CN110227549B - 一种空心立方体结构阳极催化剂及其制备方法 - Google Patents

一种空心立方体结构阳极催化剂及其制备方法 Download PDF

Info

Publication number
CN110227549B
CN110227549B CN201910574490.9A CN201910574490A CN110227549B CN 110227549 B CN110227549 B CN 110227549B CN 201910574490 A CN201910574490 A CN 201910574490A CN 110227549 B CN110227549 B CN 110227549B
Authority
CN
China
Prior art keywords
pba
hollow
anode catalyst
cubic structure
nife
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910574490.9A
Other languages
English (en)
Other versions
CN110227549A (zh
Inventor
冯永强
王潇
董沛沛
黄剑锋
赵亚娟
冯李
巩颖波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910574490.9A priority Critical patent/CN110227549B/zh
Publication of CN110227549A publication Critical patent/CN110227549A/zh
Application granted granted Critical
Publication of CN110227549B publication Critical patent/CN110227549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种空心立方体结构阳极催化剂及其制备方法,采用沉淀法合成PBA立方体;采用水热法,利用无水乙醇对PBA立方体进行刻蚀,最终得到空心PBA立方体,即为电解水和电解尿素用阳极催化剂;本发明的制备方法反应受热均匀,易控制,所使用原料成本低、易得到目标产物、操作简单易行,所得空心结构的PBA的形貌好、易调控,具有优异的电解水OER性能和电解尿素UOR性能。

Description

一种空心立方体结构阳极催化剂及其制备方法
技术领域
本发明涉及电催化领域,具体涉及一种空心立方体结构阳极催化剂及其制备方法。
背景技术
普鲁士蓝类似物(Prussian Blue Analogue,简称PBA),是典型的面心立方结构的晶体,是由功能性有机配体连接的金属中心/簇组成的典型多孔多功能材料,具有氧化还原性、高表面积和均匀孔隙率的独特性能,应用于催化、传感器、电池电极材料和储存离子等领域,近年来受到越来越多的关注。PBA的合成方法有电化学沉积法和化学合成法。
在电化学能源存储与转换领域,较高的比表面积能提供更多的电化学活性位点以及更大的与电解液的接触面积;较薄而同时具有渗透性的壳层结构极大的加快电子与离子的传输;内部中空结构能有效的缓解离子循环穿梭带来的体积膨胀问题等。将提高PBA纳米材料的固有特性以及进一步赋予其新的功能,使其表现出增强的电解水阳极反应(OER)活性和电解尿素阳极反应(UOR)的优异稳定性。
发明内容
本发明目的在于提供一种空心立方体结构阳极催化剂及其制备方法,制得的催化剂为中空的纳米立方体结构,具有优异的电催化活性和电解尿素阳极反应稳定性。
为实现上述目的,本发明采用的技术方案是:
一种空心立方体结构阳极催化剂的制备方法,包括以下步骤:
S1、称取0.5-1 mmol的镍金属盐、0.5-2 mmol的柠檬酸钠水合物,溶解在20 ml去离子水中,边搅拌边加入金属氰化钾水溶液,得到混合溶液;S2、将上述混合溶液静置20-48h,将产物进行离心、用去离子水和无水乙醇洗涤、真空干燥,得到PBA立方体粉末;
S3、将将PBA立方体粉末分散在乙醇中,然后在连续搅拌下倒入100-500mg/20ml的PVP乙醇溶液中搅拌均匀,将混合溶液转移至水热釜中,160-200 ℃下反应6-48 h,待冷却至室温后离心,用去离子水和无水乙醇洗涤、真空干燥,得到空心PBA立方体。
进一步,所述镍金属盐为硝酸盐、硫酸盐、醋酸盐、氯化物中的一种或几种。
进一步,所述金属氰化钾水溶液为铁氰化钾水溶液或钴氰化钾水溶液。
空心立方体结构阳极催化剂,其为中空的纳米立方体结构。
与现有技术相比,本发明具有以下有益的技术效果:
本发明的制备方法反应受热均匀,易控制,所使用原料成本低、易得到目标产物、操作简单易行,所得空心结构的PBA的形貌好、易调控,具有优异的电催化产氧性能,且相对于未被刻蚀的PBA立方体纳米材料,本发明经过乙醇的化学刻蚀作用得到的空心立方体PBA具有更大的比表面积以及暴露更多的活性位点,因此具有更加优异的电催化活性和优异的电解水OER、电解尿素UOR性能。
本发明采用水热法对PBA立方体结构进行化学刻蚀,使其成为具有中空结构的纳米立方体结构,实心的PBA纳米立方体的不均匀表面反应性是形成中空结构的主要原因,PBA立方体上的蚀刻优先发生在顶点处,并且蚀刻速率沿立方体的体对角线方向逐渐加快,最终形成中空的纳米立方体结构,使PBA材料的结构和功能的优势最大化,扩展了金属有机骨架在电催化方面的应用。
附图说明
图1为实施例1制备得到的NiFe-PBA的XRD图;
图2为实施例1制备得到的NiFe-PBA的SEM图;
图3为实施例1制备得到的Hollow NiFe-PBA的SEM表征图;
图4为实施例1制备得到的NiFe -PBA和Hollow NiFe -PBA在1 M的KOH电解液中的LSV曲线图;
图5为实施例1制备得到的NiFe -PBA和Hollow NiFe -PBA在1 M的KOH和0.5 M尿素电解液中的LSV曲线图;
具体实施方式
下面结合具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
空心立方体结构阳极催化剂的制备方法,具体步骤如下:
称取0.5-1 mmol的镍金属盐、0.5-2 mmol的柠檬酸钠水合物,溶于20 ml去离子水中,边搅拌边加入金属氰化钾水溶液,得到混合溶液,静置一段时间,将产物进行离心、洗涤、干燥得到PBA立方体。
称取一定量的PBA立方体粉末,分散在乙醇中,然后在连续搅拌下倒入100-500mg/20 ml的PVP乙醇溶液中,搅拌15 min后,将混合溶液转移到50 mL水热釜中,160-200 ℃下反应6-48 h,待冷却至室温后离心,用去离子水和无水乙醇洗涤、真空干燥,得到空心PBA立方体;
下面通过具体实施例来对本发明进行更详细的说明:
实施例1
将175 mg的六水合硝酸镍和265 mg的二水合柠檬酸钠溶于20 mL去离子水中,边搅拌边加入20 mL铁氰化钾水溶液,得到混合溶液,静置20 h,将产物进行离心、洗涤、真空干燥24 h得到NiFe-PBA。
称取20 mg上述NiFe-PBA粉末,分散在20 mL乙醇中,然后在连续搅拌下倒入100mg/20 mL的PVP乙醇溶液中,搅拌15 min后,将混合溶液转移到50 mL水热釜中,180 ℃下反应48 h,待冷却至室温后离心,用去离子水和无水乙醇洗涤、真空干燥24 h,得到空心NiFe-PBA。
图1分别是NiFe-PBA的XRD图谱。可以看出大约在14.9,17.4,24.6和30.2,35.1,39.4,43.3,50.4,53.7,56.9处分别显示衍射峰,分别对应于NiFe-PBA的(111),(200),(220),(222),(400),(420),(422),(440),(600)和(620)面,表明NiFe-PBA的形成。
图2是NiFe-PBA在100 nm放大倍数下的SEM表征图,可以看出所合成的NiFe-PBA具有实心立方体结构,且尺寸均一,分布均匀。
图3是经过乙醇刻蚀后的NiFe-PBA的SEM表征图,可以看出经过刻蚀,NiFe-PBA立方体从顶点处被刻蚀,呈空心立方体结构。
图4中分别是NiFe-PBA、Hollow NiFe-PBA、贵金属催化剂IrO2的LSV曲线图,可以看出所制备的空心NiFe -PBA在碱性溶液中具有良好的电解水OER性能,相对于NiFe-PBA,其产氧性能明显提升,在达到10 mA/cm2时,过电位大约为293 mV。
图5中分别是NiFe-PBA、Hollow NiFe-PBA、贵金属催化剂IrO2的LSV曲线图,可以看出所制备的空心NiFe -PBA在尿素溶液中具有良好的电解尿素UOR性能,相对于NiFe-PBA,其产氧性能明显提升,在达到10 mA/cm2时,过电位大约为130 mV。
实施例2
将78 mg的无水氯化镍和265 mg的二水合柠檬酸钠溶于20 mL去离子水中,边搅拌边加入20 mL铁氰化钾水溶液,得到混合溶液,静置48 h,将产物进行离心、洗涤、真空干燥24 h得到NiFe-PBA。
称取20 mg上述NiFe-PBA粉末,分散在20 mL乙醇中,然后在连续搅拌下倒入100mg/20 mL的PVP乙醇溶液中,搅拌15 min后,将混合溶液转移到50 mL水热釜中,200 ℃下反应48 h,待冷却至室温后离心,用去离子水和无水乙醇洗涤、真空干燥24 h,得到空心NiFe-PBA。
实施例3
将106 mg的醋酸镍和265 mg的二水合柠檬酸钠溶于20 mL去离子水中,边搅拌边加入20 mL铁氰化钾水溶液,得到混合溶液,静置48 h,将产物进行离心、洗涤、真空干燥24h得到NiFe-PBA。
称取20 mg上述NiFe-PBA粉末,分散在20 mL乙醇中,然后在连续搅拌下倒入200mg/20 mL的PVP乙醇溶液中,搅拌15 min后,将混合溶液转移到50 mL水热釜中,160 ℃下反应24 h,待冷却至室温后离心,用去离子水和无水乙醇洗涤、真空干燥24 h,得到空心NiFe-PBA。
实施例4
将143 mg的六水合氯化镍和265 mg的二水合柠檬酸钠溶于20 mL去离子水中,边搅拌边加入20 mL铁氰化钾水溶液,得到混合溶液,静置48 h,将产物进行离心、洗涤、真空干燥24 h得到NiFe-PBA。
称取20 mg上述NiFe-PBA粉末,分散在20 mL乙醇中,然后在连续搅拌下倒入100mg/20 mL的PVP乙醇溶液中,搅拌15 min后,将混合溶液转移到50 mL水热釜中,200 ℃下反应24 h,待冷却至室温后离心,用去离子水和无水乙醇洗涤、真空干燥24 h,得到空心NiFe-PBA。
实施例5
将291 mg的六水合硝酸镍和353 mg的二水合柠檬酸钠溶于20 mL去离子水中,边搅拌边加入20 mL钴氰化钾水溶液,得到混合溶液,静置20 h,将产物进行离心、洗涤、真空干燥24 h得到NiCo-PBA。
称取20 mg上述NiCo-PBA粉末,分散在20 mL乙醇中,然后在连续搅拌下倒入400mg/20 mL的PVP乙醇溶液中,搅拌15 min后,将混合溶液转移到50 mL水热釜中,160 ℃下反应48 h,待冷却至室温后离心,用去离子水和无水乙醇洗涤、真空干燥24 h,得到空心NiCo-PBA。
实施例6
将291 mg的六水合硝酸镍和353 mg的二水合柠檬酸钠溶于20 mL去离子水中,边搅拌边加入20 mL铁氰化钾水溶液,得到混合溶液,静置48 h,将产物进行离心、洗涤、真空干燥24 h得到NiFe-PBA。
称取20 mg上述NiFe-PBA粉末,分散在20 mL乙醇中,然后在连续搅拌下倒入500mg/20 mL的PVP乙醇溶液中,搅拌15 min后,将混合溶液转移到50 mL水热釜中,200 ℃下反应6 h,待冷却至室温后离心,用去离子水和无水乙醇洗涤、真空干燥24 h,得到空心NiFe-PBA。
最后应该说明的是:以上实施例仅用于说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。

Claims (5)

1.一种空心立方体结构阳极催化剂的制备方法,其特征在于包括以下步骤:
S1、称取0.5-1 mmol的镍金属盐、0.5-2 mmol的柠檬酸钠水合物,溶解在20 mL 去离子水中,边搅拌边加入金属氰化钾水溶液,得到混合溶液;
S2、将上述混合溶液静置20-48 h,将产物进行离心、用去离子水和无水乙醇洗涤、真空干燥,得到PBA立方体粉末;S3、将PBA立方体粉末分散在乙醇中,然后在连续搅拌下倒入100-500mg/20mL 的PVP乙醇溶液中搅拌均匀,将混合溶液转移至水热釜中,160-200 ℃下反应6-48 h,待冷却至室温后离心,用去离子水和无水乙醇洗涤、真空干燥,得到空心PBA立方体。
2.根据权利要求1所述的空心立方体结构阳极催化剂的制备方法,其特征在于:所述镍金属盐为硝酸盐、硫酸盐、醋酸盐、氯化物中的一种或几种。
3.根据权利要求1所述的空心立方体结构阳极催化剂的制备方法,其特征在于:所述金属氰化钾水溶液为铁氰化钾水溶液或钴氰化钾水溶液。
4.一种根据权利要求1-3任一项方法制备的空心立方体结构阳极催化剂。
5.根据权利要求4所述的空心立方体结构阳极催化剂,其特征在于:其为中空的纳米立方体结构。
CN201910574490.9A 2019-06-28 2019-06-28 一种空心立方体结构阳极催化剂及其制备方法 Active CN110227549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910574490.9A CN110227549B (zh) 2019-06-28 2019-06-28 一种空心立方体结构阳极催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910574490.9A CN110227549B (zh) 2019-06-28 2019-06-28 一种空心立方体结构阳极催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110227549A CN110227549A (zh) 2019-09-13
CN110227549B true CN110227549B (zh) 2022-04-29

Family

ID=67857531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910574490.9A Active CN110227549B (zh) 2019-06-28 2019-06-28 一种空心立方体结构阳极催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110227549B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110711596B (zh) * 2019-10-24 2020-11-10 江西理工大学 一种高效全解水电催化剂IPBAP/Ni2P@MoOx/NF及其制备方法
CN111235575B (zh) * 2020-02-20 2022-06-17 肇庆市华师大光电产业研究院 一种制备形貌可控的材料选择性刻蚀方法
CN111632624B (zh) * 2020-06-22 2022-10-28 陕西科技大学 一种电解水用阳极催化剂及其制备方法
CN111822054A (zh) * 2020-08-14 2020-10-27 陕西科技大学 一种纳米多孔材料阳极催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836762A (zh) * 2016-03-16 2016-08-10 西北大学 一种空心普鲁士蓝纳米立方体的制备方法及其应用
WO2017200358A1 (ko) * 2016-05-19 2017-11-23 인하대학교 산학협력단 방사성 세슘 흡착용 조성물 및 이의 제조방법
KR20180008942A (ko) * 2016-07-14 2018-01-25 인천대학교 산학협력단 환원된 산화그래핀과 프루시안 블루를 이용한 전기 촉매의 제조방법
CN108063266A (zh) * 2017-12-14 2018-05-22 扬州大学 一种高性能普鲁士蓝类似物修饰电极的制备方法
CN109518216A (zh) * 2018-11-15 2019-03-26 同济大学 一种磷化钴纳米框架及其制备和应用
CN109647458A (zh) * 2019-01-11 2019-04-19 河南师范大学 自模板法合成具有中空结构的双金属磷化物电催化剂的方法
CN109742398A (zh) * 2019-01-07 2019-05-10 中国矿业大学 一种锂离子电池用锰系类普鲁士蓝材料的合成及应用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836762A (zh) * 2016-03-16 2016-08-10 西北大学 一种空心普鲁士蓝纳米立方体的制备方法及其应用
WO2017200358A1 (ko) * 2016-05-19 2017-11-23 인하대학교 산학협력단 방사성 세슘 흡착용 조성물 및 이의 제조방법
KR20180008942A (ko) * 2016-07-14 2018-01-25 인천대학교 산학협력단 환원된 산화그래핀과 프루시안 블루를 이용한 전기 촉매의 제조방법
CN108063266A (zh) * 2017-12-14 2018-05-22 扬州大学 一种高性能普鲁士蓝类似物修饰电极的制备方法
CN109518216A (zh) * 2018-11-15 2019-03-26 同济大学 一种磷化钴纳米框架及其制备和应用
CN109742398A (zh) * 2019-01-07 2019-05-10 中国矿业大学 一种锂离子电池用锰系类普鲁士蓝材料的合成及应用方法
CN109647458A (zh) * 2019-01-11 2019-04-19 河南师范大学 自模板法合成具有中空结构的双金属磷化物电催化剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Novel Prussian-blue-analogue microcuboid assemblies and their derived catalytic performance for effective reduction of 4-nitrophenol;Yongqiang Feng et al.;《New J. Chem.》;20181112(第42期);第20212页摘要、第20213页实验部分、第20215页第4段 *

Also Published As

Publication number Publication date
CN110227549A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN110227549B (zh) 一种空心立方体结构阳极催化剂及其制备方法
CN110624605B (zh) 一种壳核结构的阳极催化剂及其制备方法
US11396521B2 (en) Ultra-thin Ni—Fe-MOF nanosheet, preparation method and use thereof
CN107803207B (zh) 一种碳基双金属复合材料、制备及其应用
CN107159293B (zh) 一种NiFe3N/NF电化学催化剂及其制备方法与应用
CN111715248B (zh) 一种中空纳米电解水用阴极催化剂及其制备方法
CN113684501B (zh) 一种镍铁基磷化物电催化材料及其制备方法和应用
CN108823625B (zh) 一种复合金属氢氧化物及其制备方法和应用
CN108172782B (zh) 一种具有壳-核结构碳包裹多孔氧化亚钴纳米材料的制备方法及应用
CN110237860B (zh) 一种电解水和电解尿素用阳极催化剂及其制备方法
CN109354056B (zh) 一种具有丰富缺陷的铁掺杂硫化铜纳米片材料及其制备方法和应用
Ji et al. Insights on rational design and regulation strategies of Prussian blue analogues and their derivatives towards high-performance electrocatalysts
CN113460993A (zh) 一种锌氮修饰双碳催化材料及其制备方法和在锌-空气电池中的应用
CN110676473B (zh) 一种多级多孔Rh纳米片的制备方法
CN116837410A (zh) 一种析氧催化剂及其制备方法、膜电极和电化学装置
CN112023922A (zh) 一种Pt-MnO2材料及其制备方法和应用
CN115074771B (zh) 一种氮掺杂碳纳米管包覆Ni3ZnC0.7/Ni异质纳米粒子电催化剂及其制备方法
CN111632624B (zh) 一种电解水用阳极催化剂及其制备方法
WO2023279406A1 (zh) 一种负载型催化剂的制备方法及其应用
KR102522321B1 (ko) 코발트-철(CoFe) 다공성 나노입자의 제조방법
Liu et al. Self‐supported bimetallic array superstructures for high‐performance coupling electrosynthesis of formate and adipate
CN115637456A (zh) 一种核壳结构Cu2O@(Co,Cu)(OH)2纳米立方体电催化剂及其制备和应用
CN113437312A (zh) 一种应用于锌空气电池的普鲁士蓝衍生物催化剂的制备
CN112017872A (zh) 一种二维氢氧化镍纳米片电极的制备方法及应用
CN114990578B (zh) 一种铜/羟基磷酸铜电催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant