CN110241098B - 酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变异体及其应用 - Google Patents

酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变异体及其应用 Download PDF

Info

Publication number
CN110241098B
CN110241098B CN201910488074.7A CN201910488074A CN110241098B CN 110241098 B CN110241098 B CN 110241098B CN 201910488074 A CN201910488074 A CN 201910488074A CN 110241098 B CN110241098 B CN 110241098B
Authority
CN
China
Prior art keywords
lys
leu
crispr
glu
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910488074.7A
Other languages
English (en)
Other versions
CN110241098A (zh
Inventor
黄强
杜文豪
汤洪海
薛冬梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201910488074.7A priority Critical patent/CN110241098B/zh
Publication of CN110241098A publication Critical patent/CN110241098A/zh
Application granted granted Critical
Publication of CN110241098B publication Critical patent/CN110241098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Abstract

本发明属于蛋白质工程技术领域,具体为一种来源于酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变体及其应用。本发明Cas9核酸酶变体(THSpCas9),属于CRISPR‑Cas9系统,具有野生型CRISPR‑Cas9核酸酶基因编辑功能,CRISPR‑Cas9核酸酶是将野生型CRISPR‑Cas9核酸的氨基酸序截掉8个即第494‑501位的氨基酸后重组所得到;野生型CRISPR‑Cas9核酸酶的氨基酸序列如SEQ ID NO.1所示,或者,所述CRISPR‑Cas9核酸酶含有如SEQ ID NO.1所示90%的氨基酸序列,即SEQ ID NO.2。采用所述Cas9核酸酶变体(THSpCas9)能够提高编辑特异性,实现对基因组DNA片段的特定位置的精准编辑。

Description

酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变异体 及其应用
技术领域
本发明属于蛋白质工程技术领域,具体涉及一种来源于酿脓链球菌(Streptococcus pyogenes)的CRISPR-Cas9核酸酶SpCas9的截短型高特异性蛋白变体THSpCas9及其用途。
背景技术
由细菌免疫系统经漫长进化而产生的CRISPR-Cas9系统是一种革命性的基因编辑技术,被称为“基因魔剪”,可方便地对基因组特定基因的DNA链进行高效切割编辑,该系统的出现,大大克服了传统编辑技术耗时长的缺点,仅需数周就可以实现过去利用传统技术耗时一年之久才能完成的编辑[1-11]。其中,来源于酿脓链球菌(Streptococcus pyogenes)的CRISPR-Cas9核酸酶SpCas9是目前最为广泛使用的CRISPR核酸酶[12],被广泛应用到多个领域,包括医学研究以及生物技术等,比如细胞或动物模型的构建快速、功能基因的筛选便捷以及遗传疾病的治疗彻底[13-24]
虽然,CRISPR-Cas9系统的优势促使其能够广泛应用于许多领域,并最近在医学领域的研究上也异军突起,但仍有许多问题制约着其发展,尤其是得到一个精准靶向特异性疾病基因位点的CRISPR-Cas9核酸酶,至今是临床应用的瓶颈问题。然而,由于靶基因组极其复杂,sgRNA会与其他类似靶序列的基因位点发生局部匹配,进一步激活Cas9切割DNA,产生脱靶现象,从而影响DNA片段的正确遗传编辑,进而限制了该技术在精准医疗方面的应用[25]
因而,基于上述问题,探寻高特异性Cas9核酸酶从而有效地实现DNA片段的精准遗传编辑是十分必要的。
发明内容
本发明的目的是提供一种来源于酿脓链球菌的CRISPR-Cas9核酸酶SpCas9的截短型高特异性变体及其用途。
为实现上述目的,本发明采用以下技术方案。
本发明提供一种截短型高特异性CRISPR-Cas9核酸酶(THSpCas9),所述CRISPR-Cas9核酸酶是将野生型CRISPR-Cas9核酸的氨基酸序截掉8(第494-501位)个氨基酸后重组所得,具有野生型CRISPR-Cas9核酸酶基因编辑功能,与野生型核酸酶相比,更能特异性靶向基因编辑位点,实现精准编辑。
所述野生型SpCas9核酸酶的核苷酸序列和氨基酸序列分别为SEQ.ID.NO.1和SEQ.ID.NO.2所示。
所述CRISPR-Cas9核酸酶(THSpCas9)的核苷酸序列和氨基酸序列分别为SEQ.ID.NO.3和SEQ.ID.NO.4所示,与野生型SpCas9的相似度达90%以上。
本发明还提供一种多核苷酸序列,可以转录和翻译所述的CRISPR-Cas9核酸酶(THSpCas9)。
本发明还提供一种表达载体,其含有上述多核苷酸序列。
本发明还提供一种宿主细胞,可以用于转化上述表达载体。
本发明提供一种制备所述CRISPR-Cas9核酸酶(THSpCas9)的方法,具体步骤包括:首先,构建所述CRISPR-Cas9核酸酶的多核苷酸序列表达载体;然后,将所述表达载体转化至宿主细胞,筛选并挑出单克隆;最后,将所述单克隆诱导表达,并通过亲和层析、离子交换等方法从表达产物中分离出所述的CRISPR-Cas9核酸酶。
本发明还提供上述CRISPR-Cas9核酸酶、多核苷酸序列以及表达载体均可作为基因组编辑工具用途用于基因组DNA片段的相关编辑。
本发明中所述的编辑可以是单点编辑、也可以是编辑位点大于等于两个的多点编辑。
所述编辑的手段包括删除、突变、插入、倒位、移位、重复或易位。
所述CRISPR-Cas9编辑工具包括与靶标DNA片段匹配的引导sgRNA。
所述的CRISPR-Cas9核酸酶与能够介导它的sgRNA组合,能够对基因进行编辑。
与现有技术相比,本发明的CRISPR-Cas9(TSpCas9),属于CRISPR-Cas9免疫系统,含有如SEQ.ID.NO.3和SEQ.ID.NO.4的核苷酸序列和氨基酸序列,能够提高基因编辑特异性,实现对基因组DNA片段的特定位置的精准编辑,具有潜在的精准生物医学应用价值。
附图说明
图1为分子动力学模拟预测THSpCas9氨基酸截短位点。
图2为Pet21-6His-TEV-THSpCas9质粒构建。
图3为Pet21-6His-TEV-THSpCas9质粒筛选与培养。
图4为THSpCas9目标蛋白的纯化方法。
图5为THSpCas9目标蛋白纯化获取的过程。
图6为THSpCas9目标蛋白的电泳鉴定。
图7为体外脱靶检测原理图。
图8为野生型SpCas9体外在靶和脱靶效应的检测。
图9为截短型THSpCas9体外在靶和脱靶效应的检测。
具体实施方式
下面通过具体实施例进一步描述本发明。
实施例中所用的实验方法,如无特定说明,均为常规方法。实施例中所用的材料、试剂等,如无特定说明,均为从商业途径获得。
一、CRISPR-Cas9核酸酶
本发明的CRISPR-Cas9核酸酶(THSpCas9),其是将野生型的SpCas9第494-501位氨基酸截掉所得,属于CRISPR-Cas9系统,具有野生型CRISPR-Cas9(SpCas9)核酸酶基因编辑功能,与野生型核酸酶相比,更能特异性靶向基因编辑位点,实现精准编辑。
二、编码CRISPR-Cas9核酸酶的多核苷酸
转录和翻译所述CRISPR-Cas9(THSpCas9)的多核苷酸序列,包括DNA或RNA。DNA还可以细分为质粒DNA、基因组DNA或人工合成的DNA。
编码所述CRISPR-Cas9(THSpCas9)的多核苷酸序列,可以利用该领域科研或技术人员所熟悉的相关分子生物学技术来制备,其不局限于重组DNA技术和化学合成方法。
三、表达载体
所述表达载体含有编码所述CRISPR-Cas9核酸酶(THSpCas9)的多核苷酸序列。该表达载体可以通过科研或技术人员所熟悉的分子生物学方法来构建,包括DNA重组技术和DNA合成技术等,主要将CRISPR-Cas9核酸酶(THSpCas9)的DNA有效连接到载体上的克隆位点中,然后通过转录翻译等过程表达目的蛋白THSpCas9。
四、宿主细胞
所述宿主细胞可以用于表达CRISPR-Cas9核酸酶的重组质粒所转化。宿主细胞主要包括原核细胞(如细菌),低等真核细胞(如酵母),高等真核细胞(如哺乳动物细胞)等。常用的宿主细胞如大肠杆菌、DH5α、毕赤酵母、HEK293、CHO、Hela细胞等。
五、CRISPR-Cas9核酸酶(THSpCas9)及其编码该酶的核苷酸序列和所述表达载体的用途
本发明的CRISPR-Cas9核酸酶(THSpCas9)及其编码该酶的多核苷酸序列和所述的表达载体能够用于基因组DNA片段的编辑或用于制备基因编辑工具。CRISPR-Cas9核酸酶(THSpCas9)编辑包括单位点和多位点编辑,其编辑手段包括删除、突变、插入、倒位、移位、重复或易位等。
六、基因编辑工具及其方法
本发明的基因编辑工具属于CRISPR-Cas9系统,CRISPR-Cas9(THSpCas9)在特定的sgRNA的引导下可以在目的基因DNA片段PAM(NGG)位点上游3到4位间剪切底物DNA片段。该编辑过程可以在体内或体内进行。当sgRNA是单个的时候可以进行单点编辑,当sgRNA是两个或两个以上时可以进行多位点编辑。
如本发明的一些实施方式中所列举的,CRISPR-Cas9核酸酶(THSpCas9)在sgRNA的引导下,可以在体外对底物DNA(920bp)进行剪切,其产物为760bp和260bp。
在本发明中,Cas9可作为CRISPR-Cas9核酸酶的简称使用,其含义与CRISPR-Cas9核酸酶相同。本发明中的截短型高特异性蛋白为THSpCas9,即对野生型SpCas9第494-501位氨基酸对应的质粒片段去掉,将剩余部分氨基酸的质粒连接并表达得到的蛋白。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围并不局限为下述特定的具体实施方案,还应理解为,本发明实施例中的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下例实施例中未注明具体条件的试验方法,通常按照常规条件操作,或者按照各生产厂商所建议的条件操作。
除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
除非另外说明,本发明中所公开的实验方法、检测方法、制备方法均采用本技术领域常规的分子生物学、生物化学、重组DNA技术及相关领域的常规技术。
实施例1,构建CRISPR-Cas9核酸酶(TSpCas9)的质粒
1.分子动力学模拟
如图1a所示,使用野生型SpCas9蛋白质结构序列(PDB code:5y36);如图1b所示,利用Rosetta软件进行蛋白截短预测出最优的截短方式;如图1c所示,通过分子动力学模拟软件NAMD进行短程模拟预测截短后结构稳定性,然后用可视化软件Pymol和VMD观察截短后蛋白结构。
2.突变体质粒的构建
以pet21-6His-TEV-SpCas9为模板,截掉494(6764bp)~501(6787bp)位氨基酸,然后,重组成截短的SpCas9,将其称为THSpCas9。其质粒构建思路如图2所示:
(1)利用引物494F和494R在质粒Pet21-6His-TEV-SpCas9上扩增出含有限制性单酶切位点NsiI-HF的载体片段,并通过AxyPrepTM DNA Gel Extraction Kit(购于Axygen)对扩增产物进行纯化回收;
(2)使用限制性内切酶NsiI-HF(购于NEB)酶切回收后的载体片段,并通过AxyPrepTM DNA Gel Extraction Kit纯化回收;
(3)使用T4ligase(购于Takara)将酶切纯化回收后的载体片段进行连接,将此连接产物称为pet21-6His-TEV-THSpCas9-NsiI-HF;
(4)将连接产物转入DH5α感受态细胞(购于TIANGEN),挑单克隆,测序;
(5)测序成功后,提质粒,设计引物494-1F,494-1R,494-2F,494-2R,用快速定点突变试剂盒(购于赛百盛公司)将NsiI-HF酶切位点(ATGCAT)突变去掉,即可获得pet21-6His-TEV-THSpCas9。
①采购扩增试剂盒
所用扩增试剂盒Fast HiFidelity PCR Kit从天根生化科技(北京)有限公司订购。
②采购引物
所用引物均从上海生工生物工程有限公司订购,引物的5’端均加有所需的酶切位点和该酶切位点的保护碱基。序列如下:
494F:TGCATGCATCTGCCTAACGAAAAGGTGCTTG(SEQ.ID.NO.5)
494R:TGCATGCATTTCGATGAAGGACTGGGCAG(SEQ.ID.NO.6)
494-1F:CCAGTCCTTCATCGAACATCTGCCTAACGAA(SEQ.ID.NO.7)
494-1R:TTCGTTAGGCAGATGTTCGATGAAGGACTGG(SEQ.ID.NO.8)
494-2F:CCAGTCCTTCATCGAACTGCCTAACGAAAAG(SEQ.ID.NO.9)
494-2R:CTTTTCGTTAGGCAGTTCGATGAAGGACTGG(SEQ.ID.NO.10)。
扩增体系如下:
Figure BDA0002086056400000051
PCR反应条件:
Figure BDA0002086056400000052
Figure BDA0002086056400000061
③割胶回收试剂盒采购
所用割胶回收试剂盒AxyPrepTM DNA Gel Extraction Kit从Axygen公司订购,割胶回收操作均按其说明书进行。
④限制内切酶及T4连接酶
所用限制内切酶NsiI-HF和T4连接酶均从NEB公司订购订购。
酶切反应体系
Figure BDA0002086056400000062
按该反应体系37℃孵育至少2小时,并电泳割胶纯化回收。
连接反应体系
Figure BDA0002086056400000063
该反应体系16℃孵育至少2小时,并转化大肠杆菌DH5α筛选单克隆pet21-6His-TEV-THSpCas9-NsiI-HF,培养细菌,抽提质粒,抽提方法见Qiagen质粒小提试剂盒使用说明。
Figure BDA0002086056400000064
Figure BDA0002086056400000071
PCR反应条件:
Figure BDA0002086056400000072
反应结束后加入1ul(10U/ul)MutazymeT M酶37℃温育一小时,并转化大肠杆菌DH5α筛选单克隆pet21-6His-TEV-THSpCas9,培养细菌,抽提质粒,抽提方法见Qiagen质粒小提试剂盒使用说明。其结果如图2所示,显示了截短型高特异性THSpCas9的构建过程;图3显示了THSpCas9质粒的筛选与培养过程。
实施例2,制备CRISPR-Cas9(TSpCas9)核酸酶
1、蛋白表达
(1)打开超净台,用含75%酒精的棉球擦拭桌面以及各种器具,开紫外灯照射20min,启动风机备用;
(2)移液枪吸10μl表达Pet21-6His-TEV-TSpCas9的Rosetta(DE3)(购于TIANGEN)菌液转至6ml含有双抗(Amp与Cm)的LB液体培养基中,37℃,200r/min振荡培养过夜;
(3)将过夜培养的菌液按照体积比为1:100转至500ml含双抗的LB(购于生工)液体培养基中,37℃,200r/min振荡培养。在培养过程中,随时检测菌液的OD值;
(4)当菌液的OD值接近0.4~0.8时,加入蛋白诱导剂IPTG,使其终浓度为0.1mM,然后16℃,200r/min振荡培养20h;
(5)收集菌液,5000r/min离心5min使菌体沉淀,弃上清,并称重Pet21-6His-TEV-THSpCas9菌体。
2蛋白纯化
(1)向菌体中加入预先冰浴且PMSF终浓度为0.1mM的裂解液(20mM HEPES,500mMKCl,pH7.5;1g菌体加入5ml),涡旋仪重悬使菌块分散混匀,细胞超声破碎仪破碎细胞,超声3sec停3sec,一次10min,超声两次,超声过程均在冰浴中进行;
(2)向破碎的菌液中加入终浓度为10μg/ml RNase(生工),5μg/ml DNase I(生工),冰浴处理30min后,4℃10000r/min离心45~60min,收集上清;
(3)将上清与预先用平衡液(20mM HEPES,500mM KCl,1%蔗糖,pH7.5)处理的Qiagen Ni-NTA介质孵育,此过程在冰浴上进行,并加以振荡(150r/min),1.5h后静置,待Qiagen Ni-NTA沉淀;
(4)将Qiagen Ni-NTA装载到重力柱中,BioLogic LP系统的监测下,分别以流速为2ml/min的平衡液和洗脱液(20mM HEPES,500mM KCl,500mM咪唑,1%蔗糖,pH7.5),20、30、40、50、100、250、500Mm洗脱液冲洗Qiagen Ni-NTA,并收集蛋白;
(5)将不同咪唑浓度下的蛋白溶液跑SDS-PAGE(购于EpiZyme Scientific)电泳,考马斯亮蓝染色,脱色剂脱色,观察目的蛋白的表达和挂柱效果。
所述蛋白THSpCas9的纯化结果如图6所示,其显示该目的蛋白THSpCas9的表达和纯化情况,从上清液观察,目的蛋白THSpCas9表达较多,从穿流液观察,Ni-NTA吸附的能力适中,从洗脱液观察,30、50和100mM咪唑洗脱液下的目的蛋白THSpCas9相对较纯,可以收集浓缩做活性检测。
实施例3,检验CRISPR-Cas9(THSpCas9)核酸酶在靶和脱靶剪切活性
所用底物DNA(SEQ ID NO.11),主要利用引物QG-F:TAGTCCTGTCGGGTTTCG(SEQ IDNO.12)和QG-R:TTCCATTCGCCATTCAGG(SEQ ID NO.13)通过常规PCR扩增获取。其反应体系和扩增条件如下:
扩增体系如下:
Figure BDA0002086056400000081
Figure BDA0002086056400000091
PCR反应条件:
Figure BDA0002086056400000092
割胶回收试剂盒采购
所用割胶回收试剂盒AxyPrepTM DNA Gel Extraction Kit从Axygen公司订购,割胶回收操作均按其说明书进行,可以获得较纯的底物DNA(SEQ ID NO.14)。
利用不同的sgRNA,如图7中1到8号所示所示,从PAM远端第20个碱基开始,依次设计与target DNA 存在两个碱基不匹配的sgRNA,共8个,进行体外转录纯化,引导THSpCas9的体外切割活性来评价THSpCas9的脱靶效应,Cas9与sgRNA以等摩尔混合,而根据实验需要,底物DNA可调为Cas9摩尔质量的0.2~1倍。将反应体系置37℃孵育,1h后70℃作用10min,最后电泳检测目的蛋白的体外切割活性。其反应体系如下:
Figure BDA0002086056400000093
首先,评价野生型SpCas9在体外的脱靶效应,如图8所示,与0号sgRNA引导的SpCas9剪切活性相比(泳道3),1到8号sgRNA引导的SpCas9均能够在体外剪切底物DNA(泳道4到11),生成产物1和产物2。尽管只有部分sgRNA的引导活性强,即1到4号sgRNA引导的SpCas9体外剪切活性比较强(泳道4到7),5到8号sgRNA引导的SpCas9体外剪切活性却依次减弱(8号到11号),但是,该结果依然反应野生型SpCas9在体外的脱靶效应比较严重。由此说明,野生型SpCas9有较强的脱靶效应,尤其在1到4号sgRNA的引导下更为突出。
其次,评价截短型高特异性THSpCas9在体外的脱靶效应,如图9所示,与0号sgRNA引导的THSpCas9剪切活性相比(泳道3),1到8号sgRNA引导的截短型高特异性THSpCas9在体外剪切底物DNA的剪切活性均明显降低(泳道4到11)。由此说明在sgRNA与底物DNA完全互补的情况下,THSpCas9保留了野生型SpCas9核酸酶的切割活性;同时,在sgRNA与底物DNA存在两个碱基错配的情况下,和野生型SpCas9相比较,THSpCas9对于对底物DNA的容错率更低,体外剪切特异性更高。
因而THSpCas9具有野生型CRISPR-Cas9核酸酶基因编辑功能,与野生型核酸酶相比,更能特异性靶向基因编辑位点,实现精准编辑。
参考文献
[1]Ishino Y,Shinagawa H,Makino K,et al.Nucleotide sequence of the iapgene,responsible for alkaline phosphatase isozyme conversion in Escherichiacoli,and identification of the gene product[J].J Bacteriol.1987,169(12):5429-5433.
[2]Karginov F V,Hannon G J.The CRISPR system:small RNA-guided defensein bacteria and archaea[J].Mol Cell.2010,37(1):7-19.
[3]Jansen R,Embden J D,Gaastra W,et al.Identification of genes thatare associated with DNA repeats in prokaryotes[J].Mol Microbiol.2002,43(6):1565-1575.
[4]Haft D H,Selengut J,Mongodin E F,et al.A guild of 45CRISPR-associated(Cas)protein families and multiple CRISPR/Cas subtypes exist inprokaryotic genomes[J].PLoS Comput Biol.2005,1(6):e60.
[5]Cong L,Ran F A,Cox D,et al.Multiplex genome engineering usingCRISPR/Cas systems[J].Science.2013,339(6121):819-823.
[6]Jiang W,Bikard D,Cox D,et al.RNA-guided editing of bacterialgenomes using CRISPR-Cas systems[J].Nat Biotechnol.2013,31(3):233-239.
[7]Jinek M,East A,Cheng A,et al.RNA-programmed genome editing inhuman cells[J].Elife.2013,2:e471.
[8]Sander J D,Joung J K.CRISPR-Cas systems for editing,regulating andtargeting genomes[J].Nat Biotechnol.2014,32(4):347-355.
[9]Suzuki K,Tsunekawa Y,Hernandez-Benitez R,et al.In vivo genomeediting via CRISPR/Cas9mediated homology-independent targeted integration[J].Nature.2016,540(7631):144-149.
[10]Shan Q,Wang Y,Li J,et al.Targeted genome modification of cropplants using a CRISPR-Cas system[J].Nat Biotechnol.2013,31(8):686-688.
[11]Wang T,Wei J J,Sabatini D M,et al.Genetic screens in human cellsusing the CRISPR-Cas9system[J].Science.2014,343(6166):80-84.
[12]Doudna J A,Charpentier E.Genome editing.The new frontier ofgenome engineering with CRISPR-Cas9[J].Science.2014,346(6213):1258096.
[13]Wang H,Yang H,Shivalila C S,et al.One-step generation of micecarrying mutations in multiple genes by CRISPR/Cas-mediated genomeengineering[J].Cell.2013,153(4):910-918.
[14]Li W,Teng F,Li T,et al.Simultaneous generation and germlinetransmission of multiple gene mutations in rat using CRISPR-Cas systems[J].Nat Biotechnol.2013,31(8):684-686.
[15]Niu Y,Shen B,Cui Y,et al.Generation of gene-modified cynomolgusmonkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J].Cell.2014,156(4):836-843.
[16]Shalem O,Sanjana N E,Hartenian E,et al.Genome-scale CRISPR-Cas9knockout screening in human cells[J].Science.2014,343(6166):84-87.
[17]Wang T,Wei J J,Sabatini D M,et al.Genetic screens in human cellsusing the CRISPR-Cas9system[J].Science.2014,343(6166):80-84.
[18]Cmielewski P,Farrow N,Devereux S,et al.Gene therapy for CysticFibrosis:Improved delivery techniques and conditioning withlysophosphatidylcholine enhance lentiviral gene transfer in mouse lungairways[J].Exp Lung Res.2017,43(9-10):426-433.
[19]Tasan I,Jain S,Zhao H.Use of genome-editing tools to treat sicklecell disease[J].Hum Genet.2016,135(9):1011-1028.
[20]Bengtsson N E,Hall J K,Odom G L,et al.Muscle-specific CRISPR/Cas9dystrophin gene editing ameliorates pathophysiology in a mouse model forDuchenne muscular dystrophy(vol 8,14454,2017)[J].NATURE COMMUNICATIONS.2017,8(16007).
[21]Bengtsson N E,Hall J K,OdomG L,et al.Muscle-specific CRISPR/Cas9dystrophin gene editing ameliorates pathophysiology in a mouse model forDuchenne muscular dystrophy[J].NATURE COMMUNICATIONS.2017,8(14454).
[22]Park C Y,Halevy T,Lee D R,et al.Reversion of FMR1 Methylation andSilencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons[J].Cell Rep.2015,13(2):234-241.
[23]Lombardo A,Genovese P,Beausejour C M,et al.Gene editing in humanstem cells using zinc finger nucleases and integrase-defective lentiviralvector delivery[J].Nat Biotechnol.2007,25(11):1298-1306.
[24]Cohen J,Pertsemlidis A,Kotowski I K,et al.Low LDL cholesterol inindividuals of African descent resulting from frequent nonsense mutations inPCSK9[J].Nat Genet.2005,37(2):161-165.
[25]Yanni Lin,Thomas J.Cradick,Matthew T.Brown,et al.CRISPR/Cas9systems have off-target activity with insertions or deletions between targetDNA and guide RNA sequences[J].NUCLEIC ACIDS RESEARCH,2014,42(11):7473-7485。
序列表
<110> 复旦大学
<120> 酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变异体及其应用
<130> 001
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 4104
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggcgacaaga agtactccat tgggctcgat atcggcacaa acagcgtcgg ctgggccgtc 60
attacggacg agtacaaggt gccgagcaaa aaattcaaag ttctgggcaa taccgatcgc 120
cacagcataa agaagaacct cattggcgcc ctcctgttcg actccgggga gacggccgaa 180
gccacgcggc tcaaaagaac agcacggcgc agatataccc gcagaaagaa tcggatctgc 240
tacctgcagg agatctttag taatgagatg gctaaggtgg atgactcttt cttccatagg 300
ctggaggagt cctttttggt ggaggaggat aaaaagcacg agcgccaccc aatctttggc 360
aatatcgtgg acgaggtggc gtaccatgaa aagtacccaa ccatatatca tctgaggaag 420
aagcttgtag acagtactga taaggctgac ttgcggttga tctatctcgc gctggcgcat 480
atgatcaaat ttcggggaca cttcctcatc gagggggacc tgaacccaga caacagcgat 540
gtcgacaaac tctttatcca actggttcag acttacaatc agcttttcga agagaacccg 600
atcaacgcat ccggagttga cgccaaagca atcctgagcg ctaggctgtc caaatcccgg 660
cggctcgaaa acctcatcgc acagctccct ggggagaaga agaacggcct gtttggtaat 720
cttatcgccc tgtcactcgg gctgaccccc aactttaaat ctaacttcga cctggccgaa 780
gatgccaagc ttcaactgag caaagacacc tacgatgatg atctcgacaa tctgctggcc 840
cagatcggcg accagtacgc agaccttttt ttggcggcaa agaacctgtc agacgccatt 900
ctgctgagtg atattctgcg agtgaacacg gagatcacca aagctccgct gagcgctagt 960
atgatcaagc gctatgatga gcaccaccaa gacttgactt tgctgaaggc ccttgtcaga 1020
cagcaactgc ctgagaagta caaggaaatt ttcttcgatc agtctaaaaa tggctacgcc 1080
ggatacattg acggcggagc aagccaggag gaattttaca aatttattaa gcccatcttg 1140
gaaaaaatgg acggcaccga ggagctgctg gtaaagctta acagagaaga tctgttgcgc 1200
aaacagcgca ctttcgacaa tggaagcatc ccccaccaga ttcacctggg cgaactgcac 1260
gctatcctca ggcggcaaga ggatttctac ccctttttga aagataacag ggaaaagatt 1320
gagaaaatcc tcacatttcg gataccctac tatgtaggcc ccctcgcccg gggaaattcc 1380
agattcgcgt ggatgactcg caaatcagaa gagaccatca ctccctggaa cttcgaggaa 1440
gtcgtggata agggggcctc tgcccagtcc ttcatcgaaa ggatgactaa ctttgataaa 1500
aatctgccta acgaaaaggt gcttcctaaa cactctctgc tgtacgagta cttcacagtt 1560
tataacgagc tcaccaaggt caaatacgtc acagaaggga tgagaaagcc agcattcctg 1620
tctggagagc agaagaaagc tatcgtggac ctcctcttca agacgaaccg gaaagttacc 1680
gtgaaacagc tcaaagaaga ctatttcaaa aagattgaat gtttcgactc tgttgaaatc 1740
agcggagtgg aggatcgctt caacgcatcc ctgggaacgt atcacgatct cctgaaaatc 1800
attaaagaca aggacttcct ggacaatgag gagaacgagg acattcttga ggacattgtc 1860
ctcaccctta cgttgtttga agatagggag atgattgaag aacgcttgaa aacttacgct 1920
catctcttcg acgacaaagt catgaaacag ctcaagaggc gccgatatac aggatggggg 1980
cggctgtcaa gaaaactgat caatgggatc cgagacaagc agagtggaaa gacaatcctg 2040
gattttctta agtccgatgg atttgccaac cggaacttca tgcagttgat ccatgatgac 2100
tctctcacct ttaaggagga catccagaaa gcacaagttt ctggccaggg ggacagtctt 2160
cacgagcaca tcgctaatct tgcaggtagc ccagctatca aaaagggaat actgcagacc 2220
gttaaggtcg tggatgaact cgtcaaagta atgggaaggc ataagcccga gaatatcgtt 2280
atcgagatgg cccgagagaa ccaaactacc cagaagggac agaagaacag tagggaaagg 2340
atgaagagga ttgaagaggg tataaaagaa ctggggtccc aaatccttaa ggaacaccca 2400
gttgaaaaca cccagcttca gaatgagaag ctctacctgt actacctgca gaacggcagg 2460
gacatgtacg tggatcagga actggacatc aatcggctct ccgactacga cgtggatcat 2520
atcgtgcccc agtcttttct caaagatgat tctattgata ataaagtgtt gacaagatcc 2580
gataaaaata gagggaagag tgataacgtc ccctcagaag aagttgtcaa gaaaatgaaa 2640
aattattggc ggcagctgct gaacgccaaa ctgatcacac aacggaagtt cgataatctg 2700
actaaggctg aacgaggtgg cctgtctgag ttggataaag caggcttcat caaaaggcag 2760
cttgttgaga cacgccagat caccaagcac gtggcccaaa ttctcgattc acgcatgaac 2820
accaagtacg atgaaaatga caaactgatt cgagaggtga aagttattac tctgaagtct 2880
aagctggtct cagatttcag aaaggacttt cagttttata aggtgagaga gatcaacaat 2940
taccaccatg cgcatgatgc ctacctgaat gcagtggtag gcactgcact tatcaaaaaa 3000
tatcccaagc ttgaatctga atttgtttac ggagactata aagtgtacga tgttaggaaa 3060
atgatcgcaa agtctgagca ggaaataggc aaggccaccg ctaagtactt cttttacagc 3120
aatattatga attttttcaa gaccgagatt acactggcca atggagagat tcggaagcga 3180
ccacttatcg aaacaaacgg agaaacagga gaaatcgtgt gggacaaggg tagggatttc 3240
gcgacagtcc ggaaggtcct gtccatgccg caggtgaaca tcgttaaaaa gaccgaagta 3300
cagaccggag gcttctccaa ggaaagtatc ctcccgaaaa ggaacagcga caagctgatc 3360
gcacgcaaaa aagattggga ccccaagaaa tacggcggat tcgattctcc tacagtcgct 3420
tacagtgtac tggttgtggc caaagtggag aaagggaagt ctaaaaaact caaaagcgtc 3480
aaggaactgc tgggcatcac aatcatggag cgatcaagct tcgaaaaaaa ccccatcgac 3540
tttctcgagg cgaaaggata taaagaggtc aaaaaagacc tcatcattaa gcttcccaag 3600
tactctctct ttgagcttga aaacggccgg aaacgaatgc tcgctagtgc gggcgagctg 3660
cagaaaggta acgagctggc actgccctct aaatacgtta atttcttgta tctggccagc 3720
cactatgaaa agctcaaagg gtctcccgaa gataatgagc agaagcagct gttcgtggaa 3780
caacacaaac actaccttga tgagatcatc gagcaaataa gcgaattctc caaaagagtg 3840
atcctcgccg acgctaacct cgataaggtg ctttctgctt acaataagca cagggataag 3900
cccatcaggg agcaggcaga aaacattatc cacttgttta ctctgaccaa cttgggcgcg 3960
cctgcagcct tcaagtactt cgacaccacc atagacagaa agcggtacac ctctacaaag 4020
gaggtcctgg acgccacact gattcatcag tcaattacgg ggctctatga aacaagaatc 4080
gacctctctc agctcggtgg agac 4104
<210> 2
<211> 1368
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Gly Asp Lys Lys Tyr Ser Ile Gly Leu Asp Ile Gly Thr Asn Ser Val
1 5 10 15
Gly Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe
20 25 30
Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile
35 40 45
Gly Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu
50 55 60
Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys
65 70 75 80
Tyr Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser
85 90 95
Phe Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys
100 105 110
His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr
115 120 125
His Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp
130 135 140
Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His
145 150 155 160
Met Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro
165 170 175
Asp Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr
180 185 190
Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala
195 200 205
Lys Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn
210 215 220
Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn
225 230 235 240
Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe
245 250 255
Asp Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp
260 265 270
Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp
275 280 285
Leu Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp
290 295 300
Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser
305 310 315 320
Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys
325 330 335
Ala Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe
340 345 350
Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser
355 360 365
Gln Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp
370 375 380
Gly Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg
385 390 395 400
Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu
405 410 415
Gly Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe
420 425 430
Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile
435 440 445
Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp
450 455 460
Met Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu
465 470 475 480
Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr
485 490 495
Asn Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser
500 505 510
Leu Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys
515 520 525
Tyr Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln
530 535 540
Lys Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr
545 550 555 560
Val Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp
565 570 575
Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly
580 585 590
Thr Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp
595 600 605
Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr
610 615 620
Leu Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala
625 630 635 640
His Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr
645 650 655
Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp
660 665 670
Lys Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe
675 680 685
Ala Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe
690 695 700
Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu
705 710 715 720
His Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly
725 730 735
Ile Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly
740 745 750
Arg His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln
755 760 765
Thr Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile
770 775 780
Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro
785 790 795 800
Val Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu
805 810 815
Gln Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg
820 825 830
Leu Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys
835 840 845
Asp Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg
850 855 860
Gly Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys
865 870 875 880
Asn Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys
885 890 895
Phe Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp
900 905 910
Lys Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr
915 920 925
Lys His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp
930 935 940
Glu Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser
945 950 955 960
Lys Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg
965 970 975
Glu Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val
980 985 990
Val Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe
995 1000 1005
Val Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala Lys
1010 1015 1020
Ser Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr Ser
1025 1030 1035 1040
Asn Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly Glu
1045 1050 1055
Ile Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu Ile
1060 1065 1070
Val Trp Asp Lys Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu Ser
1075 1080 1085
Met Pro Gln Val Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly Gly
1090 1095 1100
Phe Ser Lys Glu Ser Ile Leu Pro Lys Arg Asn Ser Asp Lys Leu Ile
1105 1110 1115 1120
Ala Arg Lys Lys Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Asp Ser
1125 1130 1135
Pro Thr Val Ala Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys Gly
1140 1145 1150
Lys Ser Lys Lys Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr Ile
1155 1160 1165
Met Glu Arg Ser Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala
1170 1175 1180
Lys Gly Tyr Lys Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys
1185 1190 1195 1200
Tyr Ser Leu Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser
1205 1210 1215
Ala Gly Glu Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr
1220 1225 1230
Val Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser
1235 1240 1245
Pro Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys His
1250 1255 1260
Tyr Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg Val
1265 1270 1275 1280
Ile Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn Lys
1285 1290 1295
His Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His Leu
1300 1305 1310
Phe Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala Phe Lys Tyr Phe Asp
1315 1320 1325
Thr Thr Ile Asp Arg Lys Arg Tyr Thr Ser Thr Lys Glu Val Leu Asp
1330 1335 1340
Ala Thr Leu Ile His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg Ile
1345 1350 1355 1360
Asp Leu Ser Gln Leu Gly Gly Asp
1365
<210> 3
<211> 4080
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ggcgacaaga agtactccat tgggctcgat atcggcacaa acagcgtcgg ctgggccgtc 60
attacggacg agtacaaggt gccgagcaaa aaattcaaag ttctgggcaa taccgatcgc 120
cacagcataa agaagaacct cattggcgcc ctcctgttcg actccgggga gacggccgaa 180
gccacgcggc tcaaaagaac agcacggcgc agatataccc gcagaaagaa tcggatctgc 240
tacctgcagg agatctttag taatgagatg gctaaggtgg atgactcttt cttccatagg 300
ctggaggagt cctttttggt ggaggaggat aaaaagcacg agcgccaccc aatctttggc 360
aatatcgtgg acgaggtggc gtaccatgaa aagtacccaa ccatatatca tctgaggaag 420
aagcttgtag acagtactga taaggctgac ttgcggttga tctatctcgc gctggcgcat 480
atgatcaaat ttcggggaca cttcctcatc gagggggacc tgaacccaga caacagcgat 540
gtcgacaaac tctttatcca actggttcag acttacaatc agcttttcga agagaacccg 600
atcaacgcat ccggagttga cgccaaagca atcctgagcg ctaggctgtc caaatcccgg 660
cggctcgaaa acctcatcgc acagctccct ggggagaaga agaacggcct gtttggtaat 720
cttatcgccc tgtcactcgg gctgaccccc aactttaaat ctaacttcga cctggccgaa 780
gatgccaagc ttcaactgag caaagacacc tacgatgatg atctcgacaa tctgctggcc 840
cagatcggcg accagtacgc agaccttttt ttggcggcaa agaacctgtc agacgccatt 900
ctgctgagtg atattctgcg agtgaacacg gagatcacca aagctccgct gagcgctagt 960
atgatcaagc gctatgatga gcaccaccaa gacttgactt tgctgaaggc ccttgtcaga 1020
cagcaactgc ctgagaagta caaggaaatt ttcttcgatc agtctaaaaa tggctacgcc 1080
ggatacattg acggcggagc aagccaggag gaattttaca aatttattaa gcccatcttg 1140
gaaaaaatgg acggcaccga ggagctgctg gtaaagctta acagagaaga tctgttgcgc 1200
aaacagcgca ctttcgacaa tggaagcatc ccccaccaga ttcacctggg cgaactgcac 1260
gctatcctca ggcggcaaga ggatttctac ccctttttga aagataacag ggaaaagatt 1320
gagaaaatcc tcacatttcg gataccctac tatgtaggcc ccctcgcccg gggaaattcc 1380
agattcgcgt ggatgactcg caaatcagaa gagaccatca ctccctggaa cttcgaggaa 1440
gtcgtggata agggggcctc tgcccagtcc ttcatcgaac tgcctaacga aaaggtgctt 1500
cctaaacact ctctgctgta cgagtacttc acagtttata acgagctcac caaggtcaaa 1560
tacgtcacag aagggatgag aaagccagca ttcctgtctg gagagcagaa gaaagctatc 1620
gtggacctcc tcttcaagac gaaccggaaa gttaccgtga aacagctcaa agaagactat 1680
ttcaaaaaga ttgaatgttt cgactctgtt gaaatcagcg gagtggagga tcgcttcaac 1740
gcatccctgg gaacgtatca cgatctcctg aaaatcatta aagacaagga cttcctggac 1800
aatgaggaga acgaggacat tcttgaggac attgtcctca cccttacgtt gtttgaagat 1860
agggagatga ttgaagaacg cttgaaaact tacgctcatc tcttcgacga caaagtcatg 1920
aaacagctca agaggcgccg atatacagga tgggggcggc tgtcaagaaa actgatcaat 1980
gggatccgag acaagcagag tggaaagaca atcctggatt ttcttaagtc cgatggattt 2040
gccaaccgga acttcatgca gttgatccat gatgactctc tcacctttaa ggaggacatc 2100
cagaaagcac aagtttctgg ccagggggac agtcttcacg agcacatcgc taatcttgca 2160
ggtagcccag ctatcaaaaa gggaatactg cagaccgtta aggtcgtgga tgaactcgtc 2220
aaagtaatgg gaaggcataa gcccgagaat atcgttatcg agatggcccg agagaaccaa 2280
actacccaga agggacagaa gaacagtagg gaaaggatga agaggattga agagggtata 2340
aaagaactgg ggtcccaaat ccttaaggaa cacccagttg aaaacaccca gcttcagaat 2400
gagaagctct acctgtacta cctgcagaac ggcagggaca tgtacgtgga tcaggaactg 2460
gacatcaatc ggctctccga ctacgacgtg gatcatatcg tgccccagtc ttttctcaaa 2520
gatgattcta ttgataataa agtgttgaca agatccgata aaaatagagg gaagagtgat 2580
aacgtcccct cagaagaagt tgtcaagaaa atgaaaaatt attggcggca gctgctgaac 2640
gccaaactga tcacacaacg gaagttcgat aatctgacta aggctgaacg aggtggcctg 2700
tctgagttgg ataaagcagg cttcatcaaa aggcagcttg ttgagacacg ccagatcacc 2760
aagcacgtgg cccaaattct cgattcacgc atgaacacca agtacgatga aaatgacaaa 2820
ctgattcgag aggtgaaagt tattactctg aagtctaagc tggtctcaga tttcagaaag 2880
gactttcagt tttataaggt gagagagatc aacaattacc accatgcgca tgatgcctac 2940
ctgaatgcag tggtaggcac tgcacttatc aaaaaatatc ccaagcttga atctgaattt 3000
gtttacggag actataaagt gtacgatgtt aggaaaatga tcgcaaagtc tgagcaggaa 3060
ataggcaagg ccaccgctaa gtacttcttt tacagcaata ttatgaattt tttcaagacc 3120
gagattacac tggccaatgg agagattcgg aagcgaccac ttatcgaaac aaacggagaa 3180
acaggagaaa tcgtgtggga caagggtagg gatttcgcga cagtccggaa ggtcctgtcc 3240
atgccgcagg tgaacatcgt taaaaagacc gaagtacaga ccggaggctt ctccaaggaa 3300
agtatcctcc cgaaaaggaa cagcgacaag ctgatcgcac gcaaaaaaga ttgggacccc 3360
aagaaatacg gcggattcga ttctcctaca gtcgcttaca gtgtactggt tgtggccaaa 3420
gtggagaaag ggaagtctaa aaaactcaaa agcgtcaagg aactgctggg catcacaatc 3480
atggagcgat caagcttcga aaaaaacccc atcgactttc tcgaggcgaa aggatataaa 3540
gaggtcaaaa aagacctcat cattaagctt cccaagtact ctctctttga gcttgaaaac 3600
ggccggaaac gaatgctcgc tagtgcgggc gagctgcaga aaggtaacga gctggcactg 3660
ccctctaaat acgttaattt cttgtatctg gccagccact atgaaaagct caaagggtct 3720
cccgaagata atgagcagaa gcagctgttc gtggaacaac acaaacacta ccttgatgag 3780
atcatcgagc aaataagcga attctccaaa agagtgatcc tcgccgacgc taacctcgat 3840
aaggtgcttt ctgcttacaa taagcacagg gataagccca tcagggagca ggcagaaaac 3900
attatccact tgtttactct gaccaacttg ggcgcgcctg cagccttcaa gtacttcgac 3960
accaccatag acagaaagcg gtacacctct acaaaggagg tcctggacgc cacactgatt 4020
catcagtcaa ttacggggct ctatgaaaca agaatcgacc tctctcagct cggtggagac 4080
<210> 4
<211> 1360
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Gly Asp Lys Lys Tyr Ser Ile Gly Leu Asp Ile Gly Thr Asn Ser Val
1 5 10 15
Gly Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe
20 25 30
Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile
35 40 45
Gly Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu
50 55 60
Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys
65 70 75 80
Tyr Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser
85 90 95
Phe Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys
100 105 110
His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr
115 120 125
His Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp
130 135 140
Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His
145 150 155 160
Met Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro
165 170 175
Asp Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr
180 185 190
Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala
195 200 205
Lys Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn
210 215 220
Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn
225 230 235 240
Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe
245 250 255
Asp Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp
260 265 270
Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp
275 280 285
Leu Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp
290 295 300
Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser
305 310 315 320
Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys
325 330 335
Ala Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe
340 345 350
Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser
355 360 365
Gln Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp
370 375 380
Gly Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg
385 390 395 400
Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu
405 410 415
Gly Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe
420 425 430
Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile
435 440 445
Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp
450 455 460
Met Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu
465 470 475 480
Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Leu Pro Asn
485 490 495
Glu Lys Val Leu Pro Lys His Ser Leu Leu Tyr Glu Tyr Phe Thr Val
500 505 510
Tyr Asn Glu Leu Thr Lys Val Lys Tyr Val Thr Glu Gly Met Arg Lys
515 520 525
Pro Ala Phe Leu Ser Gly Glu Gln Lys Lys Ala Ile Val Asp Leu Leu
530 535 540
Phe Lys Thr Asn Arg Lys Val Thr Val Lys Gln Leu Lys Glu Asp Tyr
545 550 555 560
Phe Lys Lys Ile Glu Cys Phe Asp Ser Val Glu Ile Ser Gly Val Glu
565 570 575
Asp Arg Phe Asn Ala Ser Leu Gly Thr Tyr His Asp Leu Leu Lys Ile
580 585 590
Ile Lys Asp Lys Asp Phe Leu Asp Asn Glu Glu Asn Glu Asp Ile Leu
595 600 605
Glu Asp Ile Val Leu Thr Leu Thr Leu Phe Glu Asp Arg Glu Met Ile
610 615 620
Glu Glu Arg Leu Lys Thr Tyr Ala His Leu Phe Asp Asp Lys Val Met
625 630 635 640
Lys Gln Leu Lys Arg Arg Arg Tyr Thr Gly Trp Gly Arg Leu Ser Arg
645 650 655
Lys Leu Ile Asn Gly Ile Arg Asp Lys Gln Ser Gly Lys Thr Ile Leu
660 665 670
Asp Phe Leu Lys Ser Asp Gly Phe Ala Asn Arg Asn Phe Met Gln Leu
675 680 685
Ile His Asp Asp Ser Leu Thr Phe Lys Glu Asp Ile Gln Lys Ala Gln
690 695 700
Val Ser Gly Gln Gly Asp Ser Leu His Glu His Ile Ala Asn Leu Ala
705 710 715 720
Gly Ser Pro Ala Ile Lys Lys Gly Ile Leu Gln Thr Val Lys Val Val
725 730 735
Asp Glu Leu Val Lys Val Met Gly Arg His Lys Pro Glu Asn Ile Val
740 745 750
Ile Glu Met Ala Arg Glu Asn Gln Thr Thr Gln Lys Gly Gln Lys Asn
755 760 765
Ser Arg Glu Arg Met Lys Arg Ile Glu Glu Gly Ile Lys Glu Leu Gly
770 775 780
Ser Gln Ile Leu Lys Glu His Pro Val Glu Asn Thr Gln Leu Gln Asn
785 790 795 800
Glu Lys Leu Tyr Leu Tyr Tyr Leu Gln Asn Gly Arg Asp Met Tyr Val
805 810 815
Asp Gln Glu Leu Asp Ile Asn Arg Leu Ser Asp Tyr Asp Val Asp His
820 825 830
Ile Val Pro Gln Ser Phe Leu Lys Asp Asp Ser Ile Asp Asn Lys Val
835 840 845
Leu Thr Arg Ser Asp Lys Asn Arg Gly Lys Ser Asp Asn Val Pro Ser
850 855 860
Glu Glu Val Val Lys Lys Met Lys Asn Tyr Trp Arg Gln Leu Leu Asn
865 870 875 880
Ala Lys Leu Ile Thr Gln Arg Lys Phe Asp Asn Leu Thr Lys Ala Glu
885 890 895
Arg Gly Gly Leu Ser Glu Leu Asp Lys Ala Gly Phe Ile Lys Arg Gln
900 905 910
Leu Val Glu Thr Arg Gln Ile Thr Lys His Val Ala Gln Ile Leu Asp
915 920 925
Ser Arg Met Asn Thr Lys Tyr Asp Glu Asn Asp Lys Leu Ile Arg Glu
930 935 940
Val Lys Val Ile Thr Leu Lys Ser Lys Leu Val Ser Asp Phe Arg Lys
945 950 955 960
Asp Phe Gln Phe Tyr Lys Val Arg Glu Ile Asn Asn Tyr His His Ala
965 970 975
His Asp Ala Tyr Leu Asn Ala Val Val Gly Thr Ala Leu Ile Lys Lys
980 985 990
Tyr Pro Lys Leu Glu Ser Glu Phe Val Tyr Gly Asp Tyr Lys Val Tyr
995 1000 1005
Asp Val Arg Lys Met Ile Ala Lys Ser Glu Gln Glu Ile Gly Lys Ala
1010 1015 1020
Thr Ala Lys Tyr Phe Phe Tyr Ser Asn Ile Met Asn Phe Phe Lys Thr
1025 1030 1035 1040
Glu Ile Thr Leu Ala Asn Gly Glu Ile Arg Lys Arg Pro Leu Ile Glu
1045 1050 1055
Thr Asn Gly Glu Thr Gly Glu Ile Val Trp Asp Lys Gly Arg Asp Phe
1060 1065 1070
Ala Thr Val Arg Lys Val Leu Ser Met Pro Gln Val Asn Ile Val Lys
1075 1080 1085
Lys Thr Glu Val Gln Thr Gly Gly Phe Ser Lys Glu Ser Ile Leu Pro
1090 1095 1100
Lys Arg Asn Ser Asp Lys Leu Ile Ala Arg Lys Lys Asp Trp Asp Pro
1105 1110 1115 1120
Lys Lys Tyr Gly Gly Phe Asp Ser Pro Thr Val Ala Tyr Ser Val Leu
1125 1130 1135
Val Val Ala Lys Val Glu Lys Gly Lys Ser Lys Lys Leu Lys Ser Val
1140 1145 1150
Lys Glu Leu Leu Gly Ile Thr Ile Met Glu Arg Ser Ser Phe Glu Lys
1155 1160 1165
Asn Pro Ile Asp Phe Leu Glu Ala Lys Gly Tyr Lys Glu Val Lys Lys
1170 1175 1180
Asp Leu Ile Ile Lys Leu Pro Lys Tyr Ser Leu Phe Glu Leu Glu Asn
1185 1190 1195 1200
Gly Arg Lys Arg Met Leu Ala Ser Ala Gly Glu Leu Gln Lys Gly Asn
1205 1210 1215
Glu Leu Ala Leu Pro Ser Lys Tyr Val Asn Phe Leu Tyr Leu Ala Ser
1220 1225 1230
His Tyr Glu Lys Leu Lys Gly Ser Pro Glu Asp Asn Glu Gln Lys Gln
1235 1240 1245
Leu Phe Val Glu Gln His Lys His Tyr Leu Asp Glu Ile Ile Glu Gln
1250 1255 1260
Ile Ser Glu Phe Ser Lys Arg Val Ile Leu Ala Asp Ala Asn Leu Asp
1265 1270 1275 1280
Lys Val Leu Ser Ala Tyr Asn Lys His Arg Asp Lys Pro Ile Arg Glu
1285 1290 1295
Gln Ala Glu Asn Ile Ile His Leu Phe Thr Leu Thr Asn Leu Gly Ala
1300 1305 1310
Pro Ala Ala Phe Lys Tyr Phe Asp Thr Thr Ile Asp Arg Lys Arg Tyr
1315 1320 1325
Thr Ser Thr Lys Glu Val Leu Asp Ala Thr Leu Ile His Gln Ser Ile
1330 1335 1340
Thr Gly Leu Tyr Glu Thr Arg Ile Asp Leu Ser Gln Leu Gly Gly Asp
1345 1350 1355 1360
<210> 5
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tgcatgcatc tgcctaacga aaaggtgctt g 31
<210> 6
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
tgcatgcatt tcgatgaagg actgggcag 29
<210> 7
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ccagtccttc atcgaacatc tgcctaacga a 31
<210> 8
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ttcgttaggc agatgttcga tgaaggactg g 31
<210> 9
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ccagtccttc atcgaactgc ctaacgaaaa g 31
<210> 10
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
cttttcgtta ggcagttcga tgaaggactg g 31
<210> 11
<211> 3046
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt atttttctaa atacattcaa 60
atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat tgaaaaagga 120
agagtatgag tattcaacat ttccgtgtcg cccttattcc cttttttgcg gcattttgcc 180
ttcctgtttt tgctcaccca gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg 240
gtgcacgagt gggttacatc gaactggatc tcaacagcgg taagatcctt gagagttttc 300
gccccgaaga acgttttcca atgatgagca cttttaaagt tctgctatgt ggcgcggtat 360
tatcccgtat tgacgccggg caagagcaac tcggtcgccg catacactat tctcagaatg 420
acttggttga gtactcacca gtcacagaaa agcatcttac ggatggcatg acagtaagag 480
aattatgcag tgctgccata accatgagtg ataacactgc ggccaactta cttctgacaa 540
cgatcggagg accgaaggag ctaaccgctt ttttgcacaa catgggggat catgtaactc 600
gccttgatcg ttgggaaccg gagctgaatg aagccatacc aaacgacgag cgtgacacca 660
cgatgcctgt agcaatggca acaacgttgc gcaaactatt aactggcgaa ctacttactc 720
tagcttcccg gcaacaatta atagactgga tggaggcgga taaagttgca ggaccacttc 780
tgcgctcggc ccttccggct ggctggttta ttgctgataa atctggagcc ggtgagcgtg 840
ggtctcgcgg tatcattgca gcactggggc cagatggtaa gccctcccgt atcgtagtta 900
tctacacgac ggggagtcag gcaactatgg atgaacgaaa tagacagatc gctgagatag 960
gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga 1020
ttgatttaaa acttcatttt taatttaaaa ggatctaggt gaagatcctt tttgataatc 1080
tcatgaccaa aatcccttaa cgtgagtttt cgttccactg agcgtcagac cccgtagaaa 1140
agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa 1200
aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc 1260
cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt 1320
agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc 1380
tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 1440
gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 1500
gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg 1560
ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag 1620
gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 1680
ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat 1740
ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg ccttttgctc 1800
acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt 1860
gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaggaag 1920
cggaagagcg cccaatacgc aaaccgcctc tccccgcgcg ttggccgatt cattaatgca 1980
gctggcacga caggtttccc gactggaaag cgggcagtga gcgcaacgca attaatgtga 2040
gttagctcac tcattaggca ccccaggctt tacactttat gcttccggct cgtatgttgt 2100
gtggaattgt gagcggataa caatttcaca caggaaacag ctatgaccat gattacgcca 2160
agctcgaaat taaccctcac taaagggaac aaaagctgga gctccaccgc ggtggcggcc 2220
gctctagaac tagtggatcc cccgggctgc aggaattcga tatcaagctt atcgattacc 2280
gctccagtcg ttcatgaggt tagagctaga aatagcaagt taaaataagg ctagtccgtt 2340
atcaacttga aaaagtggca ccgagtcggt gctctcgagg gggggcccgg tacccaattc 2400
gccctatagt gagtcgtatt acaattcact ggccgtcgtt ttacaacgtc gtgactggga 2460
aaaccctggc gttacccaac ttaatcgcct tgcagcacat ccccctttcg ccagctggcg 2520
taatagcgaa gaggcccgca ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcga 2580
atggaaattg taagcgttaa tattttgtta aaattcgcgt taaatttttg ttaaatcagc 2640
tcatttttta accaataggc cgaaatcggc aaaatccctt ataaatcaaa agaatagacc 2700
gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa gaacgtggac 2760
tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg tgaaccatca 2820
ccctaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa ccctaaaggg 2880
agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa ggaagggaag 2940
aaagcgaaag gagcgggcgc tagggcgctg gcaagtgtag cggtcacgct gcgcgtaacc 3000
accacacccg ccgcgcttaa tgcgccgcta cagggcgcgt caggtg 3046
<210> 12
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
tagtcctgtc gggtttcg 18
<210> 13
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
ttccattcgc cattcagg 18
<210> 14
<211> 920
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
tagtcctgtc gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg 60
ggggcggagc ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg 120
ctggcctttt gctcacatgt tctttcctgc gttatcccct gattctgtgg ataaccgtat 180
taccgccttt gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgagtc 240
agtgagcgag gaagcggaag agcgcccaat acgcaaaccg cctctccccg cgcgttggcc 300
gattcattaa tgcagctggc acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa 360
cgcaattaat gtgagttagc tcactcatta ggcaccccag gctttacact ttatgcttcc 420
ggctcgtatg ttgtgtggaa ttgtgagcgg ataacaattt cacacaggaa acagctatga 480
ccatgattac gccaagctcg aaattaaccc tcactaaagg gaacaaaagc tggagctcca 540
ccgcggtggc ggccgctcta gaactagtgg atcccccggg ctgcaggaat tcgatatcaa 600
gcttatcgat taccgctcca gtcgttcatg aggttagagc tagaaatagc aagttaaaat 660
aaggctagtc cgttatcaac ttgaaaaagt ggcaccgagt cggtgctctc gagggggggc 720
ccggtaccca attcgcccta tagtgagtcg tattacaatt cactggccgt cgttttacaa 780
cgtcgtgact gggaaaaccc tggcgttacc caacttaatc gccttgcagc acatccccct 840
ttcgccagct ggcgtaatag cgaagaggcc cgcaccgatc gcccttccca acagttgcgc 900
agcctgaatg gcgaatggaa 920

Claims (13)

1.一种CRISPR-Cas9核酸酶,属于CRISPR-Cas9系统,具有野生型CRISPR-Cas9核酸酶基因编辑功能,所述CRISPR-Cas9核酸酶是将野生型CRISPR-Cas9核酸的氨基酸序列 截掉8个即第494-501位的氨基酸后重组所得: 所述野生型CRISPR-Cas9核酸酶的氨基酸序列如SEQID NO.1所示。
2.根据权利要求1所述的CRISPR-Cas9核酸酶,其特征在于,在同等反应条件下,所述CRISPR-Cas9核酸酶与野生型CRISPR-Cas9核酸酶相比,基因编辑特异性提高。
3.根据权利要求1所述的CRISPR-Cas9核酸酶,其特征在于,所述野生型CRISPR-Cas9核酸酶为来源于酿脓链球菌的免疫系统SpCas9蛋白。
4.一种多核苷酸,其能够编码如权利要求1-3中任意一项所述的CRISPR-Cas9核酸酶。
5.一种表达载体,其包含如权利要求4所述的多核苷酸。
6.一种宿主细胞,其包含权利要求5所述的表达载体。
7.一种制备权利要求1-3任意一项所述的CRISPR-Cas9核酸酶的方法,具体步骤包括:首先构建权利要求5所述的表达载体;然后,将所述表达载体转化至宿主细胞,筛选并挑出单克隆;最后,将所述单克隆诱导表达,并通过亲和层析、离子交换方法从表达产物中分离出所述的CRISPR-Cas9核酸酶。
8.权利要求1-3中任意一项所述CRISPR-Cas9核酸酶、权利要求4中所述的多核苷酸、权利要求5中所述的表达载体的用途,用于体外非治疗目的的基因组单位点或多位点基因编辑。
9.根据权利要求8所述的用途,其特征在于,所述编辑是单点编辑,或者是编辑位点大于等于两个的多点编辑;编辑方式为基因的删除、突变、插入、倒位、移位、重复或易位。
10.根据权利要求8所述的用途,其特征在于,所述CRISPR-Cas9核酸酶作为编辑工具包括与靶标DNA片段匹配的引导sgRNA。
11.根据权利要求8所述的用途,其特征在于,是将权利要求5所述表达载体和与之匹配的引导sgRNA一同转入宿主细胞,对基因进行编辑。
12.根据权利要求8所述的用途,其特征在于,所述单位点或多位点基因编辑,是利用权利要求1-3中任意一项所述CRISPR-Cas9核酸酶对双链DNA进行剪切,并通过宿主细胞的修复系统对断裂的缺口进行修复。
13.根据权利要求8所述的用途,其特征在于,所述单位点或多位点基因编辑,是改变单位点或多位点编辑时的碱基突变特征。
CN201910488074.7A 2019-06-05 2019-06-05 酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变异体及其应用 Active CN110241098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910488074.7A CN110241098B (zh) 2019-06-05 2019-06-05 酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变异体及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910488074.7A CN110241098B (zh) 2019-06-05 2019-06-05 酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变异体及其应用

Publications (2)

Publication Number Publication Date
CN110241098A CN110241098A (zh) 2019-09-17
CN110241098B true CN110241098B (zh) 2021-04-30

Family

ID=67886279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910488074.7A Active CN110241098B (zh) 2019-06-05 2019-06-05 酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变异体及其应用

Country Status (1)

Country Link
CN (1) CN110241098B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878290B (zh) * 2019-11-15 2022-03-18 武汉大学 II类V型CRISPR蛋白BfCas12a及其在基因编辑的应用
CN117690485A (zh) * 2024-02-04 2024-03-12 北京诺禾致源科技股份有限公司 用于寄生虫鉴定的基因组的处理方法和处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567734A (zh) * 2016-01-18 2016-05-11 丹弥优生物技术(湖北)有限公司 一种基因组dna序列精准编辑方法
CN106061510A (zh) * 2013-12-12 2016-10-26 布罗德研究所有限公司 用于基因组编辑的crispr‑cas系统和组合物的递送、用途和治疗应用
CN107012250A (zh) * 2017-05-16 2017-08-04 上海交通大学 一种适用于CRISPR/Cas9系统的基因组DNA片段编辑精准度的分析方法及应用
WO2019046636A1 (en) * 2017-08-30 2019-03-07 The Broad Institute, Inc. CRISPR BASED EDITION OF HDR TYPE WITH DOUBLE SELECTION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061510A (zh) * 2013-12-12 2016-10-26 布罗德研究所有限公司 用于基因组编辑的crispr‑cas系统和组合物的递送、用途和治疗应用
CN105567734A (zh) * 2016-01-18 2016-05-11 丹弥优生物技术(湖北)有限公司 一种基因组dna序列精准编辑方法
CN107012250A (zh) * 2017-05-16 2017-08-04 上海交通大学 一种适用于CRISPR/Cas9系统的基因组DNA片段编辑精准度的分析方法及应用
WO2019046636A1 (en) * 2017-08-30 2019-03-07 The Broad Institute, Inc. CRISPR BASED EDITION OF HDR TYPE WITH DOUBLE SELECTION

Also Published As

Publication number Publication date
CN110241098A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
CN107586779B (zh) 使用crispr-cas系统对间充质干细胞进行casp3基因敲除的方法
CN104498493B (zh) CRISPR/Cas9特异性敲除乙型肝炎病毒的方法以及用于特异性靶向HBV DNA的gRNA
KR101106253B1 (ko) 사이코스 3-에피머라제 효소를 코딩하는 폴리뉴클레오티드를 포함하는 대장균 및 그를 이용하여 사이코스를 생산하는 방법
CN111235080B (zh) 基因重组大肠杆菌及5-羟色胺的生产方法
CN109055544B (zh) 动脉粥样硬化分子标志物及其应用
CN111154707B (zh) 基因工程化大肠杆菌及褪黑素的生产方法
CN110241098B (zh) 酿脓链球菌的CRISPR核酸酶SpCas9的截短型高特异性变异体及其应用
CN106867952A (zh) 一株大肠杆菌基因工程菌及利用其生产l‑苏氨酸的方法
CN107988250B (zh) 一种通用型衣藻外源基因表达载体构建方法
CN111909914B (zh) 核酸内切酶SpCas9的高PAM兼容性截短型变异体txCas9及其应用
CN101466833B (zh) 经修饰的软骨素合酶多肽及其晶体
CN104278031B (zh) 一种受黄嘌呤调控的启动子a及其重组表达载体和应用
CN110272881B (zh) 核酸内切酶SpCas9高特异性截短变异体TSpCas9-V1/V2及其应用
CN110499336B (zh) 一种利用小分子化合物提高基因组定点修饰效率的方法
CN110964725A (zh) 特异性识别猪KIT基因的sgRNA及其编码DNA、试剂盒和应用
CN106479928B (zh) 一株耐高盐耐高cod盐水球菌菌株和来源该菌株的内源质粒
CN109136228B (zh) 长链非编码rna-nkila在骨组织损伤修复中的应用
CN112553237A (zh) 一种新型mariner转座子系统、应用和构建枯草芽孢杆菌插入突变株文库
CN111394383B (zh) 生物合成石竹烯的聚球藻基因工程菌及其构建方法与应用
CN112662697B (zh) 一种莱茵衣藻tctn1表达质粒及其构建方法和应用
CN106636023B (zh) 一种增强zwf基因启动子表达强度的方法
RU2761660C1 (ru) Штамм клеток Escherichia coli BL21(DE3)/pET32v11-Flpo, продуцирующих сайт-специфическую рекомбиназу Flpe
CN113444708B (zh) 一种用于药物皮下注射制剂的透明质酸酶突变体
CN110656120A (zh) 一种乙脑病毒sa14-14-2的克隆方法及应用
CN106520818B (zh) 一种快速回补鸭疫里默氏杆菌缺失基因的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant