CN110227550A - 一种卟啉cof与氮化碳复合材料的制备方法及在光催化降解有机染料方面的应用 - Google Patents

一种卟啉cof与氮化碳复合材料的制备方法及在光催化降解有机染料方面的应用 Download PDF

Info

Publication number
CN110227550A
CN110227550A CN201910552154.4A CN201910552154A CN110227550A CN 110227550 A CN110227550 A CN 110227550A CN 201910552154 A CN201910552154 A CN 201910552154A CN 110227550 A CN110227550 A CN 110227550A
Authority
CN
China
Prior art keywords
cof
cup
preparation
porphyrin
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910552154.4A
Other languages
English (en)
Inventor
侯玉霞
王吉超
李英
娄慧慧
刘萍
张玉泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Institute of Science and Technology
Original Assignee
Henan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Institute of Science and Technology filed Critical Henan Institute of Science and Technology
Priority to CN201910552154.4A priority Critical patent/CN110227550A/zh
Publication of CN110227550A publication Critical patent/CN110227550A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Abstract

本发明公开了一种卟啉共价有机框架材料(COF)与氮化碳复合材料的制备方法及在光催化降解有机染料方面的应用,属于无机化学技术领域。通过研磨法,将四氨基苯基卟啉铜与对苯二甲醛通过胺醛缩合反应复合在g‑C3N4表面。本方法具有操作简单、反应条件温和、产率高、成本低、易于规模化生产等优点,将材料CuP‑Ph‑COF/g‑C3N4作为光催化剂用来降解染料罗丹明B,展现出了优异的光催化降解有机污染物的能力,有望在染料废水处理方面获得实际应用。

Description

一种卟啉COF与氮化碳复合材料的制备方法及在光催化降解 有机染料方面的应用
技术领域
本发明涉及一种卟啉COF与g-C3N4复合的半导体材料,具体涉及卟啉基COF材料与石墨相氮化碳复合材料CuP-Ph-COF/g-C3N4的制备方法及在光催化降解有机染料方面的应用,属于无机化学技术领域。
背景技术
随着社会的发展,环境恶化已经引起全社会的关注,尤其是我们生活中不可缺少的水的污染问题,其中染料废水具有高毒、处理困难等问题而受到多方关注,目前,治理染料废水的方法主要有吸附、分离等方法,由于成本高并且效果不佳等原因限制了它们在染料废水治理方面的应用。
光催化方法具有反应条件温和、二次污染小、成本低、反应光源充足等优点,是一种非常有发展前景的技术,近年来受到了科学家们的广泛关注。目前用于光催化降解的物质主要是无机半导体材料如TiO2、ZnO、Fe2O3等,但是这类材料大多数只能被紫外光激发,太阳光利用率较低。二维石墨相碳化氮(g-C3N4)非金属半导体材料具有好的稳定性、窄带隙、容易合成、价廉等优点,近年来被广泛研究,但是由于光生电荷复合率较高及较低的比表面积而限制了g-C3N4在光催化方面的应用,目前主要通过元素掺杂、修饰、染料敏化、增加表面积等方法来提高g-C3N4材料的电荷分离效率,并且增加材料对光的吸收性能。
卟啉是具有大π体系的平面性分子,具有稳定的刚型结构。在光合作用中起关键作用的叶绿素,其核心部分为金属镁卟啉环,主要作用就是吸收太阳光,常被用作染料对半导体材料进行敏化,并且对材料的光催化性能有一定提升。
二维COF材料是一种具有延展共轭结构的晶形有机多孔材料,具有大的π-π共轭结构,将卟啉作为构筑单元设计合成的二维卟啉COF材料不仅更有利于电子的传输,并且通过结构设计调控材料的能带和光吸收性能,来实现材料的功能可控合成。
目前COF材料的合成原料成本特别高,合成条件比较苛刻,从而限制了COF材料的实际应用。
发明内容
为了克服上述缺陷,本发明的目的在于提供一种新型卟啉COF与g-C3N4复合材料、以及相应的制备方法和在光催化降解有机染料方面的应用。
本发明以CuTAPP为构筑基元与对苯二甲醛通过胺醛缩合反应,在g-C3N4表面通过机械研磨原位形成复合材料CuP-Ph-COF/g-C3N4,采用红外光谱、扫描电镜、透射电镜及粉末X-射线衍射谱对其结构及性能进行了结构表征;
将材料CuP-Ph-COF/g-C3N4作为光催化剂用来降解染料罗丹明B,与CuP-Ph-COF、g-C3N4相比CuP-Ph-COF/g-C3N4光催化降解有机污染物的能力有很大提升,在染料废水处理方面具有潜在应用。
本发明提供的二维复合材料CuP-Ph-COF/g-C3N4,其特征在于:由金属卟啉COF与石墨相氮化碳复合而成,二维卟啉COF材料通过π-π相互作用与石墨相氮化碳(g-C3N4)结合在一起,含有异质结,具体结构如下式所示:
本发明所述复合材料制备的步骤,主要包括:
将5,10,15,20-四-(4-氨基苯基)卟啉铜、对苯二甲醛与g-C3N4按一定比例混合,在常温下机械研磨生成复合材料,洗涤干燥后得到CuP-Ph-COF/g-C3N4
进一步地,在上述技术方案中,所述5,10,15,20-四-(4-氨基苯基)卟啉铜与对苯二甲醛摩尔比为1:2。
进一步地,在上述技术方案中,所述研磨混合时,加入数滴溶剂有利于研磨。溶剂选自:邻二氯苯、正丁醇与醋酸组成的混合溶液。
进一步地,在上述技术方案中,得到的复合材料为COF负载量5-20%CuP-Ph-COF/g-C3N4
进一步地,在上述技术方案中,代表性的制备方式具体操作如下:
g-C3N4的制备:将15g三聚氰胺放在氧化铝坩埚,盖好盖子,放进马弗炉,升温速率为10℃/min,550度氮气保护下加热1小时,得到淡黄色粉末7.8g。
CuP-Ph-COF/g-C3N4材料的制备:CuTAPP的质量按照对g-C3N4的质量百分比,对苯二甲醛的量与CuTAPP的量按摩尔比1:2称取,先将g-C3N4与对苯二甲醛研磨30分钟,然后加入CuTAPP继续研磨120分钟,用三氯甲烷洗涤,真空干燥,分别制得含CuTAPP为5%、6%、8%、10%、20%的复合材料5%CuP-Ph-COF/g-C3N4、6%CuP-Ph-COF/g-C3N4、8%CuP-Ph-COF/g-C3N4、10%CuP-Ph-COF/g-C3N4、20%CuP-Ph-COF/g-C3N4
本发明所述二维复合材料CuP-Ph-COF/g-C3N4复合材料的应用,将CuP-Ph-COF/g-C3N4材料应用于光催化降解有机染料罗丹明B反应中。
进一步地,在上述技术方案中,CuP-Ph-COF/g-C3N4在光催化降解完成后,离心分离出催化剂,并用水洗涤,分离得到的催化剂直接用于下一轮的反应。
进一步地,在上述技术方案中,光催化应用的具体操作和筛选过程如下:
光催化降解罗丹明B材料筛选:分别将制备的20mg材料CuP-Ph-COF、g-C3N4、5%CuP-Ph-COF/g-C3N4、6%CuP-Ph-COF/g-C3N4、8%CuP-Ph-COF/g-C3N4、10%CuP-Ph-COF/g-C3N4、20%CuP-Ph-COF/g-C3N4分散在50mL 10mg/L的罗丹明B水溶液中,暗反应1h后,用氙灯光源照射反应液,每间隔15分钟测一下溶液的吸光度,照射90分钟;根据实验结果看出,合成的CuP-Ph-COF/g-C3N4的光催化降解能力随着COF材料的增加而增加,当增加到8%后,继续增加COF材料的负载量,材料的催化能力与8%的相比没有明显提升,考虑到催化效果和成本两个因素,表明COF材料负载量为8%的复合材料8%CuP-Ph-COF/g-C3N4为最佳负载量。
光催化降解罗丹明B pH条件筛选:将20mg材料8%CuP-Ph-COF/g-C3N4分散在50mL10mg/L的罗丹明B水溶液中,分别调节溶液的pH为1、2、3、4、7、10,然后暗反应1h后,用氙灯光源照射反应液,每间隔5分钟测一下溶液的吸光度,在光照20min时,pH=3的溶液吸光度几乎为零,降解效率为100%,而pH=1、2、4、7的溶液的降解效率则低于pH=3的条件。
光催化降解罗丹明B材料可持续性:将20mg材料8%CuP-Ph-COF/g-C3N4分散在50mL10mg/L的罗丹明B水溶液中,调节溶液的pH为3,然后暗反应1h后,用氙灯光源照射反应液,每间隔5分钟测一下溶液的吸光度,20分钟后离心分离出催化材料然后用于下一轮的测试,如此重复催化5轮,催化剂的仍具有很高的光催化降解性能。
本发明有益效果:
该发明反应条件温和、快速、环保,常温下仅需几滴溶剂机械研磨即可生成产物,合成方法新,材料新,成本低。用含金属铜卟啉的COF与g-C3N4通过π-π作用形成新的复合材料CuP-Ph-COF/g-C3N4,卟啉COF的引入有效调节了g-C3N4材料的带隙,形成的复合材料对可见光的吸收能力与纯g-C3N4相比有显著提高,并且复合材料的光生电荷负荷率也有所降低,因此对有机染料罗丹明B具有很好的光降解能力,20min即可将染料完全降解,降解效率达到100%,与纯g-C3N4相比,光降解性能提高了4倍。
展现出了很好的光催化降解有机污染物的能力,在染料废水处理方面具有潜在应用。
附图说明:
图1为本实施例1得到CuP-Ph-COF/g-C3N4材料FT-IR光谱图;
图2为本实施例1得到CuP-Ph-COF/g-C3N4材料粉末XRD谱图;
图3为本实施例1得到CuP-Ph-COF/g-C3N4材料扫描电镜图;
图4为本实施例1得到CuP-Ph-COF/g-C3N4材料TEM图;
图5为本实施例2中加入x%CuP-Ph-COF/g-C3N4、g-C3N4、CuP-Ph-COF和未加催化剂时光照90min罗丹明B的降解效率图;
图6为本实施例3中加入催化剂CuP-Ph-COF/g-C3N4后在不同pH溶液中降解罗丹明B的效率图;
图7为本实施例4中材料CuP-Ph-COF/g-C3N4的可持续性实验结果。
具体实施方式
实施例1
g-C3N4的制备:将15g三聚氰胺放在氧化铝坩埚,盖好盖子,放进马弗炉,升温速率为10℃/min,550度氮气保护下加热1小时,得到淡黄色粉末7.8g。
8%CuP-Ph-COF/g-C3N4的制备:称取100mg合成g-C3N4、和2.88g对苯二甲醛滴两滴邻二氯苯和正丁醇(体积比1:1)的混合溶液和6M的醋酸溶液1滴,研磨0.5h,然后加入8mgCuTAPP,再滴两滴邻二氯苯和正丁醇(1:1)的混合溶液和6M的醋酸溶液1滴,继续研磨2h,然后用三氯甲烷洗涤,过滤,干燥,得8%CuP-Ph-COF/g-C3N4;同样方法制备5%CuP-Ph-COF/g-C3N4、6%CuP-Ph-COF/g-C3N410%CuP-Ph-COF/g-C3N4和20%CuP-Ph-COF/g-C3N4
如图1所示,CuP-Ph-COF在1620cm-1处有一个很强的吸收峰为新形成的亚胺键的C=N的特征伸缩振动峰,在复合材料5%CuP-Ph-COF/g-C3N4、6%CuP-Ph-COF/g-C3N4、8%CuP-Ph-COF/g-C3N4、10%CuP-Ph-COF/g-C3N4、20%CuP-Ph-COF/g-C3N4中,相同位置也出现了增强的吸收峰,表明CuP-Ph-COF与g-C3N4成功复合在一起。
如图2所示,复合后的材料PXRD图中,与g-C3N4的衍射峰相似,说明复合后g-C3N4的结构晶形不变。
如图3所示,表明合成g-C3N4具有表面光滑。
如图4所示,复合CuP-Ph-COF后g-C3N4材料表面粗糙,被片状材料覆盖,说明CuP-Ph-COF复合于g-C3N4材料表面。
实施例2
光催化降解罗丹明B实验:为了进一步探究合成CuP-Ph-COF/g-C3N4复合材料的性能,设计了系列实验验证其催化降解罗丹明B的效率。
分别取20mg催化剂(5%CuP-Ph-COF/g-C3N4、6%CuP-Ph-COF/g-C3N4、8%CuP-Ph-COF/g-C3N4、10%CuP-Ph-COF/g-C3N4、20%CuP-Ph-COF/g-C3N4、CuP-Ph-COF、g-C3N4),然后加入50mL(10mg/L)罗丹明B水溶液,超声确保加入催化剂完全分散。暗反应吸附一个小时达到吸附平衡后,用加了400nm滤光片氙灯光源照射罗丹明B溶液,每间隔15分钟取一次反应液,离心分离,取上层清液测其吸光度。
如图5所示,复合5%、6%、8%、10%、20%CuP-Ph-COF/g-C3N4材料降解罗丹明B的能力与纯g-C3N4相比,都有不同程度的提高,在光照90分钟时,纯g-C3N4的降解效率只有23%,纯CuP-Ph-COF的降解效率为36%,而复合材料5%CuP-Ph-COF/g-C3N4、6%CuP-Ph-COF/g-C3N4、8%CuP-Ph-COF/g-C3N4、10%CuP-Ph-COF/g-C3N4、20%CuP-Ph-COF/g-C3N4降解效率分别为74%、80%、84%、82%、85%。其中,当复合量达到8%以上催化能力基本保持不变,考虑到成本的原因,因此8%CuP-Ph-COF/g-C3N4为最佳复合材料。
实施例3
光催化降解罗丹明B pH条件筛选:取20mg 8%CuP-Ph-COF/g-C3N4,然后加入50mL(10mg/L)罗丹明B水溶液,用1mol/L盐酸溶液和氢氧化钠溶液调节溶液pH为1、2、3、4、7、10,超声确保加入催化剂完全分散。暗反应吸附一个小时达到吸附平衡后,用加了400nm滤光片的氙灯光源照射罗丹明B溶液,每间隔5分钟取一次反应液,离心分离,取上层清液测其吸光度,监测反应进度。
如图6所示,无论酸性还是碱性条件,20mg 8%CuP-Ph-COF/g-C3N4的光催化降解罗丹明B的效率都比中性条件高,在pH为3溶液中20mg 8%CuP-Ph-COF/g-C3N4表现出了最好催化性能,在20分钟时催化效率达到了100%。
实施例4
光催化降解罗丹明B可持续性:取20mg 8%CuP-Ph-COF/g-C3N4,加入50mL(10mg/L)罗丹明B水溶液,调节溶液pH为3,超声,使加入的催化剂完全分散。暗反应吸附一个小时达到吸附平衡后,用加了400nm滤光片的氙灯光源照射罗丹明B溶液,每间隔5分钟取一次反应液,离心分离,取上层清液测其吸光度。将第一次使用过的催化剂进行相同的催化反应,重复五次,材料的催化降解能力依然很高。
如图7所示,材料8%CuP-Ph-COF/g-C3N4在相同条件下光催化降解5次后,催化剂的催化能力没有显著降低,表明合成的材料具有很好的可持续性,为很好的光催化材料。
实施例5
将材料8%CuP-Ph-COF/g-C3N4用于光催化降解对硝基苯酚、对氯苯酚和亚甲基蓝,催化能力与g-C3N4相比,催化效果基本相当,表明该复合材料对降解材料具有明显选择性。
以上实施例描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (7)

1.一种二维复合材料CuP-Ph-COF/g-C3N4,其特征在于:由金属卟啉COF与石墨相氮化碳复合而成,二维卟啉COF材料通过π-π相互作用与石墨相氮化碳(g-C3N4)结合在一起,含有异质结,具体结构如下式所示:
2.根据权利要求1所述CuP-Ph-COF/g-C3N4的制备方法,其特征在于,包括如下步骤:将5,10,15,20-四-(4-氨基苯基)卟啉铜、对苯二甲醛与g-C3N4按一定比例混合,在常温下机械研磨生成复合材料,洗涤干燥后得到CuP-Ph-COF/g-C3N4
3.根据权利要求2所述CuP-Ph-COF/g-C3N4的制备方法,其特征在于:5,10,15,20-四-(4-氨基苯基)卟啉铜与对苯二甲醛摩尔比为1:2。
4.根据权利要求书2所述CuP-Ph-COF/g-C3N4的制备方法,其特征在于:研磨混合时,加入数滴溶剂。
5.根据权利要求书4所述CuP-Ph-COF/g-C3N4的制备方法,其特征在于:溶剂选自邻二氯苯、正丁醇与醋酸组成的混合溶液。
6.根据权利要求1所述CuP-Ph-COF/g-C3N4材料在光催化降解有机染料罗丹明B反应中的应用。
7.根据权利要求6所述应用,其特征在于:CuP-Ph-COF/g-C3N4在光催化降解完成后,离心分离出催化剂,并用水洗涤,分离得到的催化剂直接用于下一轮的反应。
CN201910552154.4A 2019-06-25 2019-06-25 一种卟啉cof与氮化碳复合材料的制备方法及在光催化降解有机染料方面的应用 Pending CN110227550A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910552154.4A CN110227550A (zh) 2019-06-25 2019-06-25 一种卟啉cof与氮化碳复合材料的制备方法及在光催化降解有机染料方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910552154.4A CN110227550A (zh) 2019-06-25 2019-06-25 一种卟啉cof与氮化碳复合材料的制备方法及在光催化降解有机染料方面的应用

Publications (1)

Publication Number Publication Date
CN110227550A true CN110227550A (zh) 2019-09-13

Family

ID=67857380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910552154.4A Pending CN110227550A (zh) 2019-06-25 2019-06-25 一种卟啉cof与氮化碳复合材料的制备方法及在光催化降解有机染料方面的应用

Country Status (1)

Country Link
CN (1) CN110227550A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746602A (zh) * 2019-10-29 2020-02-04 大连理工大学 一种金属钴卟啉基多孔有机聚合物及其制备方法和应用
CN112808290A (zh) * 2020-12-30 2021-05-18 湖南大学 烯醇-酮式共价有机骨架/石墨相氮化碳复合光催化剂及其制备方法和应用
CN113019459A (zh) * 2021-03-25 2021-06-25 福州大学 一种二氧化钛卟啉基共价有机框架复合材料及其制备方法和应用
CN113976152A (zh) * 2021-11-17 2022-01-28 辽宁科技大学 桥接型TiO2-mCm/TA/CN异质结光催化剂及其制备和应用
CN114377725A (zh) * 2022-01-26 2022-04-22 福建农林大学 一种纳米纤维素复合石墨相氮化碳/cof异质结光催化剂及其制备方法和应用
CN114573086A (zh) * 2022-02-25 2022-06-03 湖南工程学院 一种SEP@CTFs复合材料在可见光下催化降解水体中低浓度抗生素的方法
CN117327210A (zh) * 2023-12-01 2024-01-02 潍坊医学院 一种基于β-环糊精对苯二甲醛包合物的卟啉微孔复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228663A (zh) * 2010-09-27 2013-07-31 加利福尼亚大学董事会 传导性开放骨架
WO2014203283A1 (en) * 2013-06-21 2014-12-24 Council Of Scientific & Industrial Research (An Indian Registered Body Incorporated Under The Registration Of Societies Act (Act Xxi Of 1860) Porphyrin containing covalent organic frameworks and process for the preparation thereof
CN108503853A (zh) * 2018-05-04 2018-09-07 武汉大学 一种基于仲胺基键合的共价有机框架材料及其制备方法和应用
CN108704662A (zh) * 2018-06-22 2018-10-26 南京白云环境科技集团股份有限公司 一种金属卟啉/石墨相氮化碳复合光催化剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228663A (zh) * 2010-09-27 2013-07-31 加利福尼亚大学董事会 传导性开放骨架
WO2014203283A1 (en) * 2013-06-21 2014-12-24 Council Of Scientific & Industrial Research (An Indian Registered Body Incorporated Under The Registration Of Societies Act (Act Xxi Of 1860) Porphyrin containing covalent organic frameworks and process for the preparation thereof
CN108503853A (zh) * 2018-05-04 2018-09-07 武汉大学 一种基于仲胺基键合的共价有机框架材料及其制备方法和应用
CN108704662A (zh) * 2018-06-22 2018-10-26 南京白云环境科技集团股份有限公司 一种金属卟啉/石墨相氮化碳复合光催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张倩等: "《普通高等院校环境科学与工程类系列规划教材 水环境化学》", 30 June 2018, 中国建材工业出版社 *
魏浩、吴洋: "《共价有机框架材料 设计、合成与表征》", 31 October 2017 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746602A (zh) * 2019-10-29 2020-02-04 大连理工大学 一种金属钴卟啉基多孔有机聚合物及其制备方法和应用
CN112808290B (zh) * 2020-12-30 2022-02-22 湖南大学 烯醇-酮式共价有机骨架/石墨相氮化碳复合光催化剂及其制备方法和应用
CN112808290A (zh) * 2020-12-30 2021-05-18 湖南大学 烯醇-酮式共价有机骨架/石墨相氮化碳复合光催化剂及其制备方法和应用
CN113019459A (zh) * 2021-03-25 2021-06-25 福州大学 一种二氧化钛卟啉基共价有机框架复合材料及其制备方法和应用
CN113019459B (zh) * 2021-03-25 2021-12-28 福州大学 一种二氧化钛卟啉基共价有机框架复合材料及其制备方法和应用
CN113976152B (zh) * 2021-11-17 2023-04-14 辽宁科技大学 桥接型TiO2-mCm/TA/CN异质结光催化剂及其制备和应用
CN113976152A (zh) * 2021-11-17 2022-01-28 辽宁科技大学 桥接型TiO2-mCm/TA/CN异质结光催化剂及其制备和应用
CN114377725A (zh) * 2022-01-26 2022-04-22 福建农林大学 一种纳米纤维素复合石墨相氮化碳/cof异质结光催化剂及其制备方法和应用
CN114377725B (zh) * 2022-01-26 2023-11-14 福建农林大学 一种纳米纤维素复合石墨相氮化碳/cof异质结光催化剂及其制备方法和应用
CN114573086A (zh) * 2022-02-25 2022-06-03 湖南工程学院 一种SEP@CTFs复合材料在可见光下催化降解水体中低浓度抗生素的方法
CN114573086B (zh) * 2022-02-25 2022-11-29 湖南工程学院 一种SEP@CTFs复合材料在可见光下催化降解水体中低浓度抗生素的方法
CN117327210A (zh) * 2023-12-01 2024-01-02 潍坊医学院 一种基于β-环糊精对苯二甲醛包合物的卟啉微孔复合材料及其制备方法和应用
CN117327210B (zh) * 2023-12-01 2024-02-02 潍坊医学院 一种基于β-环糊精对苯二甲醛包合物的卟啉微孔复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110227550A (zh) 一种卟啉cof与氮化碳复合材料的制备方法及在光催化降解有机染料方面的应用
Ali et al. Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange
Xin et al. Pyrolysis synthesized gC 3 N 4 for photocatalytic degradation of methylene blue
Dong et al. AgBr@ Ag/TiO2 core–shell composite with excellent visible light photocatalytic activity and hydrothermal stability
CN108144635A (zh) 一种石墨相氮化碳-硫化镉复合材料的制备方法
CN101195094B (zh) 可见光活化的二氧化钛卟啉纳米复合催化剂及其制备方法
CN111453804B (zh) 一种铁掺杂类石墨相氮化碳/石墨烯多功能纳米复合材料的制备方法
Wang et al. Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance
Sevim Synthesis and characterization of Zn and Co monocarboxy-phthalocyanines and investigation of their photocatalytic efficiency as TiO2 composites
CN101214441B (zh) 一种钛铋铁系光催化剂的制备方法
Sun et al. The effect of pH on the photocatalytic performance of BiVO4 for phenol mine sewage degradation under visible light
CN110951050B (zh) 氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用
Su et al. Cu (II) porphyrins modified TiO2 photocatalysts: Accumulated patterns of Cu (II) porphyrin molecules on the surface of TiO2 and influence on photocatalytic activity
CN109865514A (zh) 一种铜/二氧化钛复合光催化材料的制备方法
CN107684925A (zh) 一种酸改性g‑C3N4光催化剂及其制备和应用
Wang et al. Photocatalytic removal using g-C3N4 quantum dots/Bi2Ti2O7 composites
Mardiroosi et al. Design and fabrication of a perylene dimiide functionalized g-C3N4@ UiO-66 supramolecular photocatalyst: Insight into enhancing the photocatalytic performance
Tang et al. Supramolecular self-assembly production of porous carbon nitride nanosheets with excellent photocatalytic activity by a melamine derivative as doping molecule
García-López et al. C 3 N 4 Impregnated with Porphyrins as Heterogeneous Photocatalysts for the Selective Oxidation of 5-Hydroxymethyl-2-Furfural Under Solar Irradiation
Najafian et al. Synthesis and photocatalytic activity of V-doped mesoporous TiO 2 photosensitized with porphyrin supported by SBA-15
Yamazaki et al. Porous TiO2 adsorbed with squaraine dye as visible-light-responsive photocatalyst
Yaghoubi-berijani et al. Synthesis, characterization, and design of a photocatalyst based on BiOBr nanoplates and tin porphyrin with enhanced visible light photocatalytic activity
CN110227544B (zh) 蜂巢结构卟啉COP与g-C3N4复合材料的合成及在光催化降解染料方面的应用
Wang et al. Photocatalytic activity of the modified composite photocatalyst by introducing the rich-nitrogen complex to the Bi2WO6
Sun et al. Preparation, characterization and photocatalytic activity of metalloporphyrins-modified TiO 2 composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190913

RJ01 Rejection of invention patent application after publication