CN110951050B - 氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用 - Google Patents

氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用 Download PDF

Info

Publication number
CN110951050B
CN110951050B CN201911172524.8A CN201911172524A CN110951050B CN 110951050 B CN110951050 B CN 110951050B CN 201911172524 A CN201911172524 A CN 201911172524A CN 110951050 B CN110951050 B CN 110951050B
Authority
CN
China
Prior art keywords
porphyrin
cps
reaction
polymer
mporf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911172524.8A
Other languages
English (en)
Other versions
CN110951050A (zh
Inventor
彭天右
汪进明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Research Institute of Wuhan University
Original Assignee
Shenzhen Research Institute of Wuhan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Research Institute of Wuhan University filed Critical Shenzhen Research Institute of Wuhan University
Priority to CN201911172524.8A priority Critical patent/CN110951050B/zh
Publication of CN110951050A publication Critical patent/CN110951050A/zh
Application granted granted Critical
Publication of CN110951050B publication Critical patent/CN110951050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3328Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkyne-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • C08G2261/376Metal complexes of Fe, Co, Ni
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/415Sonogashira / Hagihara reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用。本发明所需原料来源广、合成工艺易控,采用Sonogashira偶联反应将卟啉类配合物的光吸收范围拓展至近红外光区,而且可加速光生电子在Zn与Co中心金属之间转移,降低电子与空穴的复合,从而有效地利用紫外‑可见‑近红外光区的光子实现高效的光催化制氢,在宽光谱响应光催化制氢方面显示良好的应用前景。

Description

氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用
技术领域
本发明属于有机聚合物基光催化材料及其制氢应用技术领域,具体涉及一种氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用。
背景技术
太阳能制氢途径主要有:太阳能发电与电解水制氢耦合、太阳能光电化学制氢、太阳能热化学分解水及生物质制氢、太阳光光催化分解水制氢等。其中,利用太阳光光催化分解水制氢被称为是最具应用前途的制氢技术。该方法主要是利用半导体光催化材料在太阳光的激发下产生电子-空穴对,并利用其直接将水分解为氢气和氧气。总体而言,半导体的光分解水效率及其对太阳光的利用效率是限制光催化制氢技术全面推广的关键因素。尽管TiO2等无机半导体材料具有诸多优良性质,但其不能利用可见/近红外光的缺点大大限制了其在光催化制氢领域的应用。因此,开发高效、稳定、经济的宽光谱响应的光催化体系极具科学意义。
金属卟啉配位化合物的电子吸收光谱在紫外-可见-近红外区域具有良好的吸收性能和高的摩尔消光系数,并且可在卟啉环上引入取代基的方式来调控卟啉的能带结构与光谱吸收范围,设计并合成需要的功能性分子,是一种理想的全光谱响应制氢光催化材料。但目前仅有较为少见的文献报道,以卟啉基共轭有机聚合物作为宽光谱响应的半导体材料,充分利用太阳光中的可见-近红外部分的低能光子,有效地利用太阳光实现光催化产氢。
此外,文献调研结果显示目前国内对卟啉的研究主要集中在单分子卟啉敏化无机半导体光催化剂方面,并未充分利用卟啉类共轭超分子优异的光吸收性能,从而影响太阳光的利用效率及其光催化效果。目前,国内外关于卟啉基共轭聚合物的制备方法及其应用于可见/近红外光驱动制氢未见专利公开或研究报道。本发明通过Sonogashira偶联反应,首次将具有不同中心金属的卟啉(ZnPorBr,CoPorF)偶联成共轭聚合物(MPorF-CPs,M=Zn1/3/Co2/3)。在可见近红外光照射下,该聚合物中锌卟啉单元光激发产生的电子能有效地转移到钴卟啉单元发生还原水反应。实验结果表明,五氟苯基比苯基更容易吸引电子,使得MPorF-CPs聚合物的光生电子比由不含氟取代的金属卟啉(ZnPorBr,CoPor)偶联形成的共轭聚合物(MPor-CPs)更容易向Co2+活性中心转移,从而导致MPorF-CPs呈现出比MPor-CPs更高效的电子转移效率和紫外-可见-近红外光响应催化产氢活性。
发明内容
本发明的目的在于针对当前构筑具有宽光谱响应特性的光催化材料等研究领域存在的问题,提供一种氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用。该方法操作简便、成本低,制备的产品具有紫外-可见-近红外光响应特性和高效的光催化制氢性能。
为实现上述目的,本发明所采用的技术方案如下:
第一方面,本发明提供了一种氟取代Zn/Co卟啉基共轭有机聚合物,其特征在于:所述氟取代Zn/Co卟啉基共轭聚合物即MPorF-CPs具有二维片状结构,且MPorF-CPs聚合物具有比由不含氟取代的金属卟啉ZnPorBr和CoPor偶联形成的共轭聚合物MPor-CPs更为规整的片状结构和光吸收性能,其合成方式如下:
Figure GDA0003531245820000031
MPor-CPs:M1=Zn M2=Co,x=H MPorF-CPs:M1=Zn M2=Co,x=F。
第二方面,本发明还提供一种制备上述氟取代Zn/Co卟啉基共轭有机聚合物的方法,其特征在于:首先合成5,10,15,20-四(4-溴苯基)卟啉及其相应的金属配合物即ZnPorBr;5,15-二(4-乙炔基苯基)-10,20-二(五氟苯基)卟啉及其相应的金属配合物即CoPorF;然后,在催化剂作用采用Sonogashira偶联反应将ZnPorBr与CoPorF聚合成氟取代卟啉基共轭聚合物即MPorF-CPs;其具体步骤如下:
1)取3g、16.2mmol对溴苯甲醛于250mL三口烧瓶,抽排空气充入N2,使用滴液漏斗向反应瓶中加入150mL丙酸,调节温度为130℃,搅拌并向其中加入1.09g、16.2mmol吡咯;反应12h后抽滤并用甲醇反复洗涤固体产物,然后用二氯甲烷冲洗滤饼获得暗红色滤液,将滤液旋干后通过湿法装柱、CH2Cl2的柱层析分离纯化;最后用采用CHCl3和CH3OH混合溶剂重结晶得到暗紫色固体即5,10,15,20-四(4-溴苯基)卟啉;
2)取上述150mg、0.16mmol的5,10,15,20-四(4-溴苯基)卟啉以及351mg、1.6mmol的Zn(OAc)2·2H2O于100mL反应管中,抽排空气并通入N2,向其中加入v/v为1:1的30mLCHCl3/AcOH混合溶液;120℃回流反应1.5h;反应结束后,甲醇离心洗涤粗产品,最后干燥得到紫红色锌卟啉单体即ZnPorBr;
3)称取520mg、1.1mmol的5,15二(五氟苯基)卟啉于三口烧瓶中,抽排空气并通入N2,向其中加入100mL CHCl3溶剂,1mL、12.4mmol的吡啶以及400mg、2.2mmol的N-溴代丁二酰亚胺;0℃下反应3h后用旋转蒸发仪旋干,按照石油醚/二氯甲烷的v/v为1:1行柱层析,得到紫色固体即5,15-二溴-10,20-二(五氟苯基)卟啉;
4)称取210mg、0.34mmol的5,15-二溴-10,20-二(五氟苯基)卟啉,225mg、0.75mmol的4-[(三甲基硅基)乙炔基]苯硼酸频哪酯以及39mg、0.03mmol的Pd(PPh3)4于100mL三口烧瓶中,抽排空气并通入N2,向其中加入40mL无水THF,之后向反应瓶中加入2mL、234mg、1.70mmol的K2CO3水溶液;65℃下反应12h;反应结束后,反应液用旋转蒸发仪旋干,按照石油醚/二氯甲烷的v/v为1:1行柱层析,得到紫色固体即5,15-二(4-[三甲基硅基)乙炔基]苯基)-10,20-二(五氟苯基)卟啉(H2Por-TMS);
5)称取700mg、0.87mmol的H2Por-TMS以及240mg、1.74mmol的无水K2CO3于三颈烧瓶中,N2保护;向三颈烧瓶中加入100mL、v/v为1:3的CH3OH/CH2Cl2混合溶液;搅拌,室温下反应一夜;反应结束后除去溶剂,用CH2Cl2溶解,水洗3次后收集有机相,无水硫酸钠干燥,旋干,按照v:v为二氯甲烷:正己烷=1:1行柱层析,二氯甲烷及甲醇重结晶得紫红色固体即5,15-二(4-乙炔基苯基)-10,20-二(五氟苯基)卟啉(H2Por);
6)称取100mg、0.15mmol的H2Por,374mg、1.5mmol的Co(OAc)2·4H2O于100mL反应管中,抽排空气并通入N2;向反应瓶中加入40mL、v/v为3:1,的CHCl3/CH3OH的混合溶液;搅拌,65℃下反应12h;反应结束后除去溶剂,用CH2Cl2溶解,水洗3次后收集有机相,无水硫酸钠干燥,旋干,按照v:v为二氯甲烷:正己烷=1:1行柱层析得橙红色钴卟啉单体即CoPorF;
7)称取150mg、0.21mmol的CoPorF,103mg、0.10mmol的ZnPorBr,215mg的PPh3,46mg的Pd(OAc)2,79mg的CuI于100mL反应管中,抽排空气并通入N2,向反应管中加入40mL、v/v为1:3的NEt3/THF混合溶液;76℃下反应12h;反应结束后,离心并分别用THF,CHCl3,C2H5OH和H2O依次洗涤,之后再分别用上述溶剂索氏提取24h;最后真空干燥得到紫黑色固体即MPorF-CPs卟啉基聚合物;
8)将30mg卟啉基聚合物材料分散在50mL的电子牺牲试剂水溶液中,所述电子牺牲试剂为15vol%的三乙醇胺,超声分散5min得到均匀的悬浮液,然后抽真空以除去溶液中的O2,搅拌并用光源为300W的氙灯光照;采用气相色谱仪分析产生的氢气。
第三方面,本发明还提供一种如上述的氟取代Zn/Co卟啉基共轭有机聚合物在作为宽光谱响应光催化材料中的应用,其特征在于:在可见近红外光照射过程中,聚合物中锌卟啉单元光激发产生的电子能够有效地转移到钴卟啉单元,并发生还原水反应;五氟苯基比苯基更容易吸引电子,使得MPorF-CPs聚合物的光生电子比MPor-CPs更容易向Co2+活性中心转移,从而导致MPorF-CPs有更高效的电子转移效率。
作为优选方案,所述MPorF-CPs聚合物在紫外-可见-近红外光照和TEOA、15vol%的电子牺牲试剂存在下,可用于宽光谱响应光催化制氢。
本发明采用Sonogashira偶联反应,将具有不同中心金属的卟啉(ZnPorBr,CoPorF)偶联成卟啉基共轭聚合物(MPorF-CPs,M=Zn1/3/Co2/2)。该聚合物中炔基作为共轭电子桥,使得锌卟啉和钴卟啉单元被光激发后会发生有效的光生电子分离、具有良好的紫外-可见-近红外光响应光催化产氢活性。
与现有光催化材料相比,本发明的共轭聚合物(MPorF-CPs)有以下优点与效果:
所得MPorF-CPs聚合物具有宽光谱(紫外-可见-近红外)响应特性,且可实现宽光谱范围内的光催化分解水产氢性能。该聚合物具有二维片状结构,聚合物中锌卟啉单元光激发产生的电子能够有效地转移到钴卟啉单元,并发生还原水反应。该聚合物在紫外-可见-近红外的宽波段范围内均表现出优良的光吸收性能,并可实现宽光谱(200-850nm)响应光催化产氢。将30mg的聚合物分散在15vol%的三乙醇胺(TEOA)溶液中,超声分散得到均匀的悬浮液,光照1h后,聚合物的光催化产氢活性最高。实验结果表明,五氟苯基比苯基更容易吸引电子,使得MPorF-CPs聚合物的光生电子比由不含氟取代的金属卟啉偶联形成的共轭聚合物(MPor-CPs)更容易向Co2+活性中心转移,从而导致MPorF-CPs呈现出比MPor-CPs更高效的电子转移效率和紫外-可见-近红外光响应催化产氢活性。MPorF-CP聚合物在400,450,500,550,700,760和850nm单色光照下分别取得了10.4%,7.78%,8.2%,8.7%,4.8%,2.9%和0.76%的表观量子产率。具体优点如下:
1)所需材料来源广、制备条件温和、无须高温高压、能耗成本低,适合工业化生产。
2)采用Sonogashira偶联反应,将具有不同中心金属的卟啉偶联成卟啉基共轭聚合物,构筑的聚合物在紫外-可见-近红外光区均具有良好的光吸收性能,且聚合物在光照过程中能实现中心金属Zn与Co之间的电子转移,有效地降低了电荷复合,从而有望应用于光催化降解污染物、光解水、光电太阳能电池等领域。
3)构筑的卟啉基共轭聚合物几乎在全光谱范围(200-850nm)内实现较高的产氢活性。其最佳的光催化产氢条件为:30mg的1.0wt%Pt负载卟啉基聚合物,分散在15vol%的TEOA溶液中,并光照一定时间。
附图说明
图1为本发明5,10,15,20-四(4-溴苯基)卟啉及其相应的金属配合物(ZnPorBr)的合成路线图。
图2为本发明5,15-二(4-乙炔基苯基)-10,20-二(氟苯基)卟啉以及其相应的金属配合物(CoPorF)的合成路线图。
图3为本发明卟啉基聚合物的合成路线(MPorF-CPs)图。
图4为本发明制备的卟啉基聚合物漫反射吸收光谱;
图5为本发明卟啉基聚合物MPorF-CPs的用量不同时可见光分解水的(λ≥400nm)效果图。
图6为本发明制备的30mg、1.0wt%Pt负载的卟啉基聚合物MPorF-CPs,分散在15vol%的TEOA溶液中在可见光区域内不同单色光照下的光催化产氢的表观量子产率图。
图7为本发明MPorF-CPs聚合物扫描电镜图;
图8为本发明MPor-CPs聚合物扫描电镜图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步地详细阐述。
实施例1:
首先采用图1-3的合成路径合成MPorF-CPs聚合物。
其中,当x=H时产物标记为MPor-CPs,作为本研究的对比参照物。图4显示MPorF-CPs聚合物比MPor-CPs有更好的光吸收性能。取MPorF-CPs聚合物10mg加入到50mL的TEOA水溶液中(TEOA体积浓度15%),测试之前,将该分散体系超声处理5min,并除去反应器中的空气,光照一段时间后,采用气相色谱(GC,SP6890,TCD检测器,5A分子筛,氩气作载气)检测体系的产氢量。由图5可知,可见-近红外(Vis-NIR)光照1h后的产氢活性为69μmol h-1。图6显示MPorF-CPs聚合物在400,450,500,550,700,760和850nm单色光照下分别取得10.4%,7.8%,8.2%,8.7%,4.8%,2.9%和0.76%的表观量子产率,比同等条件下MPor-CPs聚合物的表观量子产率要高,表明MPorF-CPs聚合物光生载流子分离效率要比MPorF-CPs的高,因而具有更好的产氢性能。
实施例2:
首先采用图1-3的合成路径合成MPorF-CPs聚合物。
其中,当x=H时产物标记为MPor-CPs,作为本研究的对比参照物。图4显示MPorF-CPs聚合物比MPor-CPs有更好的光吸收性能。取MPorF-CPs聚合物20mg加入到50mL的TEOA水溶液中(TEOA体积浓度15%),测试之前,将该分散体系超声处理5min,并除去反应器中的空气,光照一段时间后,采用气相色谱(GC,SP6890,TCD检测器,5A分子筛,氩气作载气)检测体系的产氢量。由图5可知,可见-近红外(Vis-NIR)光照1h后的产氢活性为138μmol h-1,说明可见光催化产氢性能随着MPorF-CPs聚合物的用量的增加而呈现提高趋势。图6显示MPorF-CPs聚合物在400,450,500,550,700,760和850nm单色光照下分别取得10.4%,7.8%,8.2%,8.7%,4.8%,2.9%和0.76%的表观量子产率,比同等条件下MPor-CPs聚合物的表观量子产率要高,表明MPorF-CPs聚合物光生载流子分离效率要比MPorF-CPs高,因而具有更好的产氢性能。
实施例3:
首先采用图1-3的合成路径合成MPorF-CPs聚合物。
其中,当x=H时产物标记为MPor-CPs,作为本研究的对比参照物。图4显示MPorF-CPs聚合物比MPor-CPs有更好的光吸收性能。取MPorF-CPs聚合物30mg加入到50mL的TEOA水溶液中(TEOA体积浓度15%),测试之前,将该分散体系超声处理5min,并除去反应器中的空气,光照一段时间后,采用气相色谱(GC,SP6890,TCD检测器,5A分子筛,氩气作载气)检测体系的产氢量。由图5可知,可见-近红外(Vis-NIR)光照1h后的产氢活性为165μmol h-1,说明MPor-CPs聚合物的可见光催化产氢性能随着聚合物用量的增加而进一步升高。图6显示MPorF-CPs聚合物在400,450,500,550,700,760和850nm单色光照下分别取得10.4%,7.8%,8.2%,8.7%,4.8%,2.9%和0.76%的表观量子产率,比同等条件下MPor-CPs聚合物的表观量子产率要高,表明MPorF-CPs聚合物光生载流子分离效率要比MPorF-CPs高,因而具有更好的产氢性能。
实施例4:
首先采用图1-3的合成路径合成MPorF-CPs聚合物。
其中,当x=H时产物标记为MPor-CPs,作为本研究的对比参照物。图4显示MPorF-CPs聚合物比MPor-CPs有更好的光吸收性能。取MPorF-CPs聚合物40mg加入到50mL的TEOA水溶液中(TEOA体积浓度15%),测试之前,将该分散体系超声处理5min,并除去反应器中的空气,光照一段时间后,采用气相色谱(GC,SP6890,TCD检测器,5A分子筛,氩气作载气)检测体系的产氢量。由图5可知,可见-近红外(Vis-NIR)光照1h后的产氢活性为134μmol h-1,说明聚合物的添加量较多时会影响悬浮体系对光的吸收,而降低体系的产氢活性。图6显示MPorF-CPs聚合物在400,450,500,550,700,760和850nm单色光照下分别取得10.4%,7.8%,8.2%,8.7%,4.8%,2.9%和0.76%的表观量子产率,比同等条件下MPor-CPs聚合物的表观量子产率要高,表明MPorF-CPs聚合物光生载流子分离效率要比MPorF-CPs高,因而具有更好的产氢性能。
实施例5:
首先采用图1-3的合成路径合成MPorF-CPs聚合物。
其中,当x=H时产物标记为MPor-CPs,作为本研究的对比参照物。图4显示MPorF-CPs聚合物比MPor-CPs有更好的光吸收性能。取MPorF-CPs聚合物50mg加入到50mL的TEOA水溶液中(TEOA体积浓度15%),测试之前,将该分散体系超声处理5min,并除去反应器中的空气,光照一段时间后,采用气相色谱(GC,SP6890,TCD检测器,5A分子筛,氩气作载气)检测体系的产氢量。由图5可知,可见-近红外(Vis-NIR)光照1h后的产氢活性为111μmol h-1,说明MPor-CPs聚合物的可见光催化产氢性能随着聚合物使用量的增加而呈现进一步下降的趋势,聚合物的添加量较多时会影响悬浮体系光的射入深度以及对光的吸收,而降低体系的产氢活性。图6显示MPorF-CPs聚合物在400,450,500,550,700,760和850nm单色光照下分别取得10.4%,7.8%,8.2%,8.7%,4.8%,2.9%和0.76%的表观量子产率,比同等条件下MPor-CPs聚合物的表观量子产率要高,表明MPorF-CPs聚合物光生载流子分离效率要比MPorF-CPs高,因而具有更好的产氢性能。
对本发明各实施例所制备的MPorF-CPs聚合物可进行可见-近红光催化产氢实验,以测定其光催化活性。效率最优的实验条件为:30mg 1.0wt%Pt负载卟啉基聚合物分散在15vol%的TEOA溶液中。在最优实验条件下,紫外-可见-近红光区内的各个单色光照下的光催化产氢表观量子产率结果如图6所示。其具体步骤为:
聚合物在紫外-可见-近红外(或可见-近红外)光照和电子牺牲试剂(三乙醇胺(15vol%))存在下,可用于宽光谱响应光催化制氢。
将30mg的催化剂分散在15vol%的TEOA溶液中,超声分散5min得到均匀的悬浮液,然后抽真空以除去溶液中的O2,搅拌并采用紫外-可见-近红外(或可见-近红外)光照。采用气相色谱仪分析产生的氢气。
图5的结果表明,本发明所制备的卟啉基共轭有机聚合物催化剂,随着使用量的提高,光催化产氢活性逐渐提高,但使用量过高会导致产氢活性降低。其中,30mg的聚合物催化剂表现出了最高的可见光-近红外光催化活性。图6显示MPorF-CPs和MPor-CPs聚合物具有紫外-可见-近红光区间内的宽光谱响应光催化产氢性能,MPorF-CPs聚合物因其优异的电子传输性能,因而表现出比MPor-CPs更好的光催化产氢效果,其在400,450,500,550,700,760和850nm单色光照下分别取得了10.4%,7.8%,8.2%,8.7%,4.8%,2.9%和0.76%的表观量子产率。以上结果说明本发明制备的卟啉基聚合物催化剂可实现200-850nm范围内的宽光谱响应光催产氢性能,在实现全光谱光催化制氢方面具有良好的应用前景。

Claims (4)

1.一种氟取代Zn/Co卟啉基共轭有机聚合物,其特征在于:所述氟取代Zn/Co卟啉基共轭聚合物即MPorF-CPs具有二维片状结构,且MPorF-CPs聚合物具有比由不含氟取代的金属卟啉ZnPorBr和CoPor偶联形成的共轭聚合物MPor-CPs更为规整的片状结构和光吸收性能,其合成方式如下:
Figure FDA0003531245810000011
2.一种制备如权利要求1所述氟取代Zn/Co卟啉基共轭有机聚合物的方法,其特征在于:首先合成5,10,15,20-四(4-溴苯基)卟啉及其相应的金属配合物即ZnPorBr;5,15-二(4-乙炔基苯基)-10,20-二(五氟苯基)卟啉及其相应的金属配合物即CoPorF;然后,在催化剂作用采用Sonogashira偶联反应将ZnPorBr与CoPorF聚合成氟取代卟啉基共轭聚合物即MPorF-CPs;其具体步骤如下:
1)取3g、16.2mmol对溴苯甲醛于250mL三口烧瓶,抽排空气充入N2,使用滴液漏斗向反应瓶中加入150mL丙酸,调节温度为130℃,搅拌并向其中加入1.09g、16.2mmol吡咯;反应12h后抽滤并用甲醇反复洗涤固体产物,然后用二氯甲烷冲洗滤饼获得暗红色滤液,将滤液旋干后通过湿法装柱、CH2Cl2的柱层析分离纯化;最后用采用CHCl3和CH3OH混合溶剂重结晶得到暗紫色固体即5,10,15,20-四(4-溴苯基)卟啉;
2)取上述150mg、0.16mmol的5,10,15,20-四(4-溴苯基)卟啉以及351mg、1.6mmol的Zn(OAc)2·2H2O于100mL反应管中,抽排空气并通入N2,向其中加入v/v为1:1的30mL CHCl3/AcOH混合溶液;120℃回流反应1.5h;反应结束后,甲醇离心洗涤粗产品,最后干燥得到紫红色锌卟啉单体即ZnPorBr;
3)称取520mg、1.1mmol的5,15二(五氟苯基)卟啉于三口烧瓶中,抽排空气并通入N2,向其中加入100mL CHCl3溶剂,1mL、12.4mmol的吡啶以及400mg、2.2mmol的N-溴代丁二酰亚胺;0℃下反应3h后用旋转蒸发仪旋干,按照石油醚/二氯甲烷的v/v为1:1行柱层析,得到紫色固体即5,15-二溴-10,20-二(五氟苯基)卟啉;
4)称取210mg、0.34mmol的5,15-二溴-10,20-二(五氟苯基)卟啉,225mg、0.75mmol的4-[(三甲基硅基)乙炔基]苯硼酸频哪酯以及39mg、0.03mmol的Pd(PPh3)4于100mL三口烧瓶中,抽排空气并通入N2,向其中加入40mL无水THF,之后向反应瓶中加入2mL、234mg、1.70mmol的K2CO3水溶液;65℃下反应12h;反应结束后,反应液用旋转蒸发仪旋干,按照石油醚/二氯甲烷的v/v为1:1行柱层析,得到紫色固体即5,15-二(4-[三甲基硅基)乙炔基]苯基)-10,20-二(五氟苯基)卟啉(H2Por-TMS);
5)称取700mg、0.87mmol的H2Por-TMS以及240mg、1.74mmol的无水K2CO3于三颈烧瓶中,N2保护;向三颈烧瓶中加入100mL、v/v为1:3的CH3OH/CH2Cl2混合溶液;搅拌,室温下反应一夜;反应结束后除去溶剂,用CH2Cl2溶解,水洗3次后收集有机相,无水硫酸钠干燥,旋干,按照v:v为二氯甲烷:正己烷=1:1行柱层析,二氯甲烷及甲醇重结晶得紫红色固体即5,15-二(4-乙炔基苯基)-10,20-二(五氟苯基)卟啉(H2Por);
6)称取100mg、0.15mmol的H2Por,374mg、1.5mmol的Co(OAc)2·4H2O于100mL反应管中,抽排空气并通入N2;向反应瓶中加入40mL、v/v为3:1,的CHCl3/CH3OH的混合溶液;搅拌,65℃下反应12h;反应结束后除去溶剂,用CH2Cl2溶解,水洗3次后收集有机相,无水硫酸钠干燥,旋干,按照v:v为二氯甲烷:正己烷=1:1行柱层析得橙红色钴卟啉单体即CoPorF;
7)称取150mg、0.21mmol的CoPorF,103mg、0.10mmol的ZnPorBr,215mg的PPh3,46mg的Pd(OAc)2,79mg的CuI于100mL反应管中,抽排空气并通入N2,向反应管中加入40mL、v/v为1:3的NEt3/THF混合溶液;76℃下反应12h;反应结束后,离心并分别用THF,CHCl3,C2H5OH和H2O依次洗涤,之后再分别用上述溶剂索氏提取24h;最后真空干燥得到紫黑色固体即MPorF-CPs卟啉基聚合物。
3.一种如权利要求1所述的氟取代Zn/Co卟啉基共轭有机聚合物在作为宽光谱响应光催化材料中的应用,其特征在于:在可见近红外光照射过程中,聚合物中锌卟啉单元光激发产生的电子能够有效地转移到钴卟啉单元,并发生还原水反应;五氟苯基比苯基更容易吸引电子,使得MPorF-CPs聚合物的光生电子比MPor-CPs更容易向Co2+活性中心转移,从而导致MPorF-CPs有更高效的电子转移效率。
4.根据权利要求3所述的氟取代Zn/Co卟啉基共轭有机聚合物在作为宽光谱响应光催化材料中的应用,其特征在于:所述MPorF-CPs聚合物在紫外-可见-近红外光照和TEOA、15vol%的电子牺牲试剂存在下,可用于宽光谱响应光催化制氢。
CN201911172524.8A 2019-11-26 2019-11-26 氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用 Active CN110951050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911172524.8A CN110951050B (zh) 2019-11-26 2019-11-26 氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911172524.8A CN110951050B (zh) 2019-11-26 2019-11-26 氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110951050A CN110951050A (zh) 2020-04-03
CN110951050B true CN110951050B (zh) 2022-06-21

Family

ID=69977036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911172524.8A Active CN110951050B (zh) 2019-11-26 2019-11-26 氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110951050B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698579B (zh) * 2021-07-23 2023-09-01 西北民族大学 卟啉型共轭微孔聚合物及其合成方法和应用
CN114380839A (zh) * 2022-01-26 2022-04-22 合肥学院 一种锌-卟啉配合物及其制备方法与应用
CN114456357B (zh) * 2022-03-09 2023-11-03 中国石油大学(华东) 一种基于卟啉聚合物的三乙胺气敏材料
CN114878663B (zh) * 2022-06-24 2023-10-13 济南大学 一种双金属共价有机框架材料及其电化学发光传感器和应用
CN115275230A (zh) * 2022-08-09 2022-11-01 湘潭大学 一种杂原子装载的聚金属卟啉材料及其合成方法和在锌-空气电池中应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787130A (zh) * 2010-03-04 2010-07-28 浙江大学 含卟啉的聚酰亚胺及其制备方法和应用
CN103755928A (zh) * 2013-09-17 2014-04-30 华南理工大学 一种水溶性卟啉共轭聚合物及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845982B2 (ja) * 1988-12-09 1999-01-13 三井化学株式会社 フッ素置換されたポルフィリン化合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787130A (zh) * 2010-03-04 2010-07-28 浙江大学 含卟啉的聚酰亚胺及其制备方法和应用
CN103755928A (zh) * 2013-09-17 2014-04-30 华南理工大学 一种水溶性卟啉共轭聚合物及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Porphyrin-Based Conjugated Polymers as Intrinsic Semiconducting Photocatalysts for Robust H2- Generation under Visible Light;Zhuqing Chen等;《ACS Appl. Energy Mater.》;20190719;第2卷(第8期);第5665-5676页 *

Also Published As

Publication number Publication date
CN110951050A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN110951050B (zh) 氟取代Zn/Co卟啉基共轭有机聚合物及其制备方法和应用
Shen et al. Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2
Zeng et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity
Zhang et al. Metal-organic layers as a platform for developing single-atom catalysts for photochemical CO2 reduction
Zhang et al. Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran on WO3/g-C3N4 composite under irradiation of visible light
Ye et al. Fluorinated conjugated poly (benzotriazole)/g-C3N4 heterojunctions for significantly enhancing photocatalytic H2 evolution
Wang et al. Coupled visible-light driven photocatalytic reactions over porphyrin-based MOF materials
Fang et al. In situ constructing intramolecular ternary homojunction of carbon nitride for efficient photoinduced molecular oxygen activation and hydrogen evolution
Wu et al. A function-switchable metal-free photocatalyst for the efficient and selective production of hydrogen and hydrogen peroxide
Liu et al. Assembling UiO-66 into layered HTiNbO5 nanosheets for efficient photocatalytic CO2 reduction
CN111871465B (zh) 一种双配体金属有机骨架光催化剂及其制备方法
CN107899618B (zh) 一种基于大环化合物光敏染料与二氧化钛的杂化材料及其制备方法和在光催化中的应用
Liu et al. Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H 2 evolution over gC 3 N 4 anchored with ferrocene-based hole relay
Luo et al. Benzotrithiophene and triphenylamine based covalent organic frameworks as heterogeneous photocatalysts for benzimidazole synthesis
Ma et al. Hybrid photocatalytic systems comprising a manganese complex anchored on g-C3N4 for efficient visible-light photoreduction of CO2
CN106362742B (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
CN111905824A (zh) 一种双配体金属有机骨架光催化剂及其应用
WO2023245910A1 (zh) 一种铂单原子/簇修饰的光敏化体系及制备方法和用途
Jing et al. Enhanced photocatalytic hydrogen production under visible light of an organic-inorganic hybrid material based on enzo [1, 2-b: 4, 5-b'] dithiophene polymer and TiO2
Liu et al. Studying the role of dual vacancies over g-C3N4/Zn0. 3Cd0. 7S for photocatalytic CO2 reduction
CN114849785A (zh) 一种三嗪环共价有机框架材料掺杂卟啉钴光催化剂的制备
CN108080036B (zh) 一种基于光敏性金属-有机配位纳米笼与二氧化钛的杂化材料及其制备方法和应用
Li et al. Chlorophyll derivative sensitized monolayer Ti3C2Tx MXene nanosheets for photocatalytic hydrogen evolution
CN112354559B (zh) 一种二维受体分子/多级孔TiO2复合光催化剂及其制备方法和光催化应用
CN113976148A (zh) 一种Z型C60/Bi/BiOBr复合光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant