CN110248956A - HIF-1α反义寡核苷酸 - Google Patents

HIF-1α反义寡核苷酸 Download PDF

Info

Publication number
CN110248956A
CN110248956A CN201780075831.7A CN201780075831A CN110248956A CN 110248956 A CN110248956 A CN 110248956A CN 201780075831 A CN201780075831 A CN 201780075831A CN 110248956 A CN110248956 A CN 110248956A
Authority
CN
China
Prior art keywords
substituted
unsubstituted
fethoc
independently selected
cta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780075831.7A
Other languages
English (en)
Other versions
CN110248956B (zh
Inventor
郑信
郑多览
曹峰准
尹兴植
张降愿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Co
Original Assignee
Via Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Co filed Critical Via Co
Publication of CN110248956A publication Critical patent/CN110248956A/zh
Application granted granted Critical
Publication of CN110248956B publication Critical patent/CN110248956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • C07K14/003Peptide-nucleic acids (PNAs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • C12N2310/3181Peptide nucleic acid, PNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/333Modified A
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/336Modified G
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)

Abstract

提供了靶向人类HIF‑1α前mRNA的一部分的肽核酸衍生物。所述肽核酸衍生物有效诱导外显子跳跃以在细胞中产生HIF‑1αmRNA的剪接变体,并且可用于治疗涉及HIF‑1α的过度表达的适应症或病症。

Description

HIF-1α反义寡核苷酸
本申请要求2016年10月11日提交的美国临时申请第62/406577号的优先权的益处,本文通过参照以其全部结合。
背景
在哺乳动物细胞中于缺氧(氧缺乏)条件下诱导缺氧诱导因子1α (HIF-1α) [Proc. Natl. Acad. Sci. USAvol 92(12), 5510-5514 (1995)]。HIF-1α在调控细胞以及全身的氧稳态方面起重要作用[Ann. Rev. Cell. Dev. Biol.vol 15, 551-578 (1999)]。已知HIF-1α诱导超过60种基因产物的转录,包括促红细胞生成素(EPO)、血管内皮生长因子(VEGF)、环氧合酶2 (COX-2)、葡萄糖转运蛋白(GLUT)等[Trends Mol. Med.vol 8, S62-67(2002); Nature Rev. Cancervol 3,721-732 (2003); J. Biol. Chem. vol 276, 9519-9525 (2001)]。因此,HIF-1α可作为响应缺氧而接通的主开关。
已知HIF-1α参与多种生理或病理情况。例如,HIF-1α诱导VEGF,后者为众所周知的血管生成因子。HIF-1α经EPO表达促进红细胞生成。HIF-1α诱导参与细胞增殖和生存的基因的转录[Exp. Mol. Med. vol 36(1), 1-12 (2004)]。
HIF-1α由HIF-1α (或HIF1A)基因编码,并且为异二聚体转录因子HIF-1的亚基。在常氧(正常氧水平)条件下,HIF-1α蛋白水平通过经脯氨酰羟化酶2 (PHD2)在脯氨酰残基上羟基化来调控[EMBO J. vol 22(16), 4082-4090 (2003)]。HIF-1α的羟基化产物被vonHippel-Lindau (VHL)肿瘤抑制蛋白识别。HIF-1α与VHL的结合使HIF-1α易于泛素化并因此导致蛋白酶体降解。在缺氧条件下,PHD2失活,HIF-1α的蛋白酶体降解受到抑制,并且结果HIF-1α水平升高[Endocrine-Related Cancer vol 13, S61-S75 (2006)]。
HIF-1α在肿瘤中的表达:缺氧为肿瘤微环境的标志。随着肿瘤的生长,部分肿瘤块变得血管化不良,在肿瘤内产生缺氧微环境。肿瘤内缺氧诱导癌细胞的适应性变化,这可导致化疗耐药性增加和转移倾向。这些对低氧环境的适应性反应背后的一个机制为癌细胞中HIF-1α蛋白水平的增加。
据文献报道,已发现HIF-1α在原发性和转移性肿瘤中过度表达。HIF-1α在人类癌症中的表达水平与肿瘤内血管生成和死亡率相关联[Cancer Res. vol 61, 2911-2916(2001); Clin. Cancer Res. vol 7, 1661-1668 (2001); Cancer Res. vol 60, 4693-4696 (2000); Am. J. Pathol. vol 157, 411-421 (2000); Cancer Res. vol 59,5830-5835 (1999)]。
具有高HIF-α水平的乳腺癌(T1/T2)患者往往显示出无病生存期(DFS)较短和无远处转移生存期(DMFS)较短,表明肿瘤内HIF-1α水平将是高危乳腺癌患者的一种很好预后标志物[Breast Cancer Res. vol 6(3), R191-R198 (2004)]。HCT116人类结肠癌细胞中的缺氧或HIF-1α过度表达刺激结肠癌细胞侵袭基质胶。转移性侵袭受到HIF-1α siRNA抑制[Cancer Res. vol 63, 1138-1143 (2003)]。HIF-1α抑制剂可用于抑制肿瘤转移。
HIF-1α的小分子抑制剂:HIF-1α为转录因子。存在抑制HIF-1α的功能活性或表达的小分子。这种小分子抑制剂间接影响HIF-1α的功能活性或水平。这种HIF-1α抑制剂的大量实例如下[Endocrine-Related Cancer vol 13, S61-S75 (2006); Oncotarget vol 7(7), 8172-8183 (2016)]。
微管抑制剂紫杉醇、拓扑异构酶I抑制剂拓扑替康和组蛋白去乙酰化酶抑制剂FK228经未知机制抑制HIF-1α蛋白表达。拓扑异构酶II抑制剂蒽环类药物通过降低HIF-1αmRNA水平来抑制HIF-1α。HSP90抑制剂格尔德霉素使HIF-1α蛋白不稳定或抑制HIF-1α与DNA的结合。P300 CH1抑制剂毛壳菌素抑制HIF-1反式激活活性。蛋白酶体抑制剂硼替佐米通过不明机制抑制HIF-1α活性。PI3K抑制剂渥曼青霉素、mTOR抑制剂雷帕霉素、COX-2抑制剂塞来昔布、酪氨酸激酶抑制剂染料木黄酮和erbB2单克隆抗体曲妥珠单抗(赫赛汀)阻断HIF-1α mRNA的翻译。然而,这种抑制剂不会选择性地与HIF-1α途径反应,并因此由于HIF-1α抑制作用而难以评价其治疗贡献。
核糖体蛋白质合成:蛋白质由2-脱氧核糖核酸(DNA)编码。DNA被转录以在细胞核中产生前mRNA (前信使核糖核酸)。将前mRNA的内含子酶促剪除以产生mRNA (信使核糖核酸),然后将其易位至胞质区室。在胞质溶胶中,称为核糖体的翻译机器复合物与mRNA结合,并在其扫描沿mRNA编码的遗传信息时进行蛋白质合成[Biochemistry vol 41, 4503-4510(2002); Cancer Res. vol 48, 2659-2668 (1988)]。
反义寡核苷酸:以序列特异性方式(即互补地)与RNA结合的寡核苷酸被称为反义寡核苷酸(ASO)。ASO可与mRNA或前mRNA紧密结合。
与mRNA紧密结合的ASO可抑制在胞质溶胶中沿mRNA的核糖体的蛋白质合成。ASO需要存在于胞质溶胶内以抑制其靶蛋白的核糖体蛋白质合成。
为了使ASO与前mRNA紧密结合以干扰前mRNA的剪接过程,ASO需要存在于细胞核中以改变剪接过程。
非天然寡核苷酸:DNA或RNA寡核苷酸易受经内源性核酸酶降解的影响,限制了其治疗效用。迄今为止,已深入开发和研究了许多类型的非天然(即天然不存在的)寡核苷酸[Clin. Exp. Pharmacol. Physiol. vol 33, 533-540 (2006)]。与DNA和RNA相比较,其中许多显示出延长的代谢稳定性。以下提供一些代表性非天然寡核苷酸的化学结构。这些寡核苷酸与DNA或RNA一样可预测地与互补核酸结合。
硫代磷酸寡核苷酸:硫代磷酸寡核苷酸(PTO)为DNA类似物,其中每个单体中骨架磷酸氧原子之一被硫原子替代。这种小的结构变化使得PTO抵抗核酸酶的降解[Ann. Rev.Biochem. vol 54, 367-402 (1985)]。
反映了PTO和DNA之间骨架的结构相似性,它们在大多数哺乳动物细胞类型中均穿透细胞膜差。然而,对于大量表达DNA转运蛋白的一些类型的细胞,DNA和PTO显示出良好的细胞穿透性。已知全身给予的PTO易于分布至肝脏和肾脏[Nucleic Acids Res. vol 25,3290-3296 (1997)]。为了改善PTO的体外细胞穿透,已广泛使用脂质转染。然而,脂质转染在物理上改变细胞膜,导致细胞毒性,并因此对长期治疗使用是不理想的。
在过去的30年中,反义PTO和PTO的变体已被临床评估用于治疗癌症、免疫障碍、代谢疾病等[Biochemistry vol 41, 4503-4510 (2002); Clin. Exp. Pharmacol. Physiol. vol 33, 533-540 (2006)]。大多数这种反义药物候选物尚未成功开发,部分是由于PTO的细胞穿透性差造成的。为了克服差的细胞穿透性,PTO需要以高剂量给予用于治疗活性。然而,已知PTO诱导剂量限制性毒性,包括凝血时间增加、补体激活、肾小管肾病、库普弗细胞激活和免疫刺激,包括脾肿大、淋巴样增生、单核细胞浸润[Clin. Exp. Pharmacol. Physiol. vol 33, 533-540 (2006)]。
已发现许多反义PTO对于具有来自肝脏或肾脏的显著贡献的疾病显示出临床活性。米泊美生为PTO类似物,其抑制apoB-100的合成,apoB-100为参与LDL胆固醇转运的蛋白质。米泊美生在某些动脉粥样硬化患者群体中显示出治疗活性,最有可能是由于其优先分布于肝脏造成的[Circulationvol 118(7), 743-753 (2008)]。ISIS-113715为抑制蛋白质酪氨酸磷酸酶1B (PTP1B)的合成的PTO反义类似物,并且发现在II型糖尿病患者中显示出治疗活性[Curr. Opin. Mol. Ther. vol 6, 331-336 (2004)]。
锁定核酸:在锁定核酸(LNA)中,RNA的骨架核糖环在结构上被限制以增加对RNA或DNA的结合亲和力。因此,LNA可认为是高亲和力DNA或RNA类似物[Biochemistry vol 45,7347-7355 (2006)]。
二氨基磷酸吗啉代寡核苷酸:在二氨基磷酸吗啉代寡核苷酸(PMO)中,DNA的骨架磷酸酯和2-脱氧核糖分别被氨基磷酸酯和吗啉替代[Appl. Microbiol. Biotechnol. vol71, 575-586 (2006)]。尽管DNA骨架荷负电,但PMO骨架不荷电。因此,PMO和mRNA之间的结合在骨架之间没有静电排斥,并且往往比DNA和mRNA之间的结合更强。由于PMO在结构上与DNA非常不同,因此PMO不会被识别DNA或RNA的肝转运蛋白识别。然而,PMO不易于穿透细胞膜。
肽核酸:肽核酸(PNA)为以N-(2-氨基乙基)甘氨酸为单元骨架的多肽,并且由Nielsen博士及同事发现[Science vol 254, 1497-1500 (1991)]。PNA的化学结构和缩写命名通过以下提供的附图说明。如同DNA和RNA一样,PNA还选择性地与互补核酸结合[Nature (London) vol 365, 566-568 (1992)]。在与互补核酸结合时,PNA的N-末端被认为等同于DNA或RNA的“5'-末端”,和PNA的C-末端被认为等同于DNA或RNA的“3'-末端”。
如同PMO一样,PNA骨架不荷电。因此,PNA和RNA之间的结合往往比DNA和RNA之间的结合更强。由于PNA在化学结构上与DNA显著不同,因此PNA不会被识别DNA的肝转运蛋白识别,并且显示出与DNA或PTO不同的组织分布概况。然而,PNA的哺乳动物细胞膜穿透性也差(Adv. Drug Delivery Rev. vol 55, 267-280, 2003)。
改善PNA的膜渗透性的修饰的核碱基:通过用与修饰的核碱基共价连接的阳离子脂质或其等同物引入修饰的核碱基,使PNA对哺乳动物细胞膜高度可渗透。以下提供了这种修饰的核碱基的化学结构。发现胞嘧啶、腺嘌呤和鸟嘌呤的这种修饰的核碱基分别可预测地和互补地与鸟嘌呤、胸腺嘧啶和胞嘧啶杂交[PCT Appl. No. PCT/KR2009/001256;EP2268607; US8680253]。
将这种修饰的核碱基掺入PNA上模拟脂质转染的情况。脂质转染期间,寡核苷酸分子被阳离子脂质分子比如lipofectamine包裹或掺杂,并且与裸寡核苷酸分子相比较,这种lipofectamine/寡核苷酸复合物相当易于穿透膜。
除良好的膜渗透性之外,发现那些PNA衍生物对互补核酸具有超强亲和力。例如,在与互补DNA形成双链体时,将4-5个修饰的核碱基引入到11-13聚体PNA衍生物上易于产生20℃或更高的Tm增加。这种PNA衍生物对单碱基错配高度敏感。单碱基错配导致Tm降低11-22℃,这取决于修饰的碱基的类型以及PNA序列。
HIF-1α ASO:与HIF-1α的小分子抑制剂形成对比,互补靶向HIF-1α mRNA的ASO可以序列特异性方式选择性地抑制HIF-1α蛋白的核糖体合成。
评估了一对25聚体吗啉代(PMO) HIF-1α ASO其抑制非洲爪蟾中人工构建的人类HIF-1α mRNA翻译的能力。将40 ng每种吗啉代ASO显微注射到非洲爪蟾胚胎中,并发现其抑制HIF-1α表达[J. Biol. Chem. vol 283(17), 11841-11849 (2008)]。
RX-0047为一种有效的HIF-1α PTO ASO。评估了RX-0047其在各种细胞系中的HIF-1α抑制活性。脂质转染到细胞比如MDA-MB-231、PC3和A549中时,RX-0047抑制HIF-1α蛋白的表达,体外IC50为1.9~4 nM。RX-0047还以序列特异性方式抑制UMRC2细胞中HIF-1α mRNA的表达。以30 mg/Kg腹膜内注射RX-0047抑制小鼠中A549细胞的肺转移。此外,30 mg/Kg的RX-0047在裸鼠的异种移植模型中抑制肿瘤生长[J. Cell. Biochem. vol 104, 985-994(2008)]。
EZN-2968为互补地靶向人类HIF-1α mRNA的编码区的锁定核酸(LNA)衍生物。EZN-2968通过RNAse H诱导HIF-1α mRNA的切割,并因此抑制体内以及细胞中HIF-1α蛋白的表达。在以50 mg/Kg每周两次腹膜内接受EZN-2968的裸鼠中肿瘤生长(DU145异种移植物)被显著抑制[Mol. Cancer Ther. vol 7(11), 3598-3608 (2008)]。
EZN-2968在少数患有难治性晚期实体瘤的癌症患者中进行了评估。EZN-2968每周一次通过以18 mg/Kg静脉输注给予。尽管临床试验由发起者提前终止,但6例患者中有4例通过肿瘤活检显示HIF-1α mRNA水平下降[Cancer Chemother. Pharmacol. vol 73(2),343-348 (2014)]。
EZN-2968为一种非常罕见的HIF-1α ASO的实例,在人类癌症患者中进行了评估。与其他寡核苷酸治疗剂一样,由于其有限的细胞渗透性,EZN-2968的治疗剂量被认为仍然很高。为了克服具有DNA或RNA骨架的寡核苷酸治疗剂的剂量限制性毒性,非常有必要改善靶向HIF-1α的寡核苷酸治疗剂的细胞渗透性。
小干扰RNA (siRNA):小干扰RNA (siRNA)是指20-25个碱基对的双链RNA[Microbiol. Mol. Biol. Rev. vol 67(4), 657-685 (2003)]。siRNA的反义链以某种方式与蛋白质相互作用以形成“RNA诱导沉默复合物”(RISC)。然后RISC结合于与siRNA的反义链互补的mRNA的某一部分。与RISC复合的mRNA经历切割。因此,siRNA催化诱导其靶mRNA的切割,并因此抑制通过mRNA的蛋白表达。RISC并不总是与其靶mRNA内的完全互补序列结合,这引发与siRNA疗法的脱靶效应相关的担忧。如同具有DNA或RNA骨架的其他类别寡核苷酸一样,siRNA具有差的细胞渗透性,并因此往往显示出体外或体内治疗活性差,除非经适当配制或化学修饰以显示出良好的膜渗透性。
HIF-1α siRNA:有大量下调细胞中的HIF-1α表达的HIF-1α siRNA的实例。然而,在siRNA分子有效地传递至细胞中的情况下,通常观察到体外抑制活性。例如,通过脂质转染将HIF-1α siRNA以100 nM转染至HCT116细胞中,并发现在缺氧条件下诱导HIF-1α mRNA以及HIF-1α蛋白显著减少。siRNA还诱导HIF-1靶蛋白或mRNA (比如VEGF、TGF-α等)的表达水平的变化[Cancer Res. vol 63, 1138-1143 (2003)]。
通过脂质转染用75 nM HIF-1α siRNA转染U251MG和U343MG神经胶质瘤细胞。无论缺氧还是常氧,在用HIF-1α siRNA处理的细胞中HIF-1α的表达显著减少[BMC Cancer 10:605 (2010)]。
靶向人类HIF-1α mRNA的siRNA的阳离子胶束纳米粒子显著抑制具有PC3异种移植物的小鼠中的肿瘤生长。而且,HIF-1α siRNA的纳米粒子与阿霉素的共处理在PC3异种移植模型中诱导了另外的抗肿瘤活性[Mol. Pharmaceutics vol 9(10), 2863-2874 (2012)]。
在具有HT-29结肠癌异种移植物的小鼠评估了HIF-1α siRNA和RGD靶向的多功能脂质ECO的纳米粒子的抗肿瘤和抗血管生成活性。配制的HIF-1α siRNA以2 mg/Kg每3天静脉给予,持续3周,并且发现抑制肿瘤生长达50%。MRI评估表明肿瘤中的血管分布显著下降,肿瘤内的血流量减少70%。HIF-1α表达显著减少,而且相关蛋白比如VEGF、GLUT-1和CA9 (碳酸酐酶9)也显著减少[Mol. Pharmaceutics vol 13(7), 2497-2506 (2016)]。
前mRNA的剪接:DNA被转录以在细胞核中产生前mRNA (前信使核糖核酸)。然后在通过一系列复杂反应(统称为“剪接”)缺失内含子后,将前mRNA加工成mRNA,如在图13的图示中示意性概述的那样[Ann. Rev. Biochem. 72(1), 291-336 (2003); Nature Rev. Mol. Cell Biol. 6(5), 386-398 (2005); Nature Rev. Mol. Cell Biol. 15(2), 108-121 (2014)]。
剪接通过在前mRNA和剪接衔接因子之间形成“剪接体E复合物”(即早期剪接体复合物)来引发。在“剪接体E复合物”中,U1与外显子N和内含子N的连接处结合,和U2AF35与内含子N和外显子(N + 1)的连接处结合。因此,外显子/内含子或内含子/外显子的连接处对于早期剪接体复合物的形成至关重要。“剪接体E复合物”在与U2另外复合时演变成“剪接体A复合物”。“剪接体A复合物”经历一系列复杂反应,以缺失或剪除内含子以邻接相邻的外显子。
剪接的反义抑制:在细胞核中,ASO可与前mRNA中的某个位置紧密结合,并可干扰前mRNA剪接为mRNA的过程,产生缺少靶外显子的一种或多种mRNA。这种mRNA称为“剪接变体”,并且其编码的蛋白质结构不同于由全长mRNA编码的蛋白质。
原则上,剪接可通过抑制“剪接体E复合物”的形成来中断。如果ASO与(5'→3')外显子-内含子的连接处,即“5'剪接位点”紧密结合,则ASO阻断前mRNA和因子U1之间的复合物形成,并因此阻断 “剪接体E复合物”的形成。同样地,如果ASO与(5'→3')内含子-外显子的连接处,即“3'剪接位点”紧密结合,则“剪接体E复合物”不能形成。
HIF-1α前mRNA的反义外显子跳跃:迄今为止,还没有报道反义寡核苷酸抑制HIF-1α前mRNA的剪接过程以诱导外显子跳跃的实例。
概述
本发明提供由以下式I表示的肽核酸衍生物或其药学上可接受的盐:
其中,
n为10-26之间的整数;
式I的化合物与20聚体RNA序列[(5'→3') UGUUAAGUAGGAUAAGUUCU] (人类HIF-1α前mRNA的一部分),优选地与人类HIF-1α前mRNA中的[(5' → 3')UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氘代、氢代、取代或未取代的烷基或者取代或未取代的芳基;
X和Y独立地表示氢代[H]、甲酰基[H-C(=O)-]、氨基羰基[NH2-C(=O)-]、取代或未取代的烷基、取代或未取代的酰基、取代或未取代的磺酰基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的芳氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基;
Z表示氢代、羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的氨基、取代或未取代的烷基氨基、取代或未取代的芳基氨基、取代或未取代的烷基或者取代或未取代的芳基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;和
B1、B2、…、Bn-1和Bn中的至少3个(优选地至少4个)独立地选自非天然核碱基,其具有共价连接于核碱基部分的取代或未取代的氨基。
在一些实施方案中,S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代、取代或未取代的烷基或者取代或未取代的芳基。
在一些实施方案中,X和Y独立地表示氢代[H]、取代或未取代的烷基、取代或未取代的酰基、取代或未取代的磺酰基或者取代或未取代的芳基。在其他实施方案中,X和Y独立地表示氢代[H]、甲酰基[H-C(=O)-]、氨基羰基[NH2-C(=O)-]、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的芳氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基。
在一些实施方案中,Z表示氢代、羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的氨基、取代或未取代的烷基或者取代或未取代的芳基。在其他实施方案中,Z表示羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、氨基、取代或未取代的烷基氨基或者取代或未取代的芳基氨基、取代或未取代的烷基或者取代或未取代的芳基。
在一些实施方案中,式I化合物与靶HIF-1α前mRNA序列完全互补。在其他实施方案中,式I化合物与靶HIF-1α前mRNA序列部分互补,即与靶HIF-1α前mRNA序列具有1或2个错配。
式I的化合物诱导人类HIF-1α前mRNA的可变剪接,产生缺少“外显子2”的HIF-1αmRNA剪接变体,并且可用于治疗实体瘤或涉及HIF-1α活性的病症。
附图简述
图1A. 在制备型HPLC纯化之前“ASO 1”的C18-反相HPLC色谱图。
图1B. 在制备型HPLC纯化之后“ASO 1”的C18-反相HPLC色谱图。
图2. 通过C18-RP prep HPLC纯化之后“ASO1”的ESI-TOF质谱。
图3A. 在0 (阴性对照)、10、100或1000 zM用“ASO 2”处理的HeLa细胞的HIF-1α巢式RT-PCR产物的电泳数据。
图3B. PCR条带的预测大小。
图3C. 指定给外显子2的跳跃的PCR产物条带的Sanger测序数据。
图4A. 在0 zM (阴性对照)、10 zM、100 zM、1 aM或10 aM用“ASO 2”处理24小时的HeLa细胞的HIF-1α蛋白质印迹数据。
图4B. 在0 zM (阴性对照)、10 zM、100 zM、1 aM或10 aM用“ASO 2”处理24小时的HeLa细胞的相对于β-肌动蛋白标准化的HIF-1α表达水平。
图5A. 在0 (阴性对照)、10、100或1000 zM用“ASO 2”处理的HeLa细胞通过SYBRGreen的巢式qPCR (误差棒指示标准误差)。
图5B. 在0 (阴性对照)、10、100或1000 zM用“ASO 2”处理的HeLa细胞通过TaqMan探针的巢式qPCR (误差棒指示标准误差)。
图6A. 在0 (阴性对照)、10、100或1000 zM用“ASO 6”处理的HeLa细胞的HIF-1α巢式RT-PCR产物的电泳数据。
图6B. 在0 zM (阴性对照)、10 zM、100 zM或1 aM用“ASO 6”处理24小时的HeLa细胞的HIF-1α蛋白质印迹数据。
图6C. 在0 zM (阴性对照)、10 zM、100 zM或1 aM用“ASO 6”处理24小时的HeLa细胞的相对于β-肌动蛋白标准化的HIF-1α表达水平(误差棒指示标准误差)。
图7A. 在0 (阴性对照)、10、100或1000 zM用“ASO 6”处理的HeLa细胞通过SYBRGreen的巢式qPCR数据(误差棒指示标准误差)。
图7B. 在0 (阴性对照)、10、100或1000 zM用“ASO 6”处理的HeLa细胞通过TaqMan探针的巢式qPCR数据(误差棒指示标准误差)。
图8A. 在0 zM (阴性对照)、100 zM、300 zM、1 aM、3 aM、10 aM、30 aM、100 aM或300 aM用“ASO 1”处理72小时的HeLa细胞的HIF-1α蛋白质印迹数据。
图8B. 在0 zM (阴性对照)、100 zM、300 zM、1 aM、3 aM、10 aM、30 aM、100 aM或300 aM用“ASO 1”处理72小时的HeLa细胞的相对于β-肌动蛋白标准化的HIF-1α表达水平(仅对于阴性对照N = 4,误差棒指示标准误差)。
图9A. 在以0 (阴性对照)、100、1000或3000 pmole/Kg皮下接受“ASO 1”的裸鼠中的U251肿瘤生长(误差棒指示标准误差)。
图9B. 来自每个ASO剂量组的代表性肿瘤内HIF-1α IHC图像。
图9C. 相对于阴性对照组标准化的每个剂量组的平均HIF-1α表达水平(每组N =5,误差棒指示标准误差)。
图10A. 在0 (阴性对照)、30、100或300 pmole/Kg用“ASO 6”每周3X皮下处理的裸鼠中的A431肿瘤生长。
图10 B. 第25天的平均肿瘤重量(误差棒指示标准误差)。
图10 C. 在0 (阴性对照)、1、10或100 pmole/Kg用“ASO 6”每周2X皮下处理的裸鼠中的PC3肿瘤生长。
图10D. 第28天的平均肿瘤重量(误差棒指示标准误差)。
图11A. 在0 (阴性对照)、0.1、1.0或10 pmole/Kg用等量“ASO 6”加“ASO 11”每周2X皮下处理的裸鼠中的U-251 MG肿瘤生长(误差棒指示标准误差)。
图11B. 第92天的平均U-251 MG肿瘤重量。
图12A. 来自阴性对照和1.0 pmole/Kg剂量组的代表性肿瘤内HIF-1α IHC图像。
图12B. 相对于阴性对照组标准化的1.0 pmole/Kg剂量组的平均HIF-1α表达水平(每组N = 4,误差棒指示标准误差)。
图12C. 来自阴性对照和1.0 pmole/Kg剂量组的代表性肿瘤内VEGF-A IHC图像。
图12D. 相对于阴性对照组标准化的1.0 pmole/Kg剂量组的平均VEGF-A表达水平(每组N = 4,误差棒指示标准误差)。
图13. 在通过一系列复杂反应(统称为“剪接”)缺失内含子后,将前mRNA加工成mRNA。
详述
本发明提供由以下式I表示的肽核酸衍生物或其药学上可接受的盐:
其中,
n为10-26之间的整数;
式I的化合物与20聚体RNA序列[(5'→3') UGUUAAGUAGGAUAAGUUCU] (人类HIF-1α前mRNA的一部分),优选地与人类HIF-1α前mRNA中的[(5' → 3')UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氘代、氢代、取代或未取代的烷基或者取代或未取代的芳基;
X和Y独立地表示氢代[H]、甲酰基[H-C(=O)-]、氨基羰基[NH2-C(=O)-]、取代或未取代的烷基、取代或未取代的酰基、取代或未取代的磺酰基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的芳氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基;
Z表示氢代、羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的氨基、取代或未取代的烷基氨基、取代或未取代的芳基氨基、取代或未取代的烷基或者取代或未取代的芳基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;和
B1、B2、…、Bn-1和Bn中的至少3个(优选地至少4个)独立地选自非天然核碱基,其具有共价连接于核碱基部分的取代或未取代的氨基。
在一些实施方案中,S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代、取代或未取代的烷基或者取代或未取代的芳基。
在一些实施方案中,X和Y独立地表示氢代[H]、取代或未取代的烷基、取代或未取代的酰基、取代或未取代的磺酰基或者取代或未取代的芳基。在其他实施方案中,X和Y独立地表示氢代[H]、甲酰基[H-C(=O)-]、氨基羰基[NH2-C(=O)-]、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的芳氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基。
在一些实施方案中,Z表示氢代、羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的氨基、取代或未取代的烷基或者取代或未取代的芳基。在其他实施方案中,Z表示羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、氨基、取代或未取代的烷基氨基、或者取代或未取代的芳基氨基、取代或未取代的烷基或者取代或未取代的芳基。
在一些实施方案中,式I的化合物与靶HIF-1α前mRNA序列完全互补。在其他实施方案中,式I的化合物与靶HIF-1α前mRNA序列部分互补,例如与靶HIF-1α前mRNA序列具有1或2个错配。
式I的化合物诱导人类HIF-1α前mRNA的可变剪接,产生缺少“外显子2”的HIF-1αmRNA剪接变体,并且可用于治疗实体瘤或涉及HIF-1α活性的病症。
“n为10-26之间的整数”的描述字面上表明n为可选自整数11、12、13、14、15、16、17、18、19、20、21、22、23、24和25的整数。
式I的化合物与自人类HIF-1α基因(NCBI参考序列: NG_029606.1)获得的人类HIF-1α前mRNA的“外显子2”的3'剪接位点紧密结合。由来自“内含子1”的10聚体和来自“外显子2”的10聚体组成的20聚体HIF-1α前mRNA序列读取为[(5'→3')UGUUAAGUAGGAUAAGUUCU],尽管外显子和内含子编号可能根据报道的HIF-1α mRNA转录物而变化。提供20聚体前mRNA序列是为了明确定义人类HIF-1α前mRNA中的靶3'剪接位点。
或者,20聚体前mRNA序列可表示为[(5'→3') uguuaaguag┃GAUAAGUUCU],其中内含子和外显子序列分别用“小写”和“大写”字母表示,并且内含子和外显子之间的连接处用“┃”标记。因此,用于描述本发明式I的化合物的[(5'→3') UAAGUAGGAUAAGU]的14聚体前mRNA序列可选择地表示为[(5'→3') uaaguag┃GAUAAGU]。
式I的化合物与人类HIF-1α前mRNA中“外显子2”的靶3'剪接位点紧密结合,并干扰涉及化合物的靶剪接位点的“剪接体早期复合物”的形成。由于所述化合物在空间上抑制涉及靶剪接位点的“剪接体早期复合物”的形成,因此HIF-1α“外显子2”被剪除或缺失,产生缺少“外显子2”的一种或多种HIF-1α mRNA剪接变体。因此,本发明的化合物据说诱导HIF-1α“外显子2”的跳跃。生成的HIF-1α mRNA剪接变体编码缺少由全长HIF-1α蛋白表达的HIF-1α功能活性的HIF-1α变异蛋白。
如现有技术[PCT/KR2009/001256]中举例说明的那样,式I的化合物与互补DNA紧密结合。式I的PNA衍生物与其全长互补DNA或RNA之间的双链体显示出Tm值太高而不能在水性缓冲液中可靠地测定。缓冲溶液在Tm测量期间往往煮沸。式I的PNA化合物与较短长度(例如10聚体)的互补DNA仍然产生高Tm值。由于结合亲和力高,本发明的PNA衍生物有效诱导细胞中HIF-1α“外显子2”的跳跃,甚至与“外显子2”的3'剪接位点具有小至10聚体的互补重叠。
所述化合物对具有完全互补性的靶HIF-1α前mRNA序列具有非常强的亲和力。即使在式I的化合物与靶HIF-1α前mRNA序列具有1或2个错配的情况下,PNA化合物仍可与靶前mRNA序列紧密结合并中断剪接过程,因为尽管存在错配,但所述化合物和靶HIF-1α前mRNA序列之间的亲和力仍足够强。即使式I的14聚体PNA衍生物与例如[(5' → 3') aaguag┃GAUAAGUU]的14聚体HIF-1α前mRNA序列仅具有12聚体互补重叠,并且14聚体化合物仍然能够诱导HIF-1α“外显子2”的跳跃,尽管与靶前mRNA 14聚体序列存在两个错配。然而,不期望与靶前mRNA序列具有太多错配,以避免与其他前mRNA的脱靶结合。
以下举例说明可用于式I的PNA衍生物的天然或非天然核碱基的化学结构。
本发明的天然(常规表示为“天然存在的”)或非天然(常规表示为“天然不存在的”)核碱基包括(但不限于)以上提供的核碱基。提供这种天然或非天然核碱基是为了说明式I的化合物可允许的核碱基多样性,并因此不应解释为限制本发明的范围。本领域的技术人员可易于发现,对于式I的PNA化合物内的特定位置,天然或非天然核碱基的变化是可能的,只要这种变化满足与本发明的靶前mRNA序列的互补性条件即可。
用于描述式I的PNA衍生物的取代基在本文举例说明。以下提供取代或未取代烷基的实例。
以下举例说明取代或未取代的烷基酰基和取代或未取代的芳基酰基。
取代或未取代的烷基氨基、取代或未取代的芳基氨基、取代或未取代的芳基和取代或未取代的烷基磺酰基或者芳基磺酰基的实例如下所示。
以下提供取代或未取代的烷氧基羰基或芳氧基羰基、取代或未取代的烷基氨基羰基或芳基氨基羰基的实例。
以下提供取代或未取代的烷基氨基硫代羰基、取代或未取代的芳基氨基硫代羰基、取代或未取代的烷氧基硫代羰基和取代或未取代的芳氧基硫代羰基的实例。
提供这种示例性取代基是为了说明式I的化合物可允许的取代基多样性,并因此不应解释为限制本发明的范围。本领域的技术人员可易于发现,PNA寡核苷酸序列超过N-末端或C-末端取代基,为所述PNA寡核苷酸与靶前mRNA序列的序列特异性结合的最重要贡献者。
式I的PNA化合物具有良好的细胞渗透性,并且如果作为“裸”寡核苷酸处理则可易于传递至细胞中,如现有技术[PCT/KR2009/001256]举例说明的那样。因此,本发明的化合物诱导HIF-1α前mRNA中“外显子2”的跳跃,以在用作为“裸”寡核苷酸的所述化合物处理的细胞中产生缺少HIF-1α“外显子2”的HIF-1α mRNA剪接变体。用作为“裸寡核苷酸”的式I的化合物处理的细胞比没有用所述PNA化合物处理的细胞表达更低水平的全长HIF-1α mRNA和蛋白。同样地,式I的化合物在作为“裸寡核苷酸”全身给予时抑制实体瘤组织中HIF-1α的表达。因此,所述化合物可用于治疗涉及HIF-1α过度表达的实体瘤或障碍。
式I的化合物不需要侵入性配制来增加对靶组织的全身传递,以获得预期的治疗或生物活性。通常将式I的化合物溶解于PBS (磷酸盐缓冲盐水)或盐水中并全身给予,以在靶组织中引发期望的治疗(即抗肿瘤)或生物活性。
式I的PNA衍生物可与药学上可接受的酸或碱组合使用或配制,酸或碱包括(但不限于)氢氧化钠、氢氧化钾、盐酸、甲磺酸、枸橼酸、三氟乙酸等。
式I的PNA化合物或其药学上可接受的盐可与药学上可接受的辅剂组合给予受试者,辅剂包括(但不限于)枸橼酸、盐酸、酒石酸、硬脂酸、聚乙二醇、聚丙二醇、乙醇、异丙醇、碳酸氢钠、蒸馏水、防腐剂等。
本发明的化合物可以1 fmole/Kg-高于1 nmole/Kg范围内的治疗有效剂量全身给予受试者,这将根据给药方案、受试者的病症或情况等而变化。
本发明的化合物可以1 aM-高于1 nM范围内的治疗有效浓度局部给予受试者,这将根据给药方案、受试者的病症或情况等而变化。
在某些实施方案中,本发明提供式I的PNA衍生物或其药学上可接受的盐:
其中,
n为10-26之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
式I的化合物与靶HIF-1α前mRNA序列完全互补,或者与靶HIF-1α前mRNA序列部分互补,具有1或2个错配;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氘代、氢代、取代或未取代的烷基或者取代或未取代的芳基;
X和Y独立地表示氢代[H]、甲酰基[H-C(=O)-]、氨基羰基[NH2-C(=O)-]、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的芳氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基;
Z表示羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、氨基[-NH2]、取代或未取代的烷基氨基、取代或未取代的芳基氨基、取代或未取代的烷基或者取代或未取代的芳基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自非天然核碱基,其具有共价连接于核碱基部分的取代或未取代的氨基。
优选的是式I的PNA衍生物或其药学上可接受的盐:
其中,
n为10-26之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
式I的化合物与靶HIF-1α前mRNA序列完全互补,或者与靶HIF-1α前mRNA序列部分互补,具有1或2个错配;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氘代、氢代、取代或未取代的烷基或者取代或未取代的芳基;
X和Y独立地表示氢代、甲酰基、氨基羰基、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的芳氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基;
Z表示羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、氨基[-NH2]、取代或未取代的烷基氨基、取代或未取代的芳基氨基、取代或未取代的烷基或者取代或未取代的芳基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;和
B1、B2、…、Bn-1和Bn中的至少3个独立地选自由以下式II、式III或式IV表示的非天然核碱基:
其中,
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基、氢代、羟基和取代或未取代的烷氧基;和
L1、L2和L3为由以下式V表示的共价接头,其将碱性氨基连接于负责核碱基配对性质的部分:
其中,
Q1和Qm为取代或未取代的亚甲基(-CH2-),和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基、氧(-O-)、硫(-S-)和取代或未取代的氨基[-N(H)-或-N(取代基)-];和
m为1-16之间的整数。
令人感兴趣的为式I的PNA寡聚体或其药学上可接受的盐:
其中,
n为11-23之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
式I的化合物与靶HIF-1α前mRNA序列完全互补,或者与靶HIF-1α前mRNA序列部分互补,具有1或2个错配;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为取代或未取代的亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基、氧(-O-)和氨基[-N(H)-];和
m为1-11之间的整数。
特别感兴趣的为式I的PNA衍生物或其药学上可接受的盐:
其中,
n为11-21之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
式I的化合物与靶HIF-1α前mRNA序列完全互补;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基或者取代或未取代的烷氧基羰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)和非天然核碱基;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基和氧基团;和
m为1-9之间的整数。
高度感兴趣的为式I的PNA寡聚体或其药学上可接受的盐:
其中,
n为12-19之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
式I的化合物与靶HIF-1α前mRNA序列完全互补;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基酰基、取代或未取代的芳基酰基或者取代或未取代的烷氧基羰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)和非天然核碱基;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基和氧基团;和
m为1-9之间的整数。
更高度感兴趣的为式I的PNA衍生物或其药学上可接受的盐:
其中,
n为12-19之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少11聚体互补重叠;
式I的化合物与靶HIF-1α前mRNA序列完全互补;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基酰基、取代或未取代的芳基酰基或者取代或未取代的烷氧基羰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)和非天然核碱基;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6为氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基和氧基团;和
m为1-8之间的整数。
最高度感兴趣的为式I的PNA衍生物或其药学上可接受的盐:
其中,
n为12-19之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少12聚体互补重叠;
式I的化合物与靶HIF-1α前mRNA序列完全互补;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X为氢代基团;
Y表示取代或未取代的烷基酰基、取代或未取代的芳基酰基或者取代或未取代的烷氧基羰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)和非天然核碱基;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6为氢代基团;
L1表示-(CH2)2-O-(CH2)2-、-CH2-O-(CH2)2-、-CH2-O-(CH2)3-、-CH2-O-(CH2)4-或-CH2-O-(CH2)5-、-CH2-O-(CH2)6-或-CH2-O-(CH2)7-,其中右端直接连接于碱性氨基;和
L2和L3独立地选自-(CH2)2-O-(CH2)2-、-(CH2)3-O-(CH2)2-、-(CH2)2-O-(CH2)3-、-(CH2)2-、-(CH2)3-、-(CH2)4-、-(CH2)5-、-(CH2)6-、-(CH2)7-和-(CH2)8-,其中右端直接连接于碱性氨基。
特别感兴趣的为式I的PNA衍生物(其选自以下提供的化合物)或其药学上可接受的盐:
(N→C) Fethoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C) Fmoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C) H-CA(5)G-AA(5)C-TTA(5)-T CC(1O3)-TA(5)-NH2
(N→C) Ac-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C) Piv-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C)苯甲酰基-CA(5)G(2O3)-AA(5)C-TTA(4)-TCC(1O2)-TA(5)-NH2
(N→C)正丙基-CA(5)G-AA(5)C-TTA(5)-TCC(2O2)-TA(5)-NH2
(N→C)苄基-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C)对甲苯磺酰基-CA(5)G-AA(5)C-TTA(2O2)-TCC(1O2)-TA(5)-NH2
(N→C) [N-(2-苯乙基)氨基]羰基-CA(5)G(3)-AA(5)C-TTA(3)-TCC(1O2)-TA(5)-NH2
(N→C) Fethoc-Lys-Leu-CA(5)G(2O2)-AA(5)C-TTA(8)-TCC(1O2)-TA(5)-Lys-NH2
(N→C) N-Ph-N-Me-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-Lys-NH2
(N→C) Piv-HEX-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-Lys-NH2
(N→C) FAM-HEX-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-Lys-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-CTT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-CT-NH2
(N→C) Fethoc-G(5)AA(6)-CTT-A(6)TC-CTA(6)-C(1O2)T-NH2
(N→C) Fethoc-GA(2O2)A-C(1O5)TT-A(3)TC-CTA(5)-C(1O3)T-NH2
(N→C)苯甲酰基-Gly-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-Arg-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-Gly-NH2
(N→C) Fethoc-Val-GA(5)A-CTT-A(6)TC-CTA(5)-C(2O2)T-Gly-Lys-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Fethoc-A(5)GA-AC(1O2)T-TG(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-CA-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-AT-NH2
(N→C) Piv-Lys-AA(6)C-TTA(6)-TCC(1O2)-TA(6)C-TTA(5)-Val-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-CA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Fethoc-C(1O5)TT-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Fmoc-Val-CTC(1O2)-A(5)TC-CTA(6)-C(1O3)TT-AA(2O2)C-NH2
(N→C) Piv-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Fethoc-TTC(1O5)-AG(5)A-A(4)CT-TA(5)T-CC(2O2)T-A(6)CT-TA(6)A-C-NH2
(N→C) Fethoc-G-TTC(1O5)-AG(5)A-A(4)CT-TA(5)T-CC(1O2)T-AC(1O5)T-TA(6)A-C-NH2;和
(N→C) Fethoc-TTC(1O5)-AG(5)A-A(4)CT-TA(5)T-CCT-AC(1O5)T-TAA-CA(2O2)A-NH2
其中,
A、G、T和C为分别具有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶的天然核碱基的PNA单体;
C(pOq)、A(p)、A(pOq)、G(p)和G(pOq)为分别具有由式VI、式VII、式VIII、式IX和式X表示的非天然核碱基的PNA单体;
其中,
p和q为整数;和
N-和C-末端取代基的缩写具体描述如下:“Fmoc-”为“[(9-芴基)甲氧基]羰基-”的缩写;“Fethoc-”代表“[2-(9-芴基)乙基-1-氧基]羰基”;“Ac-”代表“乙酰基-”;“苯甲酰基-”代表“苯羰基-”;“Piv-”代表“新戊酰-”;“正丙基-”代表“1-(正丙基)-”;“H-”代表“氢代-”基团;“对甲苯磺酰基”代表“(4-甲基苯)-1-磺酰基-”;“-Lys-”代表氨基酸残基“赖氨酸”;“-Val-”代表氨基酸残基“缬氨酸”;“-Leu-”代表氨基酸残基“亮氨酸”;“-Arg-”代表氨基酸残基“精氨酸”;“-Gly-”代表氨基酸残基“甘氨酸”;“[N-(2-苯乙基)氨基]羰基-”代表“[N-1-(2-苯乙基)氨基]羰基-”;“苄基-”代表“1-(苯基)甲基-”;“苯基-”代表“phenyl-”;“Me-”代表“甲基-”;“-HEX-”代表“6-氨基-1-己酰基-”;“FAM-”代表“5或6-荧光素-羰基-(异构体混合物)”;和“-NH2”代表未取代的“-氨基”。
在某些实施方案中,本发明提供式I的PNA衍生物或其药学上可接受的盐:
其中,
式I的化合物与20聚体RNA序列[(5'→3') UGUUAAGUAGGAUAAGUUCU] (人类HIF-1α前mRNA的一部分)具有至少10聚体互补重叠;
n为10-26之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代、取代或未取代的烷基或者取代或未取代的芳基;
X和Y独立地表示氢代、取代或未取代的烷基、取代或未取代的酰基、取代或未取代的磺酰基或者取代或未取代的芳基;
Z表示氢代、羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;和
B1、B2、…、Bn-1和Bn中的至少3个独立地选自非天然核碱基,其具有与负责其适当核碱基配对性质的部分共价连接的取代或未取代的氨基。
在某些实施方案中,本发明提供式I的PNA衍生物或其药学上可接受的盐:
其中,
式I的化合物与20聚体RNA序列[(5'→3') UGUUAAGUAGGAUAAGUUCU] (人类HIF-1α前mRNA的一部分)具有至少10聚体互补重叠;
n为10-26之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基、取代或未取代的酰基、取代或未取代的磺酰基或者取代或未取代的芳基;
Z表示氢代、羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;
B1、B2、…、Bn-1和Bn中的至少3个独立地选自由式II、式III或式IV表示的非天然核碱基:
其中,
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基、氢代、羟基和取代或未取代的烷氧基;和
L1、L2和L3为由式V表示的共价接头,其将碱性氨基连接于负责核碱基配对性质的部分:
其中,
Q1和Qm为取代或未取代的亚甲基(-CH2-),和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基、氧(-O-)、硫(-S-)和取代或未取代的氨基[-N(H)-或-N(取代基)-];和
m为1-16之间的整数。
在某些实施方案中,本发明提供式I的PNA衍生物或其药学上可接受的盐:
其中,
式I的化合物与20聚体RNA序列[(5'→3') UGUUAAGUAGGAUAAGUUCU] (人类HIF-1α前mRNA的一部分)具有至少10聚体互补重叠;
n为11-21之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X和Y独立地选自氢代、取代或未取代的烷基和取代或未取代的酰基;
Z表示羟基或者取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为取代或未取代的亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基、氧和氨基;和
m为1-11之间的整数。
在某些实施方案中,本发明提供式I的PNA衍生物或其药学上可接受的盐:
其中,
式I的化合物与20聚体RNA序列[(5'→3') UGUUAAGUAGGAUAAGUUCU] (人类HIF-1α前mRNA的一部分)具有至少10聚体互补重叠;
n为11-19之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X和Y独立地选自氢代和取代或未取代的酰基;
Z表示取代或未取代的氨基;和
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基、氧和氨基;和
m为1-9之间的整数。
在某些实施方案中,本发明提供式I的PNA衍生物或其药学上可接受的盐:
其中,
式I的化合物与20聚体RNA序列[(5'→3') UGUUAAGUAGGAUAAGUUCU] (人类HIF-1α前mRNA的一部分)具有至少10聚体互补重叠;
n为11-19之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X和Y独立地选自氢代和取代或未取代的酰基;
Z表示取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基(包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶)和非天然核碱基;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R3和R5为氢代基团,和R2、R4和R6独立地表示氢代或者取代或未取代的烷基;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基、氧基团;和
m为1-9之间的整数。
在某些实施方案中,本发明提供式I的PNA衍生物或其药学上可接受的盐:
其中,
式I的化合物与20聚体RNA序列[(5'→3') UGUUAAGUAGGAUAAGUUCU] (人类HIF-1α前mRNA的一部分)具有至少10聚体互补重叠;
n为11-19之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X和Y独立地选自氢代和取代或未取代的酰基;
Z表示取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和非天然核碱基;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6为氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基和氧基团;和
m为1-8之间的整数。
在某些实施方案中,本发明提供式I的PNA衍生物或其药学上可接受的盐:
其中,
式I的化合物与20聚体RNA序列[(5'→3') UGUUAAGUAGGAUAAGUUCU] (人类HIF-1α前mRNA的一部分)具有至少10聚体互补重叠;
n为11-17之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X为氢代基团;
Y表示取代或未取代的酰基;
Z表示取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和非天然核碱基;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6为氢代基团;
L1表示-(CH2)2-O-(CH2)2-、-CH2-O-(CH2)2-或-CH2-O-(CH2)3-,其中右端直接连接于碱性氨基;和
L2和L3独立地选自-(CH2)2-O-(CH2)2-、-(CH2)3-O-(CH2)2-、-(CH2)2-O-(CH2)3-、-(CH2)2-、-(CH2)3-、-(CH2)4-、-(CH2)5-、-(CH2)6-、-(CH2)7-和-(CH2)8-,其中右端直接连接于碱性氨基。
在某些实施方案中,本发明提供式I的PNA衍生物(其选自以下提供的化合物)或其药学上可接受的盐:
(N→C) Fethoc-CTT-A(6)TC(1O5)-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Fethoc-C(1O5)TT-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC(1O5)-A-NH2
(N→C) Fethoc-CA(5)T-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC(1O5)-A-NH2
(N→C) Fethoc-CG(6)T-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC(1O5)-A-NH2
(N→C) Fethoc-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-CTT-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Piv-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C)苯甲酰基-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-Lys-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Fmoc-Val-CTC(1O2)-A(5)TC-CTA(6)-C(1O3)TT-AA(2O2)C-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C)Fethoc-AG(5)A-A(2O2)CT-TA(5)T-CC(1O2)T-A(6)CT-TA-NH2
(N→C)Piv-AG(5)A-A(2O2)CT-TA(5)T-CC(1O2)T-A(6)CT-TA-NH2
(N→C) Ac-AG(5)A-A(2O3)CT-TA(5)T-CC(1O2)T-A(6)CT-TA-NH2
(N→C) Fethoc-A(5)GA(5)-AC(1O3)T-TA(5)T-CC(1O2)T-A(6)CT-TA(4)-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-Lys-NH2
(N→C)苯甲酰基-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Ac-HEX-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fmoc-Gly-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Me-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C)苄基-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-CTT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-CT-NH2
(N→C) Fethoc-G(5)AA(6)-CTT-A(6)TC-CTA(6)-C(1O2)T-NH2;和
(N→C) Fethoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
其中,
A、G、T和C为分别具有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶的天然核碱基的PNA单体;
C(pOq)、A(p)、A(pOq)、G(p)和G(pOq)为分别具有由式VI、式VII、式VIII、式IX和式X表示的非天然核碱基的PNA单体;
其中,
p和q为整数;和
N-和C-末端取代基的缩写具体描述如下:“Fmoc-”为“[(9-芴基)甲氧基]羰基-”的缩写;“Fethoc-”代表“[2-(9-芴基)乙基-1-氧基]羰基”;“Ac-”代表“乙酰基-”;“苯甲酰基-”代表“苯羰基-”;“Piv-”代表“新戊酰-”;“正丙基-”代表“1-(正丙基)-”;“-Lys-”代表氨基酸残基“赖氨酸”;“-Val-”代表氨基酸残基“缬氨酸”;“-Leu-”代表氨基酸残基“亮氨酸”;“-Arg-”代表氨基酸残基“精氨酸”;“-Gly-”代表氨基酸残基“甘氨酸”;“苄基-”代表“1-(苯基)甲基-”;“苯基-”代表“phenyl-”;“Me-”代表“甲基-”。
以下共同提供缩写为A、G、T、C、C(pOq)、A(p)、A(pOq)、G(p)和G(pOq)的PNA单体的化学结构。如现有技术[PCT/KR2009/001256]讨论的那样,C(pOq)被认为是对应于“胞嘧啶”的修饰的PNA单体,因为其优选杂交于“鸟嘌呤”。A(p)和A(pOq)被视为作为“腺嘌呤”起作用的修饰的PNA单体,因为其对“胸腺嘧啶”具有紧密亲和力。同样地,G(p)和G(pOq)被认为是等同于“鸟嘌呤”的修饰的PNA单体,因为其与“胞嘧啶”产生碱基配对。
以下提供用于使本发明的式I的PNA衍生物的N-末端或C-末端多样化的取代基的各种缩写的化学结构。
为了说明PNA衍生物的缩写,以下提供缩写为“(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2”的14聚体PNA衍生物的化学结构。
作为另一个图示,以下提供缩写为“(N→C) Fmoc-Val-CTC(1O2)-A(5)TC-CTA(6)-C(1O3)TT-AA(2O2)C-NH2”的15聚体PNA衍生物的化学结构。
缩写为“(N→C) Fethoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2”的14聚体PNA衍生物等同于“(5'→3') CAG-AAC-TTA-TCC-TA”的DNA序列,用于与前mRNA互补结合。该14聚体PNA与跨越人类HIF-1α前mRNA中的内含子1和外显子2的连接处的[(5'→3')guuguuguuaaguag┃GAUAAGUUCUGAACG]的30聚体前mRNA序列具有14聚体互补重叠,其具有如在[(5'→3') guuguuguuaaguagGAUAAGUUCUGAACG]中标为“粗体”和“下划线”的互补碱基配对。
缩写为“(N→C) Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2”的15聚体PNA衍生物等同于“(5'→ 3') CAA-TTC-ATC-CTA-CTC”的DNA序列,用于与前mRNA互补结合。该15聚体PNA与[(5'→3') guuguuguuaaguag┃GAUAAGUUCUGAACG]的30聚体人类HIF-1α前mRNA序列具有15聚体互补重叠,其具有在[(5'→3') guuguuguuaaguagGAUAAGUUCUGAACG]中标为“粗体”和“下划线”的互补碱基配对。
“(N→C) Piv-Lys-AA(6)C-TTA(6)-TCC(1O2)-TA(6)C-TTA(5)-Val-NH2”的15聚体PNA序列等同于“(5'→ 3') ATT-CAT-CCT-ATT-CAA”的DNA序列,用于与前mRNA互补结合。该15聚体PNA与[(5'→3') guuguuguuaaguag┃GAUAAGUU-CUGAACG]的30聚体人类HIF-1α前mRNA序列具有15聚体互补重叠,其具有在[(5'→3') guuguuguuaaguagGAUAAGUUCUGAACG]中标为“粗体”和“下划线”的互补碱基配对。
缩写为“(N→C) Fethoc-A(6)GA-A(6)CT-CA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2”的17聚体PNA衍生物等同于“(5'→3') AGA-ACT-CAT-CCT-ACT-TA”的DNA序列,用于与前mRNA互补结合。该17聚体PNA相对于[(5'→3') guuguuguuaaguag┃GAUAAGUUCUGAACG]的30聚体人类HIF-1α前mRNA序列具有16聚体互补重叠和单一错配。互补碱基配对标为“粗体”和“下划线”,和单一错配标为引号符号(“”),如在[(5'→3') guuguuguuaaguagGAU"A"AGUUCUGAACG]那样。尽管存在单一错配,但该17聚体PNA满足式I的化合物的结构要求。因此,该17聚体PNA衍生物属于式I的化合物。
在一些实施方案中,本发明提供式I的PNA衍生物(其选自以下列出的具体化合物)或其药学上可接受的盐:
(N→C) Fethoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-CTT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-CT-NH2
(N→C) Fethoc-G(5)AA(6)-CTT-A(6)TC-CTA(6)-C(1O2)T-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Fethoc-C(1O5)TT-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Piv-Lys-AA(6)C-TTA(6)-TCC(1O2)-TA(6)C-TTA(5)-Val-NH2
(N→C)苯甲酰基-CA(5)G(2O3)-AA(5)C-TTA(4)-TCC(1O2)-TA(5)-NH2;和
(N→C)对甲苯磺酰基-CA(5)G-AA(5)C-TTA(2O2)-TCC(1O2)-TA(5)-NH2
在一些实施方案中,本发明提供式I的PNA衍生物(其选自以下列出的具体化合物)或其药学上可接受的盐:
(N→C) Fethoc-CTT-A(6)TC(1O5)-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Fethoc-C(1O5)TT-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC(1O5)-A-NH2
(N→C) Fethoc-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-CTT-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Piv-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-Lys-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C)Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Piv-AG(5)A-A(2O2)CT-TA(5)T-CC(1O2)T-A(6)CT-TA-NH2
(N→C) Fethoc-A(5)GA(5)-AC(1O3)T-TA(5)T-CC(1O2)T-A(6)CT-TA(4)-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C)苯甲酰基-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-CTT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-CT-NH2
(N→C) Fethoc-G(5)AA(6)-CTT-A(6)TC-CTA(6)-C(1O2)T-NH2;和
(N→C) Fethoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
发明详述
用于制备PNA寡聚体的一般程序
根据现有技术[US6133444; WO96/40685]公开的方法,伴随微小但适当的修改,通过基于Fmoc化学的固相肽合成(SPPS)来合成PNA寡聚体。用于该研究的固体载体为购自PCASBioMatrix Inc. (Quebec, Canada)的H-Rink Amide-ChemMatrix。具有修饰的核碱基的Fmoc-PNA单体如现有技术[PCT/KR 2009/001256]所述或伴随微小修改来合成。这种具有修饰的核碱基的Fmoc-PNA单体和具有天然存在的核碱基的Fmoc-PNA单体用于合成本发明的PNA衍生物。PNA寡聚体通过C18-反相HPLC (水/乙腈或水/甲醇,含0.1% TFA)纯化,并通过质谱法表征。
方案1说明用于本发明的SPPS的典型单体延伸循环,并且程序细节提供如下。然而,对于本领域技术人员而言,为了在自动肽合成仪或手动肽合成仪上有效地进行SPPS反应显然可进行微小变化。方案1的每个反应步骤简要提供如下。
[H-Rink-ChemMatrix树脂的活化]将在1.5 mL 20%哌啶/DMF中的0.01 mmolChemMatrix树脂(约20 mg树脂)在libra管中涡旋20分钟,并滤掉DeFmoc溶液。将树脂用1.5mL二氯甲烷(MC)、1.5 mL二甲基甲酰胺(DMF)、1.5 mL MC、1.5 mL DMF和1.5 mL MC连续各自洗涤30秒。使固体载体上生成的游离胺经受与Fmoc-PNA单体或与Fmoc保护的氨基酸衍生物偶联。
[DeFmoc]将树脂在1.5 mL 20%哌啶/DMF中涡旋7分钟,并滤掉DeFmoc溶液。将树脂用1.5 mL MC、1.5 mL DMF、1.5 mL MC、1.5 mL DMF和1.5 mL MC连续各自洗涤30秒。使固体载体上生成的游离胺立即经受与Fmoc-PNA单体偶联。
[与Fmoc-PNA单体偶联]使固体载体上的游离胺与Fmoc-PNA单体如下进行偶联。将0.04 mmol PNA单体、0.05 mmol HBTU和10 mmol DIEA在1 mL无水DMF中温育2分钟,并加入含游离胺的树脂中。将树脂溶液涡旋1小时,并滤掉反应介质。然后将树脂用1.5 mL MC、1.5mL DMF和1.5 mL MC连续各自洗涤30秒。以下提供用于本发明的具有修饰的核碱基的Fmoc-PNA单体的化学结构。以下提供的具有修饰的核碱基的Fmoc-PNA单体应作为实例,并因此不应视为限制本发明的范围。本领域技术人员可易于发现合成式I的PNA衍生物的Fmoc-PNA单体的许多变化。
[封端]偶联反应后,通过在1.5 mL封端溶液(DMF中的5%乙酸酐和6% 2,6-二甲基吡啶)中振荡5分钟,使未反应的游离胺封端。然后滤掉封端溶液,并用1.5 mL MC、1.5 mLDMF和1.5 mL MC连续各自洗涤30秒。
[N-末端“Fethoc-”基的引入]通过在碱性偶联条件下使树脂上的游离胺与“Fethoc-OSu”反应,将“Fethoc-”基引入到N-末端。“Fethoc-OSu”[CAS号179337-69-0,C20H17NO5,MW 351.36]的化学结构提供如下。
[从树脂裂解]通过在1.5 mL裂解溶液(三氟乙酸中的2.5%三异丙基硅烷和2.5%水)中振荡3小时,从树脂上裂解结合于树脂的PNA寡聚体。滤掉树脂,并减压浓缩滤液。残余物用乙醚研磨,并经过滤收集生成的沉淀,用于通过反相HPLC纯化。
[HPLC分析和纯化]从树脂上裂解后,通过C18-反相HPLC纯化PNA衍生物的粗品产物,用含有0.1% TFA的水/乙腈或水/甲醇(梯度法)洗脱。图7A和7B分别为HPLC纯化前后“ASO 1”的示例性HPLC色谱图。“ASO 1”的寡聚体序列如表1中所提供。
式I的PNA衍生物的合成实例
本发明的PNA衍生物根据以上提供的合成程序或伴随微小修改进行制备。表1提供本发明的HIF-1α ASO的实例以及通过质谱法的结构表征数据。提供表1中的HIF-1α ASO是为了举例说明式I的PNA衍生物,并且不应解释为限制本发明的范围。
表1. 式I的PNA衍生物和通过质谱法的结构鉴定。
a) 理论准确质量,b) 观测准确质量
图1A为用ASO 1的粗品产物获得的HPLC色谱图。粗品产物通过C18- RP制备型HPLC纯化。图1B为ASO 1的纯化产物的HPLC色谱图。ASO 1的纯度通过制备型HPLC纯化显著提高。图2提供用ASO 1的纯化产物获得的ESI-TOF质谱。提供ASO 1的分析数据是为了说明式I的PNA衍生物如何在本发明中纯化和鉴定,并且不应解释为限制本发明的范围。
PNA与10聚体互补DNA的结合亲和力
评估表1中的PNA衍生物其对互补地靶向N-末端或C-末端的10聚体DNA的结合亲和力。通过PNA和10聚体互补DNA之间双链体的Tm值评价结合亲和力。表1中的PNA衍生物与完全互补DNA之间的双链体显示出Tm值太高而不能在水性缓冲溶液中可靠地测定,因为缓冲溶液在Tm测量期间往往煮沸。Tm值如下或伴随微小修改在UV/Vis分光光度计上进行测定。
将4 μM PNA寡聚体和4 μM互补10聚体DNA在4 mL水性缓冲液(pH 7.16, 10 mM磷酸钠, 100 mM NaCl)中的混合溶液在15 mL聚丙烯falcon管中于90℃下温育1分钟,并经几分钟缓慢冷却至环境温度。然后将溶液转移至配备有气密盖的3 mL石英UV比色皿中,并如现有技术[PCT/KR2009/001256]所述或伴随微小修改,在UV/可见光分光光度计上经受Tm测量(260 nm)。用于Tm测量的10聚体互补DNA购自Bioneer (www.bioneer.com, Dajeon,Republic of Korea)并且无需进一步纯化即可使用。
由于其G/C含量低,对于与10聚体DNA的互补结合观察到的式I的PNA衍生物的Tm值非常高,并提供在表2中。例如,“ASO 8”显示出与10聚体互补DNA的双链体的Tm值为73.0℃,所述10聚体互补DNA靶向PNA中的N-末端10聚体,其在[(N→C)Fethoc-CTC(1O2)-A(6)TC- CTA(6)-C(1O2)TT-AA(6)C-NH2]中标为“粗体”和“下划线”。与此同时,“ASO 8”显示出与10聚体互补DNA的双链体的Tm为61.0℃,所述10聚体互补DNA靶向PNA中的C-末端10聚体,其在[(N→C)Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2]中标为“粗体”和“下划线”。
表2. 表中的PNA和靶向PNA的N-末端或C-末端的10聚体互补DNA之间的Tm值。
式I的PNA衍生物的生物学活性的实施例
评估式I的PNA衍生物在HeLa细胞中的体外反义活性,以及在具有肿瘤异种移植物的裸鼠中的抗肿瘤活性。作为实例提供这些生物学实施例以说明式I的PNA衍生物的生物学概况,并因此不应解释为限制本发明的范围。
实施例1. 由“ASO 2”诱导的外显子跳跃
表1中指定的“ASO 2”为与人类HIF-1α前mRNA中外显子2的3’剪接位点互补结合的14聚体ASO,该互补重叠在[(5'→3') guuguuguuaaguagGAUAAGUUCUGAACG]的30聚体前mRNA序列中标为“粗体”和“下划线”。 “ASO 2”与内含子1具有5聚体重叠和与外显子2具有9聚体重叠。
通过巢式RT-PCR评估“ASO 2”其在HeLa细胞中诱导人类HIF-1α mRNA的外显子2的跳跃的能力。所采用的程序提供如下。
[细胞培养和ASO处理]使HeLa细胞(目录号CCL-2, ATCC)在含有5 mL EMEM培养基,补充有10% FBS、1%链霉素/青霉素、1% L-谷氨酰胺和1%丙酮酸钠的60 mm培养皿中,于5% CO2和37℃下传代培养。细胞用0 (即阴性对照)、10、100或1000 zM的“ASO 2”处理。
[RNA提取] 5小时之后,根据制造商的说明书,使用“通用型RNA提取试剂盒”(目录号9767, Takara)提取总RNA。
[通过一步法RT-PCR合成cDNA]使用Super Script®一步法RT-PCR试剂盒和Platinum®Taq聚合酶(目录号10928-042, Invitrogen),针对一组外显子特异性引物[外显子1_正向: (5'→3') CTTGCCTTTCCTTCTCTTCT, 外显子8_反向: (5'→3') AACCCAGACA-TATCCACC],根据以下循环条件:50℃ 30分钟和94℃ 2分钟,随后15个循环的94℃下30秒、55℃下30秒和72℃下1分钟,使200 ng RNA模板经受25 μL逆转录反应。
[巢式PCR]针对一组外显子特异性引物[外显子1n_正向: (5'→3') TGAAGACA-TCGCGGGGAC, 和外显子5n _反向: (5'→3') TTTTTCACAAGGCCATTTCT],根据以下循环条件:95℃ 5分钟,随后39个循环的95℃下30秒、50℃下40秒和72℃下50秒,使1 μL cDNA经受20 μL巢式PCR反应(目录号K2612, Bioneer)。
[外显子跳跃的鉴定]使PCR产物在2%琼脂糖凝胶上与大小标志混合物一起经受电泳分离。收集目标大小的条带并通过Sanger测序进行分析。观察到的PCR条带对应于全长mRNA (即没有外显子跳跃),并且缺少外显子2的剪接变体如图3A中所示。用ASO处理的细胞产生强烈的PCR条带,其大小可归因于外显子2的跳跃。没有ASO处理的细胞(即阴性对照)也产生对应于外显子2的跳跃的PCR产物,表明外显子2在一定程度上自发地缺失。然而,在用ASO处理的细胞中,外显子跳跃条带的强度比在没有ASO处理的细胞中强得多。因此,“ASO2”促进了HeLa细胞中外显子2的跳跃。外显子跳跃条带的测序数据提供在图3C中,并显示出外显子1和外显子3的连接处的mRNA序列。
实施例2. “ASO 2”对HeLa细胞中HIF-1α蛋白表达的抑制作用
如下所述评估“ASO 2”其在HeLa细胞中抑制HIF-1α蛋白的表达的能力。
[细胞培养和ASO处理]将在60 mm培养皿中的5 mL培养基中生长的HeLa细胞用0zM (阴性对照)、10 zM、100 zM、1 aM或10 aM的“ASO 2”处理。
[CoCl2处理和细胞裂解]在ASO处理之后24小时,将除了没有ASO处理的以外的培养皿用200 μM CoCl2处理3小时以抑制脯氨酰羟化酶(PHD)的活性。然后将细胞用1 mL冷PBS洗涤2X,并经受在冰上用200 μL补充有1% SDS和1X蛋白酶抑制剂混合物(cOmpleteMini, Roche)的1X RIPA缓冲液(目录号9806, Cell Signaling Tech)进行裂解。然后将裂解物收集在1.5 mL e管中,与100 μL 5X样品缓冲液混合,并在100℃下煮沸5分钟。使裂解物在8% SDS-PAGE凝胶上经受电泳分离,并转移至0.45 μm PVDF膜上。用抗HIF-1α抗体(目录号610958, BD Biosciences)和抗β-肌动蛋白抗体(目录号sc4778, Santa Cruz)探测膜。
[HIF-1α蛋白表达的抑制作用]图4A提供用“ASO 2”处理的HeLa细胞获得的HIF-1α蛋白质印迹数据。对没有CoCl2处理的细胞的裂解物没有检测到HIF-1α条带。用CoCl2处理的细胞的裂解物显示出强烈的HIF-1α条带,表明CoCl2显著抑制PHD活性。
图4B提供通过密度计量学相对于单个β-肌动蛋白条带强度的单个HIF-1α条带强度。随着“ASO 2”浓度增加至10 aM,HIF-1α表达逐渐减少。在10 aM“ASO 2”下观察到的减少为约75%。
实施例3. 通过SYBR Green对用“ASO 2”处理的HeLa细胞中HIF-1α mRNA的qPCR
如下所述通过巢式qPCR评估“ASO 2”其抑制HeLa细胞中全长HIF-1α mRNA的表达的能力。
[细胞培养和ASO处理]将在60 mm培养皿中的5 mL培养基中生长的HeLa细胞用0(阴性对照)、10、100或1000 zM的“ASO 2”处理(每个ASO浓度2个培养皿)。
[RNA提取] ASO处理之后3小时,根据制造商的说明书,使用“MiniBEST通用型RNA提取试剂盒”(目录号9767, Takara)提取总RNA。
[通过一步法RT-PCR合成cDNA]使用Super Script®一步法RT-PCR试剂盒和Platinum®Taq聚合酶(目录号10928-042, Invitrogen),针对一组外显子特异性引物[外显子1_正向: (5'→3') CTTGCCTTTCCTTCTCTTCT, 外显子8_反向: (5'→3') AACCCAGACA-TATCCACC],根据以下循环条件:50℃ 30分钟和94℃ 2分钟,随后15个循环的94℃下30秒、55℃下30秒和72℃下1分钟,使200 ng RNA模板经受25 μL逆转录反应。
[巢式qPCR]将1 μL稀释100倍的cDNA针对以下外显子特异性引物组经受20 μL实时PCR反应:[外显子2n_正向: (5'→3') CTTGCTCATCAGTTGCCACTTC; 外显子2n_反向: (5'→3') AAGTTTCCTCACACGCAAAT-AG; 外显子3n_正向: (5'→3') GAAAGCACAGATGAATTGC;外显子3n _反向: (5'→3') TCATGTCACCATCATCTGT; 外显子4n_正向: (5'→3')CTAACTGGA-CACAGTGTGTTTG; 外显子4n _反向: (5'→3') TCTGTGTGTAAGCATTTCTCTC; 外显子5n_正向: (5'→3') GCC-TTGTGAAAAAGGGTAAAG; 外显子5n _反向: (5'→3')CCATGTTGCAGACTTTATGT]。用SYBR Green (Takara, Japan),根据以下循环条件探测PCR反应:95℃ 3分钟,随后40个循环的95℃下5秒和60℃下30秒。
[HIF-1α mRNA外显子水平的变化]将ASO处理的样品的单个外显子水平相对于没有ASO处理的每个单个外显子水平标准化。每种外显子的相对外显子水平提供在图5A中。在用10 zM和100 zM的"ASO 2"处理的细胞中,所有单个外显子水平分别显著降低60-80%和50-70%。然而,用在1000 zM (即1 aM)的“ASO 2”处理的细胞获得的单个外显子水平与没有ASO处理的细胞的那些单个外显子水平没有差异。仍有待阐明为什么当ASO浓度增加至1000zM时外显子水平恢复到阴性对照的水平。然而,qPCR数据的剂量响应模式与“实施例1”的图3A中的外显子跳跃的剂量响应模式类似。
实施例4. 通过TaqMan探针用“ASO 2”处理的HeLa细胞中的HIF-1α mRNA的qPCR
除非另外说明,否则如“实施例3”中所述,通过巢式qPCR评估“ASO 2”其抑制HeLa细胞中的全长HIF-1α mRNA的表达的能力。
[通过一步法RT-PCR合成cDNA]使用Super Script®一步法RT-PCR试剂盒和Platinum®Taq聚合酶(目录号10928-042, Invitrogen),针对一组外显子特异性引物[外显子1_正向: (5'→3') CGCGAACGACAAGAAAAA, 外显子8_反向: (5'→3') CTGTGGTGAC-TTGTCCTTT],根据以下循环条件:50℃ 30分钟和94℃ 2分钟,随后20个循环的94℃下30秒、51℃下40秒和72℃下50秒,使200 ng RNA模板经受25 μL逆转录反应。
[巢式qPCR]使用被设计检测人类HIF-1α外显子1和外显子2的连接处的TaqMan探针(Hs00936371_m1, Thermo Fisher),根据以下循环条件:95℃ 3分钟,随后40个循环的95℃下10秒和60℃下30秒,使1 μL稀释100倍的cDNA经受20 μL实时PCR反应。
[全长HIF-1α mRNA水平的变化]将ASO处理的样品的全长mRNA水平相对于没有ASO处理的mRNA水平标准化。观察到的相对mRNA水平提供在图5B中。在用100 zM和1000 zM的"ASO 2"处理的细胞中,全长HIF-1α mRNA水平分别显著降低65%和55%。然而,在用10 zM的“ASO 2”处理的细胞中,全长mRNA水平保持不变。
实施例5. 由“ASO 6”诱导的外显子跳跃
表1中指定的“ASO 6”为与人类HIF-1α前mRNA中外显子2的3’剪接位点互补结合的17聚体ASO,该互补碱基对在[(5'→3') guuguuguuaaguagGAUAAGUUCUGAACG]中标为“粗体”和“下划线”。“ASO 6”与内含子1具有7聚体互补重叠和与外显子2具有10聚体互补重叠。
除非另外说明,否则根据“实施例1”中所述的程序,通过巢式RT-PCR评估“ASO 6”其诱导HeLa细胞中的人类HIF-1α mRNA的外显子2的跳跃的能力。
将PCR产物在2%琼脂糖上经受电泳分离,并且电泳结果提供在图6A中。在“ASO 6”的所有处理浓度下,外显子2的跳跃是稳健的。“ASO 6”比“ASO 2”更有效地诱导外显子2的跳跃。在“ASO 6”的所有测试浓度下,全长HIF-1α mRNA的PCR条带几乎完全消失[参见图6A]。与此同时,在用10-1000 zM的“ASO 2”处理的细胞的RNA提取物中保留了显著水平的全长HIF-1α mRNA。
实施例6. “ASO 6”对HeLa细胞中HIF-1α蛋白表达的抑制作用
除非另外说明,否则根据“实施例2”中所述的程序,评估“ASO 6”其抑制HeLa细胞中的HIF-1α蛋白的表达的能力。
图6B为用0 (阴性对照)、10、100或1000 zM的“ASO 6”处理的HeLa细胞获得的蛋白质印迹数据。在处理浓度下,HIF-1α蛋白的表达减少约45~55%(图6C)。
实施例7. 通过SYBR Green对用“ASO 6”处理的HeLa细胞中HIF-1α mRNA的qPCR
除非另外说明,否则根据“实施例4”中的程序,通过巢式qPCR评估“ASO 6”其诱导HeLa细胞中的HIF-1α mRNA的变化的能力。
[通过一步法RT-PCR合成cDNA]使用Super Script®一步法RT-PCR试剂盒和Platinum®Taq聚合酶(目录号10928-042, Invitrogen),针对一组外显子特异性引物[外显子1_正向: (5'→3') CGCGAACGACAAGAAAAA, 外显子8_反向: (5'→3') CTGTGGTGAC-TTGTCCTTT],根据以下循环条件:50℃ 30分钟和94℃ 2分钟,随后15个循环的94℃下30秒、51℃下40秒和72℃下50秒,使200 ng RNA模板经受25 μL逆转录反应。
[HIF-1α mRNA外显子水平的变化]相对于没有ASO处理的单个外显子水平标准化的单个外显子水平提供在图7A中。在用10、100和1000 zM的"ASO 6"处理的细胞中,外显子水平分别显著降低35%、约30%和约45%。
实施例8. 通过TaqMan探针用“ASO 6”处理的HeLa细胞中的HIF-1α mRNA的qPCR
除非另外说明,否则如“实施例7”中所述,通过巢式qPCR评估“ASO 6”其抑制HeLa细胞中的全长HIF-1α mRNA的表达的能力。
[全长HIF-1α mRNA水平的变化]将ASO处理的样品的全长mRNA水平相对于没有ASO处理的mRNA水平标准化。观察到的相对mRNA水平提供在图7B中。在用100 zM和1000 zM (1aM)的"ASO 6"处理的细胞中,全长HIF-1α mRNA水平分别显著降低约60%和80%。然而,在用10 zM的“ASO 6”处理的细胞中,全长mRNA水平保持不变。
实施例9. “ASO 1”对HeLa细胞中HIF-1α蛋白表达的抑制作用
表1中指定的“ASO 1”为与人类HIF-1α前mRNA中外显子2的3’剪接位点互补结合的14聚体ASO,该互补碱基对在[(5'→3') guuguuguuaaguagGAUAAGUUCUGAACG]中标为“粗体”和“下划线”。“ASO 1”与内含子1具有3聚体互补重叠和与外显子2具有11聚体互补重叠。
除非另外说明,否则根据“实施例2”中所述的程序,评估“ASO 1”其下调HeLa细胞中的HIF-1α表达的能力。在该实施例中,在通过与200 μM CoCl2一起温育3小时抑制PHD的活性之前,HeLa细胞用0 zM (阴性对照)、100 zM、300 zM、1 aM、3 aM、10 aM、30 aM、100 aM或300 aM的“ASO 1”处理72小时。有4个阴性对照(即0 zM“ASO 1”)的培养皿。
图8A提供用HeLa细胞裂解物获得的HIF-1α蛋白质印迹数据。在阴性对照的裂解物中HIF-1α蛋白水平比用“ASO 1”处理的细胞的所有裂解物高得多。
图8B提供通过密度计量学相对于单个β-肌动蛋白条带强度的单个HIF-1α条带强度。通过与0.1-300 aM的“ASO 1”一起温育72小时,HeLa细胞中的HIF-1α表达减少40-80%。
实施例10.“ASO 1”对裸鼠中的U-251异种移植物的肿瘤生长的抑制作用
如下所述评估“ASO 1”其抑制具有U-251异种移植物的裸鼠中的肿瘤生长的能力。
[U-251异种移植物的诱导]使U-251人类成胶质细胞瘤细胞在补充有10% FBS、1%链霉素-青霉素、1% L-谷氨酰胺和1%丙酮酸钠的DMEM中,于5% CO2和37℃下生长。在第14天,在右上肩胛区域中,6周龄雄性裸鼠(Charles River, Japan)用每只动物5x105个U-251细胞皮下接种。允许动物自由进食食物和自来水。
[分组和ASO治疗]在第10天,将动物随机分配至4组,即阴性对照(无ASO治疗)、100pmole/Kg “ASO 1”、1000 pmole/Kg “ASO 1”和3000 pmole/Kg “ASO 1”。每组7只动物,平均肿瘤体积为50 mm3。从第0天到第21天,ASO治疗组以5 mL/Kg每周3X皮下接受溶解于PBS中的“ASO 1”。
[肿瘤生长的抑制作用]肿瘤体积每周测量3次。在第21天,ASO治疗组中的肿瘤生长被显著抑制约35-45%[参见图9A]。
[肿瘤块的HIF-1α IHC]在第22天,处死动物并提取肿瘤块以通过HIF-1α IHC (免疫组织化学)评估肿瘤块中的HIF-1α蛋白表达。通过石蜡块制备用于IHC的组织样品。将载玻片上的组织用以1:100稀释的兔抗人HIF-1α抗体(目录号SC-10790, Santa Cruz)、用以1:200稀释的抗兔IgG (目录号BA-1100, Vector)和最后用以1:200稀释的Dylight 594-链霉亲和素(目录号SA-5594, Vector)连续免疫标记。在Olympus荧光显微镜上捕获HIF-1αIHC图像。细胞核用DAPI染色。
图9B提供来自每组的代表性HIF-1α IHC图像组。阴性对照组中的HIF-1α表达显著,而治疗组中的表达最小。使用ImageJ程序通过密度计量学对每个IHC图像的HIF-1α表达进行评分。图9C提供相对于阴性对照组标准化的每个剂量组的平均HIF-1α表达水平(每组N= 5)。在所有ASO治疗组中,肿瘤内HIF-1α表达显著(根据student t检验)减少约40-50%。
实施例11. “ASO 6”对裸鼠中的A431异种移植物的肿瘤生长的抑制作用
如下所述评估“ASO 6”其抑制裸鼠中的A431异种移植物的肿瘤生长的能力。
[A431异种移植物的诱导]使A431人类表皮样癌细胞(目录号CRL1555, ATCC)在补充有10% FBS、1%链霉素-青霉素、1% L-谷氨酰胺和1%丙酮酸钠的DMEM中,于5% CO2和37℃下生长。在第10天,在左腿中,6周龄雄性裸鼠(Charles River, Japan)用每只动物5x105个A431细胞皮下接种。允许动物自由进食食物和自来水。
[分组和ASO治疗]在第0天,将动物随机分配至4组,即阴性对照(无ASO治疗)、30pmole/Kg “ASO 6”、100 pmole/Kg “ASO 6”和300 pmole/Kg “ASO 6”。每组8只动物,平均肿瘤体积为108 mm3。从第0天到第25天,ASO治疗组以2 mL/Kg每周3X皮下接受溶解于PBS中的“ASO 6”。
[肿瘤生长的抑制作用]肿瘤体积每周测量3次。由于重复给予“ASO 6”,肿瘤生长以剂量依赖性方式受到抑制,尽管没有统计学显著性[参见图10A]。在300 pmole/Kg组中肿瘤生长被抑制约20%。在第25天,处死动物用于肿瘤提取。随着ASO剂量增加,第25天(处死时)的平均肿瘤质量往往减少[参见图10B]。在300 pmole/Kg ASO治疗组中肿瘤质量减少约20%而没有显著性。
实施例12.“ASO 6”对裸鼠中的PC3异种移植物的肿瘤生长的抑制作用
如下所述评估“ASO 6”其抑制裸鼠中的PC3异种移植物的肿瘤生长的能力。
[PC3异种移植物的诱导]使PC3人类前列腺癌细胞(目录号CRL1435, ATCC)在补充有10% FBS、1%链霉素-青霉素、1% L-谷氨酰胺和1%丙酮酸钠的F-12K培养基中,于5% CO2和37℃下生长。在第7天,在左腿中,6周龄雄性裸鼠(Harlan Laboratories, Italy)用每只动物3x106个PC3细胞皮下接种。允许动物自由进食食物和自来水。
[分组和ASO治疗]在第0天,将动物随机分配至4组,即阴性对照(无ASO治疗)、1pmole/Kg “ASO 6”、10 pmole/Kg “ASO 6”和100 pmole/Kg “ASO 6”。每组9只动物,平均肿瘤体积为约88 mm3。从第0天到第28天,治疗组以2 mL/Kg每周2X皮下接受溶解于PBS中的“ASO 6”。
[肿瘤生长的抑制作用]肿瘤体积每周测量3次。在第19~26天期间,在10 pmole/Kg组中肿瘤生长被显著抑制约25~30% [参见图10C]。在第28天,处死动物用于肿瘤提取。10pmole/Kg组的平均肿瘤质量比阴性对照组的质量少21%而没有显著性[参见图10D]。
随着剂量从10增加到100 pmole/Kg,抗肿瘤活性消失。鉴于HIF-1α表达升高表明延长转基因小鼠的淋巴细胞生存[PLOS One vol 8(4), e57833 (April2013)],100pmole/Kg组中观察到的抗肿瘤活性降低是由于高剂量组中HIF-1α活性过度降低导致的先天免疫降低。
实施例13.“ASO 6”和“ASO 11”对裸鼠中的U-251 MG异种移植物的肿瘤生长的抑制作用
尽管“ASO 6”与人类HIF-1α前mRNA完全互补,但其与小鼠HIF-1α前mRNA外显子2具有单一错配。“ASO 11”为17聚体ASO,其被设计用于在人类HIF-1α前mRNA的“ASO 6”靶向的相同区域互补靶向小鼠前mRNA。“ASO 11”分别与小鼠HIF-1α前mRNA中的内含子1和外显子2具有7聚体和10聚体互补重叠。
将“ASO 6”和“ASO 11”以等量组合以通过抑制人类起源和小鼠中的异种移植物中的HIF-1α表达来评估裸鼠中针对U-251 MG异种移植物的抗肿瘤活性。
[U-251 MG异种移植物的诱导]使U-251 MG人类成胶质细胞瘤星形细胞瘤细胞(目录号09063001, Sigma)在补充有10% FBS、1%链霉素-青霉素、1% L-谷氨酰胺和1%丙酮酸钠的MEM中,于5% CO2和37℃下生长。在第30天,在每只动物的右上肩胛区域,5周龄雄性裸鼠(Harlan Laboratories, Italy)用以Matrigel配制的3x106个U-251 MG细胞皮下接种。允许动物自由进食食物和自来水。
[分组和ASO治疗]在第0天,将动物随机分配至4组,即阴性对照(无ASO治疗)、0.1pmole/Kg “ASO 6” + 0.1 pmole/Kg “ASO 11”、1 pmole/Kg “ASO 6” + 1 pmole/Kg “ASO11”和10 pmole/Kg “ASO 6” + 1 pmole/Kg “ASO 11”。每组9只动物,平均肿瘤体积为约75mm3。从第0天到第91天,治疗组以2 mL/Kg每周2X皮下接受溶解于PBS中的“ASO 6”和“ASO11”。
[终末处死用于器官/组织分析]在第92天处死动物以提取组织样品,包括肿瘤、全血、肝、肺、脾、心脏和肾。使组织样品进行IHC和生物分析。
[肿瘤生长的抑制作用]肿瘤体积在给药后的前两周期间每周测量2X,和之后每周1X。在ASO治疗组中存在明显和显著的肿瘤生长抑制趋势。然而,1.0 pmole/Kg治疗组显示出对肿瘤生长的最强抑制作用。在第91天,0.1、1.0和10 pmole/Kg ASO治疗组的肿瘤生长分别被显著(根据ANOVA)抑制66%、83%和56%[参见图11A]。
图11B提供第92天的按组的平均肿瘤重量。尽管ASO治疗组中的肿瘤重量减少了47-71%,但1.0 pmole/Kg剂量组显示最大降幅为71%。根据student t检验,阴性对照和1pmole/Kg组之间的差异显著。
鉴于HIF-1α表达升高表明延长转基因小鼠的淋巴细胞生存[PLOS One vol 8(4),e57833 (April2013)],10 pmole/Kg组的抗肿瘤活性比1.0 pmole/Kg组弱可能反映了通过在10 pmole/Kg组中过度降低HIF-1α活性来降低先天免疫。
[平均体重和器官重量]尽管体重没有显著变化,但是10 pmole/Kg组在第13周显示出平均体重最轻,即阴性对照组为39.6 g,相对于10 pmole/Kg组为38.0 g。
除了脾脏以外,10 pmole/Kg治疗组往往显示出比阴性对照组的器官重量更轻。在10 pmole/Kg组中,心脏和肾脏的重量显著轻于阴性对照组。心脏为(0.23 ± 0.01) g相对于(0.20 ± 0.01) g,和肾脏为(0.60 ± 0.02) g相对于(0.56 ± 0.02)g。
10 pmole/Kg组的脾脏重量大于阴性对照组。阴性对照组为(0.27 ± 0.03) g相对于10 pmole/Kg组为(0.33 ± 0.13) g。
基于以上对重量的研究结果,10 pmole/Kg治疗被认为比以低剂量治疗或阴性对照更加影响动物的生长或发育。考虑到HIF-1α诱导VEGF和EPO (促红细胞生成素)的表达,认为由于慢性全身抑制HIF-1α显著增加脾脏重量并不令人惊讶。因此,10 pmole/Kg组的HIF-1α表达可能比1.0 pmole/Kg组被抑制更多。
[血清VEGF-A水平]血清VEGF-A水平使用小鼠VEGF-A ELISA试剂盒(目录号NMV00,R&D Systems, USA)测定。有趣的是, ASO治疗组的血清VEGF-A水平往往更高,尽管没有显著性。对阴性对照组、0.1 pmole/Kg、1 pmole/Kg和10 pmole/Kg ASO治疗组观察到的血清VEGF-A水平分别为(47.0 ± 2.5) pg/mL、(48.7 ± 3.1) pg/mL、(51.0 ± 5.6) pg/mL和(50.0 ± 2.7) pg/mL。观察到的血清VEGF-A水平看起来与基于体外HIF-1α生物学的通常预测相反。然而,在对照临床研究中,短暂缺氧诱导血清VEGF-A水平的显著降低,表明VEGF生理学的复杂性[Am. J. Physiol. Endocrinol. Metab. vol 290, E434-439 (2006)]。
[肿瘤块的HIF-1α IHC]通过石蜡块制备用于HIF-1α IHC的阴性对照和1.0pmole/Kg治疗组的肿瘤样品(每组N = 4)。将载玻片上的组织首先用以1:100稀释的兔抗HIF-1α抗体(目录号ab51608, Abcam)、和然后用以1:250稀释的抗兔IgG (目录号A21207,Invitrogen)免疫标记。在Zeiss幻灯片扫描器上捕获HIF-1α IHC图像。细胞核用DAPI染色。
图12A提供来自每组的代表性HIF-1α IHC图像组。使用ImageJ程序通过光密度计量学对每个IHC图像的HIF-1α表达进行评分。图12B提供相对于阴性对照组标准化的1pmole/Kg组的平均HIF-1α表达水平(每组N = 4)。在1.0 pmole/Kg ASO治疗组中,肿瘤内HIF-1α表达显著(通过student t检验)减少42%。
[肿瘤块的VEGF-A IHC]通过石蜡块制备用于VEGF-A IHC的阴性对照和1.0pmole/Kg治疗组的肿瘤样品(每组N = 4)。将载玻片上的组织首先用以1:100稀释的兔抗VEGF-A抗体(目录号ab46154, Abcam)和然后用以1:250稀释的抗兔IgG (目录号A21207,Invitrogen)免疫标记。在Zeiss幻灯片扫描器上捕获VEGF-A IHC图像。细胞核用DAPI染色。
图12C提供来自每组的代表性VEGF-A IHC图像组。使用ImageJ程序通过光密度计量学对每个IHC图像的VEGF-A表达进行评分。图12D提供相对于阴性对照组标准化的1pmole/Kg组的平均VEGF-A水平。在1.0 pmole/Kg ASO治疗组中,肿瘤内VEGF-A表达略微减少13%。

Claims (22)

1.一种由以下式I表示的肽核酸衍生物或其药学上可接受的盐:
其中,
n为10-26之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3')UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氘代、氢代、取代或未取代的烷基或者取代或未取代的芳基;
X和Y独立地表示氢代[H]、甲酰基[H-C(=O)-]、氨基羰基[NH2-C(=O)-]、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的芳氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基;
Z表示羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、氨基[-NH2]、取代或未取代的烷基氨基、取代或未取代的芳基氨基、取代或未取代的烷基或者取代或未取代的芳基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自非天然核碱基,其具有共价连接于核碱基部分的取代或未取代的氨基。
2.权利要求1的肽核酸衍生物或其药用盐:
其中,
n为10-26之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3')UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氘代、氢代、取代或未取代的烷基或者取代或未取代的芳基;
X和Y独立地表示氢代、甲酰基、氨基羰基、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的芳氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基;
Z表示羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、氨基[-NH2]、取代或未取代的烷基氨基、取代或未取代的芳基氨基、取代或未取代的烷基或者取代或未取代的芳基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶;和
B1、B2、…、Bn-1和Bn中的至少3个独立地选自由以下式II、式III或式IV表示的非天然核碱基:
其中,
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基、氢代、羟基和取代或未取代的烷氧基;和
L1、L2和L3为由以下式V表示的共价接头,其将碱性氨基连接于负责核碱基配对性质的部分:
其中,
Q1和Qm为取代或未取代的亚甲基(-CH2-),和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基、氧(-O-)、硫(-S-)和取代或未取代的氨基[-N(H)-或-N(取代基)-];和
m为1-16之间的整数。
3.权利要求1的肽核酸衍生物或其药用盐:
其中,
n为11-23之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基、取代或未取代的烷氧基羰基、取代或未取代的烷基氨基羰基、取代或未取代的芳基氨基羰基、取代或未取代的烷基磺酰基或者取代或未取代的芳基磺酰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为取代或未取代的亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基、氧(-O-)和氨基[-N(H)-];和
m为1-11之间的整数。
4.权利要求1的肽核酸衍生物或其药用盐:
其中,
n为11-21之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的烷基酰基、取代或未取代的芳基酰基或者取代或未取代的烷氧基羰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基和氧基团;和
m为1-9之间的整数。
5.权利要求1的肽核酸衍生物或其药用盐:
其中,
n为12-19之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少10聚体互补重叠;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基酰基、取代或未取代的芳基酰基或者取代或未取代的烷氧基羰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基和氧基团;和
m为1-9之间的整数。
6.权利要求1的肽核酸衍生物或其药用盐:
其中,
n为12-19之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少11聚体互补重叠;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基酰基、取代或未取代的芳基酰基或者取代或未取代的烷氧基羰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶;和
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6为氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基和氧基团;和
m为1-8之间的整数。
7.权利要求1的肽核酸衍生物或其药用盐:
其中,
n为12-19之间的整数;
式I的化合物与人类HIF-1α前mRNA中的[(5'→3') UAAGUAGGAUAAGU]的14聚体RNA序列具有至少12聚体互补重叠;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X为氢代基团;
Y表示取代或未取代的烷基酰基、取代或未取代的芳基酰基或者取代或未取代的烷氧基羰基;
Z表示氨基或者取代或未取代的烷基氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6为氢代基团;
L1表示-(CH2)2-O-(CH2)2-、-CH2-O-(CH2)2-、-CH2-O-(CH2)3-、-CH2-O-(CH2)4-、-CH2-O-(CH2)5-、-CH2-O-(CH2)6-或-CH2-O-(CH2)7-,其中右端直接连接于碱性氨基;和
L2和L3独立地选自-(CH2)2-O-(CH2)2-、-(CH2)3-O-(CH2)2-、-(CH2)2-O-(CH2)3-、-(CH2)2-、-(CH2)3-、-(CH2)4-、-(CH2)5-、-(CH2)6-、-(CH2)7-和-(CH2)8-,其中右端直接连接于碱性氨基。
8.权利要求1-7中任何一项的肽核酸衍生物或其药用盐,其中式I的化合物与靶HIF-1α前mRNA序列完全互补,或者与靶HIF-1α前mRNA序列部分互补,具有1或2个错配。
9.权利要求8的肽核酸衍生物或其药用盐,其中式I的化合物与靶HIF-1α前mRNA序列完全互补。
10.权利要求1的肽核酸衍生物,或其药学上可接受的盐,所述肽核酸衍生物选自以下提供的肽核酸衍生物:
(N→C) Fethoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C) Fmoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C) H-CA(5)G-AA(5)C-TTA(5)-T CC(1O3)-TA(5)-NH2
(N→C) Ac-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C) Piv-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C)苯甲酰基-CA(5)G(2O3)-AA(5)C-TTA(4)-TCC(1O2)-TA(5)-NH2
(N→C)正丙基-CA(5)G-AA(5)C-TTA(5)-TCC(2O2)-TA(5)-NH2
(N→C)苄基-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C)对甲苯磺酰基-CA(5)G-AA(5)C-TTA(2O2)-TCC(1O2)-TA(5)-NH2
(N→C) [N-(2-苯乙基)氨基]羰基-CA(5)G(3)-AA(5)C-TTA(3)-TCC(1O2)-TA(5)-NH2
(N→C) Fethoc-Lys-Leu-CA(5)G(2O2)-AA(5)C-TTA(8)-TCC(1O2)-TA(5)-Lys-NH2
(N→C) N-Ph-N-Me-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-Lys-NH2
(N→C) Piv-HEX-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-Lys-NH2
(N→C) FAM-HEX-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-Lys-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-CTT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-CT-NH2
(N→C) Fethoc-G(5)AA(6)-CTT-A(6)TC-CTA(6)-C(1O2)T-NH2
(N→C) Fethoc-GA(2O2)A-C(1O5)TT-A(3)TC-CTA(5)-C(1O3)T-NH2
(N→C)苯甲酰基-Gly-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-Arg-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-Gly-NH2
(N→C) Fethoc-Val-GA(5)A-CTT-A(6)TC-CTA(5)-C(2O2)T-Gly-Lys-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Fethoc-A(5)GA-AC(1O2)T-TG(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-CA-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-AT-NH2
(N→C) Piv-Lys-AA(6)C-TTA(6)-TCC(1O2)-TA(6)C-TTA(5)-Val-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-CA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Fethoc-C(1O5)TT-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Fmoc-Val-CTC(1O2)-A(5)TC-CTA(6)-C(1O3)TT-AA(2O2)C-NH2
(N→C) Piv-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Fethoc-TTC(1O5)-AG(5)A-A(4)CT-TA(5)T-CC(2O2)T-A(6)CT-TA(6)A-C-NH2
(N→C) Fethoc-G-TTC(1O5)-AG(5)A-A(4)CT-TA(5)T-CC(1O2)T-AC(1O5)T-TA(6)A-C-NH2;和
(N→C) Fethoc-TTC(1O5)-AG(5)A-A(4)CT-TA(5)T-CCT-AC(1O5)T-TAA-CA(2O2)A-NH2
其中,
A、G、T和C为分别具有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶的天然核碱基的PNA单体;
C(pOq)、A(p)、A(pOq)、G(p)和G(pOq)为分别具有由以下式VI、式VII、式VIII、式IX和式X表示的非天然核碱基的PNA单体;
其中,
p和q为整数;和
N-和C-末端取代基的缩写具体描述如下:“Fmoc-”为“[(9-芴基)甲氧基]羰基-”的缩写;“Fethoc-”代表“[2-(9-芴基)乙基-1-氧基]羰基”;“Ac-”代表“乙酰基-”;“苯甲酰基-”代表“苯羰基-”;“Piv-”代表“新戊酰-”;“正丙基-”代表“1-(正丙基)-”;“H-”代表“氢代-”基团;“对甲苯磺酰基”代表“(4-甲基苯)-1-磺酰基-”;“-Lys-”代表氨基酸残基“赖氨酸”;“-Val-”代表氨基酸残基“缬氨酸”;“-Leu-”代表氨基酸残基“亮氨酸”;“-Arg-”代表氨基酸残基“精氨酸”;“-Gly-”代表氨基酸残基“甘氨酸”;“[N-(2-苯乙基)氨基]羰基-”代表“[N-1-(2-苯乙基)氨基]羰基-”;“苄基-”代表“1-(苯基)甲基-”;“苯基-”代表“phenyl-”;“Me-”代表“甲基-”;“-HEX-”代表“6-氨基-1-己酰基-”;“FAM-”代表“5或6-荧光素-羰基-(异构体混合物)”;和“-NH2”代表未取代的“-氨基”。
11.权利要求1的肽核酸衍生物,或其药学上可接受的盐,所述肽核酸衍生物选自以下提供的化合物:
(N→C) Fethoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-CTT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-CT-NH2
(N→C) Fethoc-G(5)AA(6)-CTT-A(6)TC-CTA(6)-C(1O2)T-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Fethoc-C(1O5)TT-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Piv-Lys-AA(6)C-TTA(6)-TCC(1O2)-TA(6)C-TTA(5)-Val-NH2
(N→C)苯甲酰基-CA(5)G(2O3)-AA(5)C-TTA(4)-TCC(1O2)-TA(5)-NH2;和
(N→C)对甲苯磺酰基-CA(5)G-AA(5)C-TTA(2O2)-TCC(1O2)-TA(5)-NH2
12.一种由式I表示的肽核酸衍生物或其药学上可接受的盐:
其中,
式I的化合物与作为人类HIF-1α前mRNA的一部分的20聚体RNA序列[(5'→3')UGUUAAGUAGGAUAAGUUCU]具有至少10聚体互补重叠;
n为10-26之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代、取代或未取代的烷基或者取代或未取代的芳基;
X和Y独立地表示氢代、取代或未取代的烷基、取代或未取代的酰基、取代或未取代的磺酰基或者取代或未取代的芳基;
Z表示氢代、羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶;和
B1、B2、…、Bn-1和Bn中的至少3个独立地选自非天然核碱基,其具有与负责其适当核碱基配对性质的部分共价连接的取代或未取代的氨基。
13.权利要求12的肽核酸衍生物或其药用盐:
其中,
n为10-26之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn独立地表示氢代基团;
X和Y独立地表示氢代、取代或未取代的烷基、取代或未取代的酰基、取代或未取代的磺酰基或者取代或未取代的芳基;
Z表示氢代、羟基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶;
B1、B2、…、Bn-1和Bn中的至少3个独立地选自由式II、式III或式IV表示的非天然核碱基:
其中,
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基、氢代、羟基和取代或未取代的烷氧基;和
L1、L2和L3为由式V表示的共价接头,其将碱性氨基连接于负责核碱基配对性质的部分:
其中,
Q1和Qm为取代或未取代的亚甲基(-CH2-),和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基、氧(-O-)、硫(-S-)和取代或未取代的氨基[-N(H)-或-N(取代基)-];和
m为1-16之间的整数。
14.权利要求12的肽核酸衍生物或其药用盐:
其中,
n为11-21之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X和Y独立地选自氢代、取代或未取代的烷基和取代或未取代的酰基;
Z表示羟基或者取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为取代或未取代的亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自取代或未取代的亚甲基、氧和氨基;和
m为1-11之间的整数。
15.权利要求12的肽核酸衍生物或其药用盐:
其中,
n为11-19之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X和Y独立地选自氢代和取代或未取代的酰基;
Z表示取代或未取代的氨基;和
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6独立地选自取代或未取代的烷基和氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基、氧和氨基;和
m为1-9之间的整数。
16.权利要求12的肽核酸衍生物或其药用盐:
其中,
n为11-19之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X和Y独立地选自氢代和取代或未取代的酰基;
Z表示取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自天然核碱基和非天然核碱基,所述天然核碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R3和R5为氢代基团,和R2、R4和R6独立地表示氢代或者取代或未取代的烷基;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基、氧基团;和
m为1-9之间的整数。
17.权利要求12的肽核酸衍生物或其药用盐:
其中,
n为11-19之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X和Y独立地选自氢代和取代或未取代的酰基;
Z表示取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和非天然核碱基;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6为氢代基团;
Q1和Qm为亚甲基,和Qm直接连接于碱性氨基;
Q2、Q3、......、和Qm-1独立地选自亚甲基和氧基团;和
m为1-8之间的整数。
18.权利要求12的肽核酸衍生物或其药用盐:
其中,
n为11-17之间的整数;
S1、S2、…、Sn-1、Sn、T1、T2、…、Tn-1和Tn为氢代基团;
X为氢代基团;
Y表示取代或未取代的酰基;
Z表示取代或未取代的氨基;
B1、B2、…、Bn-1和Bn独立地选自腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和非天然核碱基;
B1、B2、…、Bn-1和Bn中的至少4个独立地选自由式II、式III或式IV表示的非天然核碱基;
R1、R2、R3、R4、R5和R6为氢代基团;
L1表示-(CH2)2-O-(CH2)2-、-CH2-O-(CH2)2-或-CH2-O-(CH2)3-,其中右端直接连接于碱性氨基;和
L2和L3独立地选自-(CH2)2-O-(CH2)2-、-(CH2)3-O-(CH2)2-、-(CH2)2-O-(CH2)3-、-(CH2)2-、-(CH2)3-、-(CH2)4-、-(CH2)5-、-(CH2)6-、-(CH2)7-和-(CH2)8-,其中右端直接连接于碱性氨基。
19.权利要求12的肽核酸衍生物,或其药学上可接受的盐,所述肽核酸衍生物选自以下提供的肽核酸衍生物:
(N→C) Fethoc-CTT-A(6)TC(1O5)-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Fethoc-C(1O5)TT-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC(1O5)-A-NH2
(N→C) Fethoc-CA(5)T-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC(1O5)-A-NH2
(N→C) Fethoc-CG(6)T-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC(1O5)-A-NH2
(N→C) Fethoc-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-CTT-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Piv-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C)苯甲酰基-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-Lys-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Fmoc-Val-CTC(1O2)-A(5)TC-CTA(6)-C(1O3)TT-AA(2O2)C-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Fethoc-AG(5)A-A(2O2)CT-TA(5)T-CC(1O2)T-A(6)CT-TA-NH2
(N→C) Piv-AG(5)A-A(2O2)CT-TA(5)T-CC(1O2)T-A(6)CT-TA-NH2
(N→C) Ac-AG(5)A-A(2O3)CT-TA(5)T-CC(1O2)T-A(6)CT-TA-NH2
(N→C) Fethoc-A(5)GA(5)-AC(1O3)T-TA(5)T-CC(1O2)T-A(6)CT-TA(4)-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-Lys-NH2
(N→C)苯甲酰基-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Ac-HEX-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fmoc-Gly-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Me-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C)苯甲酰基-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-CTT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-CT-NH2
(N→C) Fethoc-G(5)AA(6)-CTT-A(6)TC-CTA(6)-C(1O2)T-NH2;和
(N→C) Fethoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
其中,
A、G、T和C为分别具有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶的天然核碱基的PNA单体;
C(pOq)、A(p)、A(pOq)、G(p)和G(pOq)为分别具有由式VI、式VII、式VIII、式IX和式X表示的非天然核碱基的PNA单体;
其中,
p和q为整数;和
N-和C-末端取代基的缩写具体描述如下:“Fmoc-”为“[(9-芴基)甲氧基]羰基-”的缩写;“Fethoc-”代表“[2-(9-芴基)乙基-1-氧基]羰基”;“Ac-”代表“乙酰基-”;“苯甲酰基-”代表“苯羰基-”;“Piv-”代表“新戊酰-”;“正丙基-”代表“1-(正丙基)-”;“-Lys-”代表氨基酸残基“赖氨酸”;“-Val-”代表氨基酸残基“缬氨酸”;“-Leu-”代表氨基酸残基“亮氨酸”;“-Arg-”代表氨基酸残基“精氨酸”;“-Gly-”代表氨基酸残基“甘氨酸”;“苄基-”代表“1-(苯基)甲基-”;“苯基-”代表“phenyl-”;“Me-”代表“甲基-”。
20.权利要求12的肽核酸衍生物,或其药学上可接受的盐,所述肽核酸衍生物选自以下提供的化合物:
(N→C) Fethoc-CTT-A(6)TC(1O5)-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Fethoc-C(1O5)TT-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC(1O5)-A-NH2
(N→C) Fethoc-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-CTT-A(6)TC-CTA(6)-C(1O2)TT-A(5)AC-NH2
(N→C) Piv-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-Lys-AC(1O2)T-TA(5)T-CC(1O2)T-A(6)C(1O2)T-TA(5)A-C-NH2
(N→C) Fethoc-CTC(1O2)-A(6)TC-CTA(6)-C(1O2)TT-AA(6)C-NH2
(N→C) Fethoc-A(6)GA-A(6)CT-TA(6)T-CC(1O2)T-A(6)CT-TA(6)-NH2
(N→C) Piv-AG(5)A-A(2O2)CT-TA(5)T-CC(1O2)T-A(6)CT-TA-NH2
(N→C) Fethoc-A(5)GA(5)-AC(1O3)T-TA(5)T-CC(1O2)T-A(6)CT-TA(4)-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C)苯甲酰基-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-G(5)AA(5)-CTT-A(5)TC-CTA(5)-C(1O2)T-NH2
(N→C) Fethoc-GA(5)A-C(1O2)TT-A(5)TC-CTA(5)-CT-NH2
(N→C) Fethoc-G(5)AA(6)-CTT-A(6)TC-CTA(6)-C(1O2)T-NH2;和
(N → C) Fethoc-CA(5)G-AA(5)C-TTA(5)-TCC(1O2)-TA(5)-NH2
21.一种通过给予权利要求1-20的任何一项的肽核酸衍生物治疗涉及HIF-1α表达的适应症或病症的方法。
22.一种通过给予权利要求1-20的任何一项的肽核酸衍生物治疗实体瘤的方法。
CN201780075831.7A 2016-10-11 2017-10-11 HIF-1α反义寡核苷酸 Active CN110248956B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662406577P 2016-10-11 2016-10-11
US62/406577 2016-10-11
PCT/IB2017/001385 WO2018069764A1 (en) 2016-10-11 2017-10-11 Hif 1-alpha antisense oligonucleotides

Publications (2)

Publication Number Publication Date
CN110248956A true CN110248956A (zh) 2019-09-17
CN110248956B CN110248956B (zh) 2023-02-21

Family

ID=61905270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780075831.7A Active CN110248956B (zh) 2016-10-11 2017-10-11 HIF-1α反义寡核苷酸

Country Status (7)

Country Link
US (1) US11319540B2 (zh)
EP (1) EP3526239B1 (zh)
JP (1) JP7089511B2 (zh)
KR (1) KR102511482B1 (zh)
CN (1) CN110248956B (zh)
RU (1) RU2753517C2 (zh)
WO (1) WO2018069764A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110506052A (zh) * 2017-01-06 2019-11-26 奥利通公司 Snap25反义寡核苷酸
CN110506051A (zh) * 2016-12-30 2019-11-26 奥利通公司 通过肽核酸衍生物的外显子跳跃

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI832851B (zh) * 2018-05-18 2024-02-21 韓商奧利通公司 基質金屬蛋白酶-1之反義寡核苷酸
KR102304280B1 (ko) 2018-08-14 2021-09-23 올리패스 주식회사 아세틸코에이카복실라제2 안티센스 올리고뉴클레오티드

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018835A1 (en) * 1993-02-19 1994-09-01 Genta Incorporated Treatment of androgen-associated baldness using antisense oligomers
US20040096848A1 (en) * 2002-04-05 2004-05-20 Thrue Charlotte Albaek Oligomeric compounds for the modulation HIF-1alpha expression
US20040101858A1 (en) * 2002-11-23 2004-05-27 Isis Pharmaceuticals Inc. Modulation of hypoxia-inducible factor 1 alpha expression
US20060204502A1 (en) * 2004-11-22 2006-09-14 Borea Pier A Enhancing treatment of cancer and HIF-1 mediated disorders with adenosine A3 receptor antagonists
US20080145313A1 (en) * 2006-08-30 2008-06-19 Genesis Research & Development Corporation Limited Compositions and Methods for the Treatment and Prevention of Neoplastic Disorders
CN102015628A (zh) * 2008-03-14 2011-04-13 Cti生物公司 具有良好细胞穿透和强核酸亲和性的肽核酸衍生物
US20150284725A1 (en) * 2012-10-11 2015-10-08 Isis Pharmaceuticals, Inc. Methods of treating kennedy's disease

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110087436A (ko) * 2010-01-26 2011-08-03 주식회사 씨티아이바이오 전위차 나트륨 이온 채널 아형 9(에스씨엔 9에이)의 안티센스 올리고핵산

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018835A1 (en) * 1993-02-19 1994-09-01 Genta Incorporated Treatment of androgen-associated baldness using antisense oligomers
US20040096848A1 (en) * 2002-04-05 2004-05-20 Thrue Charlotte Albaek Oligomeric compounds for the modulation HIF-1alpha expression
US20040101858A1 (en) * 2002-11-23 2004-05-27 Isis Pharmaceuticals Inc. Modulation of hypoxia-inducible factor 1 alpha expression
US20060204502A1 (en) * 2004-11-22 2006-09-14 Borea Pier A Enhancing treatment of cancer and HIF-1 mediated disorders with adenosine A3 receptor antagonists
US20080145313A1 (en) * 2006-08-30 2008-06-19 Genesis Research & Development Corporation Limited Compositions and Methods for the Treatment and Prevention of Neoplastic Disorders
CN102015628A (zh) * 2008-03-14 2011-04-13 Cti生物公司 具有良好细胞穿透和强核酸亲和性的肽核酸衍生物
US20110178031A1 (en) * 2008-03-14 2011-07-21 Cti Bio Peptide nucleic acid derivatives with good cell penetration and strong affinity for nucleic acid
US20150284725A1 (en) * 2012-10-11 2015-10-08 Isis Pharmaceuticals, Inc. Methods of treating kennedy's disease

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110506051A (zh) * 2016-12-30 2019-11-26 奥利通公司 通过肽核酸衍生物的外显子跳跃
CN110506052A (zh) * 2017-01-06 2019-11-26 奥利通公司 Snap25反义寡核苷酸

Also Published As

Publication number Publication date
EP3526239A1 (en) 2019-08-21
JP7089511B2 (ja) 2022-06-22
WO2018069764A1 (en) 2018-04-19
CN110248956B (zh) 2023-02-21
RU2019114019A (ru) 2020-11-17
RU2753517C2 (ru) 2021-08-17
US11319540B2 (en) 2022-05-03
KR20190055256A (ko) 2019-05-22
KR102511482B1 (ko) 2023-03-17
JP2019533667A (ja) 2019-11-21
US20210292767A1 (en) 2021-09-23
RU2019114019A3 (zh) 2021-02-11
EP3526239B1 (en) 2021-11-03
EP3526239A4 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
CN109996807A (zh) Scn9a反义寡核苷酸
CN110248956A (zh) HIF-1α反义寡核苷酸
EP3037547A1 (en) New fusion gene detected in lung cancer
US10000771B2 (en) Nuclear targeting sequences
Xu et al. HCRP1, a novel gene that is downregulated in hepatocellular carcinoma, encodes a growth-inhibitory protein
CN110506051A (zh) 通过肽核酸衍生物的外显子跳跃
Lee et al. Molecular cloning and functional analysis of a novel oncogene, cancer-upregulated gene 2 (CUG2)
US20220363720A1 (en) Melanophilin antisense oligonucleotides
JP7241019B2 (ja) Scn9aアンチセンス鎮痛剤
CN110072879A (zh) 雄激素受体反义寡核苷酸
EP2857392A1 (en) Small compound targeting at tacc3
JP2014091731A (ja) 新規ソマトスタチン由来ペプチド化合物並びに該化合物を含むdnaポリメラーゼ阻害剤、抗癌剤及びアポトーシス誘導剤。
WO2015033565A1 (ja) 癌の診断、阻害剤のスクリーニングにおけるrhoaの使用
US11472845B2 (en) Antitumor peptide and use thereof
JP7422406B2 (ja) マトリックスメタロプロテアーゼ-1アンチセンスオリゴヌクレオチド
KR101083562B1 (ko) Flj25416 유전자의 신규한 용도
CN110506052A (zh) Snap25反义寡核苷酸
US11505589B2 (en) Antitumor peptide and use thereof
TWI782999B (zh) 酪胺酸酶反義寡核苷酸
EP4049664A1 (en) Nucleic acid delivery enhancer
CN101104852A (zh) 与鼻咽癌相关的人类新基因loc344967及其编码的蛋白产物
JP5209699B2 (ja) 胃癌遺伝子ZNF312b、該遺伝子から翻訳されるタンパク質、ならびに診断キット及び該タンパク質を使用する抗癌剤スクリーニング方法
JP2020019715A (ja) 抗腫瘍ペプチドおよびその利用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant