘干,即得到Cu3P。取0.2g C-Mn0.5Cd0.5S粉末于烧杯中,加入50mL无水乙醇,超声40分钟,然后称取15mg Cu3P,加入上述溶液,继续超声40分钟。之后继续搅拌12小时,于80℃烘箱烘干,得到负载7.5wt%Cu3P的C-Mn0.5Cd0.5S/7.5Cu3P。
实施例7
室温(20℃~30℃)条件下,按照摩尔比为1:1:2分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,并加入0.5g葡萄糖,搅拌1小时,形成均匀的金黄色混合溶液;将上述溶液转入100mL不锈钢高压反应釜,于160-180℃条件下反应24小时,自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后于80℃烘干,即制备得到C-Mn0.5Cd0.5S。将一定浓度的NaOH和Cu(NO3)2·3H2O溶液混合于烧杯中,持续搅拌2小时,经过去离子水和无水乙醇交替洗涤、烘干,可得到Cu(OH)2沉淀;将沉淀与过量的NaH2PO2·H2O粉末混合,研磨一段时间,接着将混合粉末置于瓷舟中,在Ar氛围下于300℃煅烧1小时,升温速率为2℃/min;自然冷却至室温,经过水洗和醇洗多次,最后烘干,即得到Cu3P。取0.2g C-Mn0.5Cd0.5S粉末于烧杯中,加入50mL无水乙醇,超声40分钟,然后称取20mg Cu3P,加入上述溶液,继续超声40分钟。之后继续搅拌12小时,于80℃烘箱烘干,得到负载10wt%Cu3P的C-Mn0.5Cd0.5S/10Cu3P。
实施例8
室温(20℃~30℃)条件下,按照摩尔比为1:1:2分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,搅拌1小时,形成均匀的金黄色混合溶液;将上述溶液转入100mL不锈钢高压反应釜,于160-180℃条件下反应24小时,自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后于80℃烘干,即制备得到Mn0.5Cd0.5S。将一定浓度的NaOH和Cu(NO3)2·3H2O溶液混合于烧杯中,持续搅拌2小时,经过去离子水和无水乙醇交替洗涤、烘干,可得到Cu(OH)2沉淀;将沉淀与过量的NaH2PO2·H2O粉末混合,研磨一段时间,接着将混合粉末置于瓷舟中,在Ar氛围下于300℃煅烧1小时,升温速率为2℃/min;自然冷却至室温,经过水洗和醇洗多次,最后烘干,即得到Cu3P。取0.2g C-Mn0.5Cd0.5S粉末于烧杯中,加入50mL无水乙醇,超声40分钟,然后称取10mg Cu3P,加入上述溶液,继续超声40分钟。之后继续搅拌12小时,于80℃烘箱烘干,得到负载5wt%Cu3P的Mn0.5Cd0.5S/5Cu3P。
图1为实施例1制得光催化剂的X射线衍射图谱,与标准卡片对比可知,图谱中的衍射峰与立方相Mn0.5Cd0.5S图谱相吻合,因Cu3P和C粒子较小且分散度高,故无法检测到它的衍射峰。图2为实施例1、2、5所制得的Mn0.5Cd0.5S、C-Mn0.5Cd0.5S和C-Mn0.5Cd0.5S/5Cu3P的扫描电子显微镜照片,从图2可以看出制得的异质结催化剂呈现出纳米颗粒和短棒状的混合形貌,并且可以观察到Cu3P纳米粒子附着在C-Mn0.5Cd0.5S表面。
图3为实施例1—8制得的C-Mn0.5Cd0.5S/Cu3P样品在模拟太阳光下分解水产氢的活性图。对比发现单独的Mn0.5Cd0.5S活性较低,而C-Mn0.5Cd0.5S/5Cu3P表现出最高的产氢活性,相比原始材料,其产氢活性提高了3倍以上。图4为C-Mn0.5Cd0.5S/5Cu3P的稳定性测试,经过5个周期,催化剂活性降低了约21%,因此表现出较好的稳定性和可重复使用性。图5为实施例1、2和5所制备的催化剂的PL图,可以看到,C-Mn0.5Cd0.5S/5Cu3P的PL强度最低,表明其光生载流子的传输和分离效率得到很大提高,因此促进了光催化产氢活性。
本发明完成后采用中教金源的光催化产氢活性评价系统对催化剂性能进行测试,将0.02g本发明提供的上述光催化剂投入100mL含0.35M Na2S和0.25M Na2SO3牺牲剂的水溶液中,在反应之前,将反应体系用真空泵进行抽真空,持续约20min~40min,以去除水中的溶解性气体。另外,反应温度通过循环冷凝水控制在6℃~10℃,确保气体中水分含量处在极低的水平。采用300W的氙灯为反应光源,在反应过程中持续搅拌,每隔1小时通过气相色谱测量产生的氢气量,并在4小时候关闭灯源,停止实验。测试结果表明,本发明提供的C-Mn0.5Cd0.5S/Cu3P异质结光催化剂较单一Mn0.5Cd0.5S半导体具有更优异的光解水产氢活性,本发明可以使光催化分解水产氢反应速率由纯Mn0.5Cd0.5S的13.7mmol g-1h-1提高到Mn0.5Cd0.5S/Cu3P/C的44.1mmol g-1h-1,性能提高了3.2倍。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种含硫化镉异质结光解水产氢催化剂的制备方法,其特征在于,包括以下步骤:
S1、分别称取Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2溶于100mL烧杯中,加入葡萄糖,搅拌,形成均匀的金黄色混合溶液;
S2、将上述S1的混合溶液转入80~100mL不锈钢高压反应釜,再进行水热反应后自然冷却至室温,然后经由去离子水和无水乙醇交替洗涤,充分洗涤后烘干,即制备得到C-Mn0.5Cd0.5S粉末;
S3、将一定浓度的NaOH和Cu(NO3)2·3H2O溶液混合于烧杯中,持续搅拌0.5~2小时,经过去离子水和无水乙醇交替洗涤、烘干,可得到Cu(OH)2沉淀;
S4、将上述Cu(OH)2沉淀与过量的NaH2PO2·H2O粉末混合,研磨10~30分钟,接着将混合粉末置于瓷舟中,在Ar氛围下于200~400℃煅烧0.5~2小时,升温速率为1~10℃/min,自然冷却至室温,经过水洗和醇洗多次,最后烘干,即得到Cu3P粉末;
S5、分别称取Cu3P和C-Mn0.5Cd0.5S,置于100mL烧杯中,加入无水乙醇,超声,搅拌,最后置于烘箱中烘干,即得到C-Mn0.5Cd0.5S/Cu3P催化剂。
2.根据权利要求1所述的含硫化镉异质结光解水产氢催化剂的制备方法,其特征在于:所述步骤S1中,所述Mn(CH3COO)2·4H2O、Cd(NO3)2·4H2O、CH3CSNH2的摩尔比为1:1:1~5,所述葡萄糖的加入量为0.05~0.5g,所述的搅拌时间为0.5~2小时。
3.根据权利要求1所述的含硫化镉异质结光解水产氢催化剂的制备方法,其特征在于:所述步骤S2中,所述的水热反应温度为160℃~200℃,所述的水热反应时间为16h~24h,所述的烘干温度为60℃~80℃。
4.根据权利要求1所述的含硫化镉异质结光解水产氢催化剂的制备方法,其特征在于:所述步骤S5中,所述的Cu3P、C-Mn0.5Cd0.5S的质量比为0.01~0.1:1,所述的无水乙醇加入量为20ml~100ml,所述的超声时间为0.5h~2h,所述的搅拌时间为5h~15h,所述的烘干温度为60℃~80℃。
5.根据权利要求1-4中任一项所述的含硫化镉异质结光解水产氢催化剂的制备方法,其特征在于:所述的C-Mn0.5Cd0.5S/Cu3P异质结光催化剂的微观形貌为颗粒状和短棒状的混合形貌,粒径为30nm~100nm,Cu3P颗粒分散于C-Mn0.5Cd0.5S表面,相界面形成异质结结构。
CN201910523343.9A 2019-06-17 2019-06-17 一种含硫化镉异质结光解水产氢催化剂的制备方法 Active CN110252359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910523343.9A CN110252359B (zh) 2019-06-17 2019-06-17 一种含硫化镉异质结光解水产氢催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910523343.9A CN110252359B (zh) 2019-06-17 2019-06-17 一种含硫化镉异质结光解水产氢催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110252359A CN110252359A (zh) 2019-09-20
CN110252359B true CN110252359B (zh) 2020-04-03

Family

ID=67918803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910523343.9A Active CN110252359B (zh) 2019-06-17 2019-06-17 一种含硫化镉异质结光解水产氢催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110252359B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110756203B (zh) * 2019-10-25 2021-09-21 华南理工大学 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法及应用
CN111001422A (zh) * 2019-11-29 2020-04-14 华南理工大学 一种磷化亚铜/硫化锌复合可见光催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588040A (zh) * 2013-11-01 2015-05-06 中国石油化工股份有限公司 一种光催化剂及其制备方法
CN105148956A (zh) * 2015-09-30 2015-12-16 吉林大学 一种高效光催化分解水产氢催化剂及其制备方法
CN105772041A (zh) * 2014-12-25 2016-07-20 中国科学院理化技术研究所 一种光催化产氢助催化剂、光催化体系及产氢的方法
CN107983371A (zh) * 2017-11-21 2018-05-04 山东大学 一种光催化材料Cu2-xS/Mn0.5Cd0.5S/MoS2及其制备方法与应用
CN108855138A (zh) * 2018-07-09 2018-11-23 河南师范大学 一种Z型结构Mn0.5Cd0.5S/Ag/Bi2WO6复合型光催化剂及其制备方法
CN109553067A (zh) * 2017-09-25 2019-04-02 国家纳米科学中心 一种光催化分解甲酸的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109201102B (zh) * 2018-09-28 2021-08-13 商丘师范学院 一种Z型异质结M-C3N4/CdS复合光催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588040A (zh) * 2013-11-01 2015-05-06 中国石油化工股份有限公司 一种光催化剂及其制备方法
CN105772041A (zh) * 2014-12-25 2016-07-20 中国科学院理化技术研究所 一种光催化产氢助催化剂、光催化体系及产氢的方法
CN105148956A (zh) * 2015-09-30 2015-12-16 吉林大学 一种高效光催化分解水产氢催化剂及其制备方法
CN109553067A (zh) * 2017-09-25 2019-04-02 国家纳米科学中心 一种光催化分解甲酸的方法
CN107983371A (zh) * 2017-11-21 2018-05-04 山东大学 一种光催化材料Cu2-xS/Mn0.5Cd0.5S/MoS2及其制备方法与应用
CN108855138A (zh) * 2018-07-09 2018-11-23 河南师范大学 一种Z型结构Mn0.5Cd0.5S/Ag/Bi2WO6复合型光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"An amorphous CoSx modified Mn0.5Cd0.5S solid solution with enhanced visible-light photocatalytic H2-production activity";Mengdi Wang et al.;《Catalysis Science & Technology》;20180717;第8卷;第4122-4128页 *
"Mild,one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability";Shuai Zou et al.;《Chinese Journal of Catalysis》;20170115;第36卷(第7期);第1077-1085页 *

Also Published As

Publication number Publication date
CN110252359A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN110449176B (zh) 一种非贵金属单原子催化剂的制备方法及应用
CN113751028B (zh) 一种有机-无机杂化光催化析氢材料及其制备方法和应用
CN113209989A (zh) 硫化锌镉纳米棒与镍纳米棒异质结光催化剂、其制备方法、产氢体系及产氢方法
CN113058617B (zh) 一种光催化剂及其制备方法和应用
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN109821562B (zh) 一种MoP-Zn3In2S6复合纳米材料的制备方法
CN107433203B (zh) 一种Z-Scheme复合体系及制备方法和应用
CN106622318A (zh) 一种以双金属纳米粒子为异质结的层状复合光催化剂及其制备方法
CN110252359B (zh) 一种含硫化镉异质结光解水产氢催化剂的制备方法
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
CN107308973B (zh) 一种碱式磷酸钴纳米针复合lton光催化剂及其制备方法和应用
CN111054419B (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN107537520B (zh) 一种溴氧化铋-氧化铜纳米复合光催化剂及其制备方法
CN112588324B (zh) 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用
CN113952963A (zh) 一种基于Co修饰的CuInS2光催化剂的制备方法及其应用
CN109926070B (zh) 一种Mn0.5Cd0.5S/WO3/Au负载型光催化剂的制备方法
CN111054394A (zh) 一种p-n异质结光催化剂及制备方法和应用
CN110835103A (zh) 一种磷酸钴铜微球的制备方法及其在催化氨硼烷水解产氢上的应用
Xu et al. Efficient Visible Light Hydrogen Evolution Catalyst Composed of Non-noble Metal Nitride (Ni3N) Cocatalyst and Zn0. 5Cd0. 5S Solid Solution
Gemeda et al. A recent review on photocatalytic CO2 reduction in generating sustainable carbon-based fuels
CN113083328B (zh) MoS2与空穴提取功能化碳量子点共修饰Ag-In-Zn-S量子点的制备方法及应用
CN114618526A (zh) 一种硫化镉/铂/钽酸钠纳米立方体复合光催化剂及其制备方法和应用
CN107442114A (zh) 一种Pt负载3DOMSn4+掺杂TiO2材料的制备
CN109701518B (zh) 一种复合光催化剂及其制备方法和该催化剂在降解有机染料中的应用
CN116371425B (zh) 富有硫空位的CdS-Vs/Co2RuS6复合催化剂的制备及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant