CN110230091B - 一种垂直拼接制备大尺寸cvd金刚石及切割方法 - Google Patents

一种垂直拼接制备大尺寸cvd金刚石及切割方法 Download PDF

Info

Publication number
CN110230091B
CN110230091B CN201910560201.XA CN201910560201A CN110230091B CN 110230091 B CN110230091 B CN 110230091B CN 201910560201 A CN201910560201 A CN 201910560201A CN 110230091 B CN110230091 B CN 110230091B
Authority
CN
China
Prior art keywords
diamond
size
laser
seed crystals
microgroove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910560201.XA
Other languages
English (en)
Other versions
CN110230091A (zh
Inventor
李成明
刘金龙
朱肖华
邵思武
赵云
屠鞠萍
陈良贤
魏俊俊
张建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201910560201.XA priority Critical patent/CN110230091B/zh
Publication of CN110230091A publication Critical patent/CN110230091A/zh
Application granted granted Critical
Publication of CN110230091B publication Critical patent/CN110230091B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • C30B25/205Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer the substrate being of insulating material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种垂直拼接制备大尺寸CVD金刚石及切割方法,属于金刚石材料制备领域。通过在多个垂直紧密排列的单晶金刚石籽晶侧面外延生长大尺寸CVD金刚石,然后通过激光切割工艺依次将籽晶与外延金刚石分离后得到大尺寸CVD金刚石,工艺步骤为:a.对多个垂直紧密排列的单晶金刚石籽晶上表面进行精密机械抛光处理,获得各籽晶高度差在10um以内,表面粗糙度低于1nm;b.通过激光刻蚀、电子束光刻技术、ICP刻蚀技术或聚焦离子束轰击等方法在各籽晶接缝处进行图案化刻槽处理;c.采用微波等离子体化学气相沉积(MPCVD)方法,对已刻槽处理后的籽晶侧面进行外延生长;d.通过激光侧面切割依次将籽晶与外延大尺寸金刚石分离,从而得到大尺寸高质量的单晶金刚石。

Description

一种垂直拼接制备大尺寸CVD金刚石及切割方法
技术领域
本发明属于单晶金刚石材料生长技术领域;具体涉及了一种多个单晶金刚石籽晶垂直紧密放置,利用其侧面组装拼接生长大尺寸单晶金刚石,特点是可以选择籽晶的数量外延出所需尺寸的高质量单晶金刚石,且无需采用离子注入剥离方法,常用的激光切割方法就可将外延大尺寸金刚石与多个籽晶上表面分离,此方法可大大降低金刚石材料的损耗。
技术背景
金刚石优异的力学、电学、热学、声学以及光学性能使其在机械加工、电子、热沉以及光学窗口具有广阔的应用前景。然而天然金刚石尺寸通常较小,迄今人工合成的单晶金刚石包括高温高压法和气相合成方法。其中高温高压法可以制备面积约1×1cm的金刚石,但很难在尺寸上有更大的突破。而对于气相合成法,其同质外延的金刚石尺寸受衬底尺寸的限制,很难制备大尺寸金刚石。当采用衬底尺寸为8×8mm时,目前报道的同质外延金刚石最大尺寸为13×13mm(Diam.Rela.Mate.18(2009)1258)。对于异质外延,目前报道的合成的金刚石直径可达92mm,但是制备的金刚石位错密度很高,缺陷较多,与同质外延的质量还有一定的差距(Scie.Repo.7(2017)44462)。为此学者们开始探索大尺寸高质量单晶金刚石的制备,目前尤以拼接生长的方式获得单晶金刚石的尺寸较大且质量优异,可达2英寸(Appl.Phys.Lett.104(2014)102)。
但是目前还面临一个重要的挑战是大尺寸单晶金刚石与衬底的分离问题。目前常采用激光切割法分离外延金刚石与衬底,由于激光切割中激光光斑小,作用时间短,因此激光切割金刚石具有切缝窄、速度快等优点,但同时其切割深度有限。当采用激光切割较大尺寸(10mm)的金刚石时,激光切割由于其聚焦位置与激光光斑的限制,需要切割时间长,往往会造成单晶金刚石的极大损耗。所以对于大尺寸金刚石和衬底的分离,大部分研究者选择采用离子注入的方法,其在金刚石内部制造损伤层,以此达到与衬底的剥离。但是此方法对设备、工艺条件要求高,价格昂贵、且离子注入容易导致外延金刚石材料继承辐射缺陷,从而降低金刚石质量。目前,还没有一种合适的方法能够同时实现大尺寸金刚石的制备与分离,因此,在根本上突破金刚石制备尺寸瓶颈,以及寻求合适的分离方法非常关键。
发明内容
为了解决上述问题,本发明的关键技术问题是改变一般采用籽晶(100)生长面为拼接生长面,外延的金刚石尺寸不依赖于籽晶尺寸的大小,可通过调整籽晶数量制备大尺寸金刚石,另外解决了一般拼接生长的大尺寸金刚石与籽晶分离的问题。初期通过将多个籽晶垂直紧密排列,对上表面精密抛光。随后通过激光刻蚀、电子束光刻技术等方法在各籽晶上表面接缝处进行图案化刻槽处理,从而优化横纵生长速率的比值,进而有效抑制横向外延所产生的位错缺陷。然后采用微波等离子体化学气相沉积(MPCVD)方法,在已刻槽处理后的籽晶上表面外延生长大尺寸金刚石。由于不受籽晶数量的限制,可外延所需的大尺寸金刚石,而且,由于衬底可完全采用HPHT籽晶,外延的大尺寸金刚石摇摆曲线半高宽比直接采用CVD拼接制备的金刚石半高宽小,即金刚石位错密度较低。最后由于衬底是由多个籽晶连接形成,采用激光切割技术依次将每个籽晶与外延大尺寸金刚石分离,直至将籽晶完全切割,就得到了外延大尺寸单晶金刚石。
一种垂直拼接制备大尺寸CVD金刚石及切割方法,其特征在于:将多个单晶金刚石垂直紧密排列,对其侧面同时进行抛光处理,然后在拼接处刻槽处理,通过微波等离子体化学气相沉积方法拼接制备大尺寸金刚石,最后通过激光切割方法实现大尺寸金刚石与籽晶的分离。
进一步地,垂直排列的籽晶不受个数和尺寸的限制,选择5~20个边长在4~10mm范围的单晶金刚石,厚度为0.3~5mm,拼接制备的CVD金刚石尺寸可实现成倍扩大。
进一步地,通过将多个籽晶垂直紧密排列,对其侧面同时精密抛光,抛光至高度差在10μm以内,且表面粗糙度低于1nm。
进一步地,刻槽的方法除采用激光刻蚀微槽外,还可以采用电子束光刻技术、ICP刻蚀技术以及聚焦离子束轰击方法来实现;其中激光刻蚀微槽方法是:对于籽晶拼接侧面均是(100)取向,垂直紧密放置在拼接缝处刻槽处理,每个拼接缝处微槽为单个矩形微槽,设矩形微槽宽度为W1,长度W2,微槽深度为d,则矩形微槽长度W2应与拼接试样的长度一致,宽度和微槽深度的尺寸应满足以下关系式:W1/d=0.01~20;对于侧面是(110)取向的单晶金刚石,需要制作跨过拼接缝且与拼接缝成45°的周期性微槽;设矩形凹槽宽度为W1,长度W2,矩形凹槽间距为W3,凹槽深度为d,矩形凹槽间距W3=10~500μm,矩形凹槽长度和宽度应满足以下关系式:W2/W1=2~20,矩形凹槽宽度和凹槽深度的尺寸应满足以下关系式:W1/d=0.1~20。
进一步地,对激光处理后的样品进行超声清洗,在氢气或者氢气/氧气等离子体条件下对衬底表面进行等离子体刻蚀,去除激光烧蚀碳化部分。
进一步地,采用微波等离子体化学气相沉积(MPCVD)方法在籽晶表面外延大尺寸CVD金刚石,通入总气体体积的2~10%的甲烷,生长功率选择为2000~3800W,压力15~25KPa,生长温度控制在700~1000℃,生长时间为50~200h。
进一步地,采用激光切割方法将外延大尺寸金刚石与籽晶分离,输出电流为50~100A,激光频率50~250Hz,进给速度100~300,激光切割直至该籽晶与大尺寸金刚石分离,重复此步骤直至所有的籽晶与外延金刚石分离。
进一步地,本发明具体工艺步骤为:
(1)选取5~20个边长在4~10mm范围的单晶金刚石,厚度为0.3~5mm,将多个籽晶垂直紧密排列,对其组成的上表面同时进行机械抛光处理。将要采用拼接的籽晶垂直紧密放置在一起,将其放在同一个工件上,使得所有籽晶可在相同的工艺条件下抛光,保证了上表面抛光后具有相同的高度以及粗糙度。所用抛光机具体参数为:载荷200~800,时间10~90min。抛光时,先采用低载荷,慢速抛光,然后通过高载荷慢速抛光,最后采用低载荷快速抛光来达到精抛的目的,最终抛光至所有籽晶高度差在10μm以内,表面粗糙度低于1nm;
(2)采用硫酸与硝酸5:1的体积比对抛光后的样品酸洗30~60min,之后分别用丙酮,无水乙醇对试样超声清洗10~30min;
(3)以激光刻蚀微槽为例,使用激光器将激光斑点聚焦在所需刻槽的位置处,设定激光功率1~3KW,激光步长5~15mm/s,依据设定好的图案尺寸进行激光刻槽;A.若籽晶拼接侧面均是(100)取向,垂直紧密放置,在拼接缝处刻槽处理,每个拼接缝处微槽为单个矩形微槽,设矩形微槽宽度为W1,长度W2,微槽深度为d,则矩形微槽长度W2应与拼接试样的长度一致,宽度和微槽深度的尺寸应满足以下关系式:W1/d=0.01~20;B.对于侧面是(110)取向的单晶金刚石,需要制作跨过拼接缝且与拼接缝成45°的周期性微槽。设矩形凹槽宽度为W1,长度W2,矩形凹槽间距为W3,凹槽深度为d,矩形凹槽间距W3=10~500μm,矩形凹槽长度和宽度应满足以下关系式:W2/W1=2~20,矩形凹槽宽度和凹槽深度的尺寸应满足以下关系式:W1/d=0.1~20;
(4)对激光处理后的样品进行超声清洗,在氢气或者氢气/氧气等离子体条件下对衬底表面进行等离子体刻蚀,结束后利用丙酮、乙醇超声清洗10~30min,去除激光烧蚀碳化部分;
(5)将已清洗好的籽晶放入微波等离子体设备的腔室中,通入氢气或氢气/氧气对单晶金刚石进行等离子体清洗。采用微波等离子体化学气相沉积(MPCVD)方法在籽晶表面外延大尺寸CVD金刚石,通入总气体体积的2~10%的甲烷,生长功率选择为2000~3800W,压力15~25KPa,生长温度控制在700~1000℃,生长时间为50~200h;
(6)拼接生长外延后的大尺寸单晶金刚石,采用激光切割方法从籽晶上表面开始切割,相关参数输出电流为50~100A,激光频率50~250Hz,进给速度100~300,激光每切割1mm,一个籽晶就会从大尺寸CVD金刚石分离,重复此步骤直到所有的籽晶与CVD金刚石分离,就得到了拼接外延生长的大尺寸单晶金刚石。
本发明在多个垂直紧密放置的籽晶表面外延大尺寸金刚石,拼接外延的金刚石不受籽晶尺寸的限制,容易获得大尺寸CVD金刚石。另外避免采用难以实现的离子注入方法剥离外延金刚石与衬底,而通过激光切割方法就可实现大尺寸金刚石与多个籽晶的分离。
本发明和现有技术所具有的有益效果在于:
(1)本发明通过在垂直紧密排列的单晶金刚石籽晶侧面外延生长大尺寸CVD金刚石,由于衬底是由多个籽晶组成,可利用激光切割工艺依次将籽晶与外延金刚石分离,有效解决了激光切割法对大尺寸金刚石切割深度的限制以及离子注入剥离衬底的方法难以实现等问题。
(2)本发明方法制备的金刚石尺寸不依赖于籽晶面的大小,能够依据单个籽晶的数量调整外延金刚石的尺寸,从而在根本上突破尺寸瓶颈,有望实现4英寸单晶金刚石的制备。
(3)本发明外延生长的大尺寸金刚石采用籽晶的侧面拼接制备,因此可通过将大尺寸金刚石切成若干个小单晶金刚石利用其侧面拼接,从而极大的节省制备大尺寸金刚石的成本。
(4)本发明由于衬底可完全采用HPHT籽晶,外延的大尺寸金刚石摇摆曲线半高宽比直接采用CVD拼接制备的金刚石半高宽小,即本发明制备的大尺寸金刚石位错密度较低。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例中使用的附图做简要介绍。下面的附图仅仅是本发明的简要介绍。
图1为本发明方法中多个单晶金刚石籽晶垂直紧密排列时的示意图;
图2为本发明方法中在多个垂直紧密排列的单晶金刚石籽晶上表面同质外延金刚石的示意图;
图3为本发明方法中多个籽晶侧面为(100)取向时,所刻微槽为平行于拼接缝周期性微槽的示意图;
图4为本发明方法中多个籽晶侧面为(110)取向时,所刻微槽为跨过拼接缝且与拼接缝成45°周期性微槽的示意图;
图5为本发明方法中激光切割部分籽晶后的示意图;
其中:1.垂直放置的金刚石籽晶;2.拼接缝;3.外延生长的大尺寸金刚石;4.微槽;W1.刻槽宽度;W2.刻槽长度;W3.刻槽间距;d.刻槽深度。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明初期通过将多个籽晶垂直紧密排列,对上表面精密抛光,随后在各籽晶上表面接缝处进行图案化刻槽处理,然后采用微波等离子体化学气相沉积(MPCVD)方法,在已刻槽处理后的籽晶上表面外延生长大尺寸金刚石。最后由于衬底是由多个籽晶连接形成,通过常用的激光切割技术将籽晶依次与外延大单晶分离开,即得到外延大尺寸单晶金刚石。本发明中大尺寸金刚石的制备以及切割方法有以下步骤:
实施例1
选取10个侧面取向为(100)的单晶金刚石,尺寸均为4×4×1mm3,将10个籽晶垂直紧密排列,如图1所示。对其组成的上表面同时进行机械抛光处理,将要采用拼接的籽晶垂直紧密放置在一起,将其放在同一个工件上,使得所有籽晶可在相同的工艺条件下抛光,保证了上表面抛光后具有相同的高度以及粗糙度。先采用载荷200,时间5min,然后载荷升高至600,抛光10min,最后采用载荷300,抛光10min,抛光后高度差为5μm,且表面粗糙度为0.3nm;采用硫酸与硝酸4:1的体积比对抛光后的样品酸洗30min,之后分别用丙酮,无水乙醇对试样超声清洗10min;采用激光器进行刻槽处理,如图2所示,尺寸W1=50μm,W2=4000μm,d=50μm,设定激光功率1KW,激光步长5mm/s;对激光处理后的样品进行超声清洗,在氢气等离子体条件下对衬底表面进行等离子体刻蚀,结束后利用丙酮、乙醇超声清洗10min,去除激光烧蚀碳化部分;将已刻槽处理后的单晶金刚石衬底放入微波等离子体设备的腔室中,通入300sccm氢气,2%的甲烷,生长功率为3800W,压力23KPa,生长温度控制在750℃左右,在此工艺下进行单晶金刚石拼接生长试验,生长时间为100h;生长结束后,获得了长宽高为10.4×4.5×4.6mm3大尺寸金刚石,如图4所示;采用激光切割方法从籽晶上表面开始切割,采用输出电流为50A,激光频率150Hz,进给速度200,激光切割约1mm,一个籽晶就会从大尺寸CVD金刚石脱离,如图5所示,重复此步骤直到所有的籽晶与CVD金刚石分离,就得到了拼接外延生长的10.4×4.5×0.6mm3大尺寸金刚石。
实施例2
选取15个侧面取向为(110)的单晶金刚石,尺寸均为8×8×1mm3,将15个籽晶垂直紧密排列,如图1所示。对其组成的上表面同时进行机械抛光处理,将要采用拼接的籽晶垂直紧密放置在一起,将其放在同一个工件上,使得所有籽晶可在相同的工艺条件下抛光,保证了上表面抛光后具有相同的高度以及粗糙度。先采用载荷300,时间5min,然后载荷升高至800,抛光10min,最后采用载荷300,抛光10min,抛光后高度差为6μm,且表面粗糙度为0.7nm;采用硫酸与硝酸4:1的体积比对抛光后的样品酸洗40min,之后分别用丙酮,无水乙醇对试样超声清洗10min;采用激光器进行刻槽处理,需要制作跨过拼接缝且与拼接缝成45°的周期性微槽,如图3所示,尺寸W1=100μm,W2=500μm,W3=100μm,d=60μm,设定激光功率3KW,激光步长10mm/s;对激光处理后的样品进行超声清洗,在氢气等离子体条件下对衬底表面进行等离子体刻蚀,结束后利用丙酮、乙醇超声清洗20min,去除激光烧蚀碳化部分;将已刻槽处理后的单晶金刚石衬底放入微波等离子体设备的腔室中,通入300sccm氢气,5%的甲烷,生长功率为3000W,压力20KPa,生长温度控制在800℃左右,在此工艺下进行单晶金刚石拼接生长试验,生长时间为150h;生长结束后,获得了长宽高为15.6×8.5×8.7mm3大尺寸金刚石,如图4所示;采用激光切割方法从籽晶上表面开始切割,采用输出电流为75A,激光频率250Hz,进给速度300,激光切割约1mm,一个籽晶就会从大尺寸CVD金刚石脱离,如图5所示,重复此步骤直到所有的籽晶与CVD金刚石分离,就得到了拼接外延生长的15.6×8.5×0.7mm3大尺寸金刚石。
实施例3
选取20个侧面取向为(100)的单晶金刚石,尺寸均为10×10×1mm3,将20个籽晶垂直紧密排列,如图1所示。对其组成的上表面同时进行机械抛光处理,将要采用拼接的籽晶垂直紧密放置在一起,将其放在同一个工件上,使得所有籽晶可在相同的工艺条件下抛光,保证了上表面抛光后具有相同的高度以及粗糙度。先采用载荷300,时间5min,然后载荷升高至800,抛光10min,最后采用载荷300,抛光10min,抛光后高度差为5μm,且表面粗糙度为0.8nm;采用硫酸与硝酸4:1的体积比对抛光后的样品酸洗40min,之后分别用丙酮,无水乙醇对试样超声清洗20min;采用激光器进行刻槽处理,如图2所示,尺寸W1=150μm,W2=10000μm,d=50μm,设定激光功率3KW,激光步长15mm/s;对激光处理后的样品进行超声清洗,在氢气等离子体条件下对衬底表面进行等离子体刻蚀,结束后利用丙酮、乙醇超声清洗30min,去除激光烧蚀碳化部分;将已刻槽处理后的单晶金刚石衬底放入微波等离子体设备的腔室中,通入300sccm氢气,5%的甲烷,生长功率为2700W,压力19KPa,生长温度控制在800℃左右,在此工艺下进行单晶金刚石拼接生长试验,生长时间为200h;生长结束后,获得了长宽高为20.5×10.4×10.7mm3大尺寸金刚石,如图4所示;采用激光切割方法从籽晶上表面开始切割,采用输出电流为100A,激光频率250Hz,进给速度300,激光切割约1mm,一个籽晶就会从大尺寸CVD金刚石脱离,如图5所示,重复此步骤直到所有的籽晶与CVD金刚石分离,就得到了拼接外延生长的20.5×10.4×10.7mm3大尺寸金刚石。

Claims (5)

1.一种垂直拼接制备大尺寸CVD金刚石的方法,其特征在于:将多个单晶金刚石垂直紧密排列,对其侧面同时进行抛光处理,然后在拼接处刻槽处理,通过微波等离子体化学气相沉积方法拼接制备大尺寸金刚石,最后通过激光切割方法实现大尺寸金刚石与籽晶的分离;
选择5~20个边长在4~10 mm范围的单晶金刚石,厚度为0.3~5 mm,拼接制备的CVD金刚石尺寸可实现成倍扩大;
通过将多个籽晶垂直紧密排列,对其侧面同时精密抛光,抛光至高度差在10 μm以内,且表面粗糙度低于1 nm;
刻槽的方法采用激光刻蚀微槽,具体激光刻蚀微槽的方法是:对于籽晶拼接侧面均是(100)取向,垂直紧密放置在拼接缝处刻槽处理,每个拼接缝处微槽为单个矩形微槽,设矩形微槽宽度为W1,长度W2,微槽深度为d,则矩形微槽长度W2应与拼接试样的长度一致,宽度和微槽深度的尺寸应满足以下关系式:W1/d=0.01~20;对于侧面是(110)取向的单晶金刚石,需要制作跨过拼接缝且与拼接缝成45°的周期性微槽;设矩形凹槽宽度为W1,长度W2,矩形凹槽间距为W3,凹槽深度为d,矩形凹槽间距W3=10~500 μm,矩形凹槽长度和宽度应满足以下关系式:W2/W1=2~20,矩形凹槽宽度和凹槽深度的尺寸应满足以下关系式:W1/d=0.1~20。
2.如权利要求1所述一种垂直拼接制备大尺寸CVD金刚石的方法,其特征在于,对激光处理后的样品进行超声清洗,在氢气或者氢气/氧气等离子体条件下对衬底表面进行等离子体刻蚀,去除激光烧蚀碳化部分。
3. 如权利要求1所述一种垂直拼接制备大尺寸CVD金刚石的方法,其特征在于,采用微波等离子体化学气相沉积(MPCVD)方法在籽晶表面外延大尺寸CVD金刚石,通入总气体体积的2~10%的甲烷,生长功率选择为2000~3800 W,压力15~25 KPa,生长温度控制在700~1000℃,生长时间为50~200 h。
4. 如权利要求1所述一种垂直拼接制备大尺寸CVD金刚石的方法,其特征在于,采用激光切割方法将外延大尺寸金刚石与籽晶分离,输出电流为50~100 A,激光频率50~250 Hz,进给速度100~300,激光切割直至该籽晶与大尺寸金刚石分离,重复此步骤直至所有的籽晶与外延金刚石分离。
5.如权利要求1所述一种垂直拼接制备大尺寸CVD金刚石的方法,其特征在于,具体工艺步骤为:
(1)选取5~20个边长在4~10 mm范围的单晶金刚石,厚度为0.3~5 mm,将多个籽晶垂直紧密排列,对其组成的上表面同时进行机械抛光处理;将要采用拼接的籽晶垂直紧密放置在一起,将其放在同一个工件上,使得所有籽晶可在相同的工艺条件下抛光,保证了上表面抛光后具有相同的高度以及粗糙度;所用抛光机具体参数为:载荷200~800g/cm2,时间10~90min;抛光时,先采用低载荷,慢速抛光,然后通过高载荷慢速抛光,最后采用低载荷快速抛光来达到精抛的目的,最终抛光至所有籽晶高度差在10μm以内,表面粗糙度低于1nm ;
(2)采用硫酸与硝酸5:1的体积比对抛光后的样品酸洗30~60 min,之后分别用丙酮,无水乙醇对试样超声清洗10~30 min;
(3)激光刻蚀微槽,使用激光器将激光斑点聚焦在所需刻槽的位置处,设定激光功率1~3KW,激光步长5~15mm/s,依据设定好的图案尺寸进行激光刻槽;A.若籽晶拼接侧面均是(100)取向,垂直紧密放置,在拼接缝处刻槽处理,每个拼接缝处微槽为单个矩形微槽,设矩形微槽宽度为W1,长度W2,微槽深度为d,则矩形微槽长度W2应与拼接试样的长度一致,宽度和微槽深度的尺寸应满足以下关系式:W1/d=0.01~20;B.对于侧面是(110)取向的单晶金刚石,需要制作跨过拼接缝且与拼接缝成45°的周期性微槽;设矩形凹槽宽度为W1,长度W2,矩形凹槽间距为W3,凹槽深度为d,矩形凹槽间距W3=10~500 μm,矩形凹槽长度和宽度应满足以下关系式:W2/W1=2~20,矩形凹槽宽度和凹槽深度的尺寸应满足以下关系式:W1/d=0.1~20;
(4)对激光处理后的样品进行超声清洗,在氢气或者氢气/氧气等离子体条件下对衬底表面进行等离子体刻蚀,结束后利用丙酮、乙醇超声清洗10~30 min,去除激光烧蚀碳化部分;
(5)将已清洗好的籽晶放入微波等离子体设备的腔室中,通入氢气或氢气/氧气对单晶金刚石进行等离子体清洗;采用微波等离子体化学气相沉积(MPCVD)方法在籽晶表面外延大尺寸CVD金刚石,通入总气体体积的2~10%的甲烷,生长功率选择为2000~3800 W,压力15~25 KPa,生长温度控制在700~1000℃,生长时间为50~200 h;
拼接生长外延后的大尺寸单晶金刚石,采用激光切割方法从籽晶上表面开始切割,相关参数输出电流为50~100 A,激光频率50~250 Hz,进给速度100~300,激光每切割1 mm,一个籽晶就会从大尺寸CVD金刚石分离,重复此步骤直到所有的籽晶与CVD金刚石分离,就得到了拼接外延生长的大尺寸单晶金刚石。
CN201910560201.XA 2019-06-26 2019-06-26 一种垂直拼接制备大尺寸cvd金刚石及切割方法 Active CN110230091B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910560201.XA CN110230091B (zh) 2019-06-26 2019-06-26 一种垂直拼接制备大尺寸cvd金刚石及切割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910560201.XA CN110230091B (zh) 2019-06-26 2019-06-26 一种垂直拼接制备大尺寸cvd金刚石及切割方法

Publications (2)

Publication Number Publication Date
CN110230091A CN110230091A (zh) 2019-09-13
CN110230091B true CN110230091B (zh) 2021-02-19

Family

ID=67857427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910560201.XA Active CN110230091B (zh) 2019-06-26 2019-06-26 一种垂直拼接制备大尺寸cvd金刚石及切割方法

Country Status (1)

Country Link
CN (1) CN110230091B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983435A (zh) * 2019-12-24 2020-04-10 长沙新材料产业研究院有限公司 一种cvd单晶金刚石籽晶和生长层的分离方法
CN111270313A (zh) * 2020-04-01 2020-06-12 湖州中芯半导体科技有限公司 一种拼接cvd金刚石单晶的方法
CN112030228B (zh) * 2020-09-11 2021-05-18 哈尔滨工业大学 用于多颗mpcvd单晶金刚石共同生长的桥接控温方法
CN112725902B (zh) * 2020-12-23 2022-04-19 西安交通大学 一种单晶金刚石衬底结构及其拼接加工方法
CN113529175A (zh) * 2021-07-05 2021-10-22 深圳技术大学 衬底及衬底的拼接方法和单晶金刚石的制备方法
CN114150376B (zh) * 2021-10-14 2023-10-24 吉林大学 一种大尺寸单晶金刚石拼接生长方法
CN114032613B (zh) * 2021-10-14 2023-10-31 吉林大学 一种提高拼接法生长金刚石单晶拼接缝质量的方法
CN114250511A (zh) * 2021-12-24 2022-03-29 宜昌中碳未来科技有限公司 一种mpcvd单晶金刚石表面缺陷修复生长方法
CN114959891A (zh) * 2022-03-30 2022-08-30 上海征世科技股份有限公司 一种单晶金刚石及其mpcvd制备方法
CN114836829B (zh) * 2022-04-27 2024-07-05 河南天璇半导体科技有限责任公司 一种mpcvd法生产单晶金刚石的方法
CN115573042A (zh) * 2022-10-16 2023-01-06 重庆交通大学 一种单晶金刚石同质拼接及界面低应力调控方法
CN115573032B (zh) * 2022-10-18 2024-06-21 北京科技大学 一种组装式合成大尺寸单晶金刚石的方法
CN116504644B (zh) * 2023-04-24 2023-12-08 北方工业大学 一种制备大尺寸复杂通道一体式金刚石槽道热沉的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247793A (ja) * 1993-02-22 1994-09-06 Sumitomo Electric Ind Ltd 単結晶ダイヤモンドおよび製造法
EP3421637B1 (en) * 2014-08-11 2020-10-14 Sumitomo Electric Industries, Ltd. Diamond
CN104651928A (zh) * 2015-01-17 2015-05-27 王宏兴 金刚石同质外延横向生长方法
CN107287654A (zh) * 2017-07-14 2017-10-24 中国电子科技集团公司第四十六研究所 一种cvd法合成单晶金刚石降低位错密度的方法
CN108677246A (zh) * 2018-06-26 2018-10-19 西安交通大学 一种横向搭桥拼接生长大面积单晶金刚石的方法
CN109161964A (zh) * 2018-09-30 2019-01-08 济南中乌新材料有限公司 一种大尺寸cvd金刚石晶体的制备方法
CN109722713B (zh) * 2019-01-31 2020-04-17 西安交通大学 一种金刚石衬底结构、切割工艺及其用途

Also Published As

Publication number Publication date
CN110230091A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN110230091B (zh) 一种垂直拼接制备大尺寸cvd金刚石及切割方法
US6096129A (en) Method of and apparatus for producing single-crystalline diamond of large size
CN110184653A (zh) 一种提高大尺寸单晶金刚石接缝质量的方法
EP0612868B1 (en) Single crystal diamond and process for producing the same
CA2097472C (en) Method for the manufacture of large single crystals
CN111321466A (zh) 大尺寸单晶金刚石生长方法及生长用复合基底
JP4849691B2 (ja) 大面積ダイヤモンド結晶基板及びその製造方法
CN110938864B (zh) 一种高效调控cvd单晶金刚石局部区域位错密度的方法
GB2488498A (en) Method for producing mosaic diamond
CN114150376A (zh) 一种大尺寸单晶金刚石拼接生长方法
WO2016112596A1 (zh) 金刚石层的分离方法
CN114318527A (zh) 一种大尺寸单晶金刚石膜生长和剥离方法
TW201842243A (zh) 大單晶鑽石及其生產方法
CN109722713B (zh) 一种金刚石衬底结构、切割工艺及其用途
CN204413401U (zh) 用于在金刚石表层下形成非金刚石层的装置
US20230392283A1 (en) Method of Growing Single Crystal Diamond Assisted by Polycrystalline Diamond Growth
CN113774479A (zh) 一种同质/异质混合外延生长大尺寸单晶金刚石的制备方法
CN115726034A (zh) 一种二次外延提高大尺寸单晶金刚石接缝质量的方法
CN114032613A (zh) 一种提高拼接法生长金刚石单晶拼接缝质量的方法
JP2005272197A (ja) ダイヤモンドの製造方法
US20220127751A1 (en) Large area single crystal diamond
JP2013060329A (ja) ダイヤモンド複合体
Mokuno et al. 1.3 Single crystal diamond wafers
CN117779205A (zh) 一种提升金刚石拼接处质量的方法
CN114836829B (zh) 一种mpcvd法生产单晶金刚石的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant