CN110227440B - 一种高效催化乙醇制备乙缩醛的催化剂及其制备方法 - Google Patents

一种高效催化乙醇制备乙缩醛的催化剂及其制备方法 Download PDF

Info

Publication number
CN110227440B
CN110227440B CN201910563862.8A CN201910563862A CN110227440B CN 110227440 B CN110227440 B CN 110227440B CN 201910563862 A CN201910563862 A CN 201910563862A CN 110227440 B CN110227440 B CN 110227440B
Authority
CN
China
Prior art keywords
catalyst
acetal
ethanol
active center
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910563862.8A
Other languages
English (en)
Other versions
CN110227440A (zh
Inventor
何静
刘佳雨
安哲
宋红艳
舒心
项顼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201910563862.8A priority Critical patent/CN110227440B/zh
Publication of CN110227440A publication Critical patent/CN110227440A/zh
Application granted granted Critical
Publication of CN110227440B publication Critical patent/CN110227440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/48Preparation of compounds having groups
    • C07C41/50Preparation of compounds having groups by reactions producing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种高效催化乙醇制备乙缩醛的催化剂及其制备方法,属于生物质催化转化领域,采用负载型Bi基金属催化剂,该催化剂由均匀分散的Bi金属纳米颗粒及BiM(M=Zr、Ce、Ti、Mo)混合氧化物固溶体组成,催化剂活性中心为Bi金属活性中心和BiM(M=Zr、Ce、Ti、Mo)固溶体缩醛作用活性中心。催化剂由BiM(M=Zr、Ce、Ti、Mo)混合氢氧化物前体原位焙烧还原制得。优点在于通过控制混合氢氧化物前体制备方法可调变Bi纳米颗粒与载体之间的界面作用、催化剂酸强度。本发明催化剂便宜高效。将催化剂用于催化乙醇制备乙缩醛的反应,常压,2小时,乙醇转化率99%,乙缩醛选择性达到88%。

Description

一种高效催化乙醇制备乙缩醛的催化剂及其制备方法
技术领域
本发明属于生物质催化转化制备精细化学品的技术领域,特别是提供了一种采用负载型Bi基催化剂高效催化乙醇制备乙缩醛催化剂及其制备方法。
背景技术
生物质能源是世界上最广泛的一种可再生能源,鉴于生物质能源可再生性、环保性等优异性能,生物质能源的开发、利用受到广泛的关注。乙醇作为生物质能源的主要组成部分,可用于转化、生产高附加值化学品。乙缩醛(又名1,1-二乙氧基乙烷)是一种多功能的高价值精细化学品,同时也是一种重要的中间体,在医药行业、能源行业、化工行业、食品行业等多个行业都有重要的应用,由乙醇高效转化制备乙缩醛在实际应用中具有重要的意义。
乙醇转化制备乙缩醛的催化剂主要分为酸性催化剂和混合氧化物催化剂。目前,研究报道中还存有很多的问题,如乙醇转化率低、乙缩醛选择性差、反应过度氧化以及反应条件限制等。
由乙醇制备乙缩醛需要经过两个反应步骤,首先第一步乙醇氧化脱氢生成醛,然后第二步是乙醇先与一分子乙醛发生缩合反应生成半缩醛,半缩醛很不稳定,会快速与另一分子的乙醇发生缩合转化得到乙缩醛。醇的氧化脱氢过程主要是以氧气作为氧化剂,乙醇羟基氢、α-位C-H的氢断裂与氧气活化产生的一个氧原子结合生成水脱去,断开的键结合生成乙醛所需温度较高(通常250℃-350℃)。缩醛化反应步骤主要是在强酸作为催化剂条件下,在较低的温度(通常20℃-30℃)下由相应的醇和醛反应生成相应的缩醛化产物和水,该反应是一个放热反应也是一个可逆反应。催化剂要求同时具备氧化脱氢、缩醛化作用的能力。针对反应路径,催化剂设计需要多活性中心,金属活性中心氧化脱氢,缩醛作用活性中心协同催化醇醛缩合。多功能无氯的酸性催化剂Pd(OAc)2/Cu(OAc)2/paratoluenesulfonic acid用于催化醇直接制备相应的缩醛,在70℃,10MPa O2条件下得到了92%的乙缩醛选择性和30%的乙醇转化率,乙缩醛的收率达到28%(Appl.Catal.A,2007,329(10):1-6)。
混合氧化物催化剂用于气相条件下催化乙醇选择性氧化制备乙缩醛,研究者将RuO2负载于SnO2、ZrO2、TiO2、Al2O3、SiO2上,发现RuO2/SnO2催化剂得到最高的活性,在120℃,9kPa O2,1kPa N2压力条件下,乙缩醛的选择性为81%,乙醇的转化率为10%~15%(J.Phy.Chem.B,2005,109(6):2155-2163),反应没有过度氧化产物出现,同时他们指出改催化机理与氧化还原机理相一致,过程需要晶格氧的参与。Mo12V3W1.2Cu1.2Sb0.5Ox催化剂选择性催化氧化乙醇制备乙缩醛,混合金属氧化物作为催化剂,催化过程更加绿色环保。研究表明,最优的催化条件为温度224℃,反应气含量为30%乙醇,10%氧气,60%的氦气,得到最高的乙缩醛收率为14%(Biofuels,2012,3(1):25-34)。此外,有通过两个连续反应器的乙醇制备乙缩醛的工艺,在第一个反应器中使用Cu/SiO2催化剂,在220℃下、5kPa乙醇气,催化氧化乙醇转化为乙醛,乙醇转化率为20%,乙醛选择性99%;第二个反应器中使用H-Y沸石为催化剂,在20℃、3.3kPa乙醇气及1.7kPa乙醛条件下,催化乙醇与生成的乙醛反应生成乙缩醛。通过此方法得到的乙缩醛收率达到35.1%(Catal.Today,2014,233(13):133-139)。
发明内容
本发明的目的在于提供一种高效的负载型金属催化剂,条件温和,用于高效催化转化乙醇制备乙缩醛。
为实现上述目的,本发明的Bi基催化剂为由均匀分散的Bi金属活性中心纳米颗粒及BiM复合氧化物固溶体组成,Bi为金属活性中心和固溶体载体为缩醛作用活性中心,优选催化剂中Bi金属活性中心的含量为1~20wt.%,Bi金属活性中心粒径范围30~100nm;催化剂中Bi元素与M元素的摩尔比为(0.1-5):1;M=Zr、Ce、Ti、Mo中的一种。
含Bi催化剂的制备:以双金属BiM复合氢氧化物为前体,前体样品在H2气氛中直接焙烧还原,通过控制Bi与M的摩尔比、还原的温度和时间控制Bi金属活性中心的含量,还原温度控制在400℃~550℃,还原时间控制在30min~300min,即可得到Bi基催化剂,如Bi/BiMOx
催化剂前体的制备方法包括共沉淀动态晶化法、共沉淀静态晶化法等。
进行高效催化乙醇制备乙缩醛的方法,反应温度为100~300℃,反应压力为常压,反应时间为0.5-4h。
本发明具有如下优点:
1.本发明催化剂由均匀分散的金属纳米颗粒Bi,载体BiM(M=Zr、Ce、Ti、Mo)固溶体组成。利用Bi金属活性中心与BiM(M=Zr、Ce、Ti、Mo)固溶体载体的界面协同作用,催化乙醇转化制备乙缩醛,乙醇转化率99%,乙缩醛选择性达到88%,与文献报道相比,反应活性均高于目前文献报道。
2.本发明的负载型Bi基催化剂制备方法简单,成本较低,反应条件温和,能耗低有利于应用在工业生产的过程中。
附图说明
图1本发明实施案例2中合成的(a)共沉淀法合成BiCe-OH前体;(b)前体焙烧后所制备的Bi/BiCeOx催化剂谱图。其中横坐标为2θ,单位:度;纵坐标为强度。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
步骤A:共沉淀动态晶化法,准确称取定量的ZrO(NO3)2·H2O(M=249.2)及Bi(NO3)3·6H2O(M=485.07)溶于去离子水中(两种金属元素Bi与Zr的摩尔比为3:1),搅拌至完全溶解呈透明状盐溶液(溶液A);同时,准确量取定量浓氨水,用去离子水稀释后,配制成碱溶液(溶液B)。在一定温度下,将碱溶液B滴入不断搅拌的、盛有溶液A的四口烧瓶中,控制终点pH值恒定(控制终点pH值恒定为9-12中的任一值)。待碱溶液B完全滴完后,在恒温油浴中缓慢搅拌下晶化48h。抽滤获得样品,用去离子水反复洗涤3~6次,最后用无水乙醇洗涤一遍,然后将样品在烘箱中干燥24h,研磨得BiZr-OH粉末,干燥保存。
步骤B:Bi金属催化剂的催化性能评价在微型管式催化剂评价装置上进行。称取一定量的Bi金属催化剂前体,装入反应管中。首先将催化剂在线原位还原,通入还原气H2还原制备催化剂(还原的温度为500℃时间为1-3h)。还原结束后待温度降到催化反应温度(170℃)时,将液体进料泵打开,压力为常压,而后进行催化反应评价。采用在线气相色谱分析。催化稳定2h时乙醇转化率90%,乙缩醛选择性达到80%。
实施例2
步骤A:共沉淀动态晶化法,准确称取定量的Ce(NO3)3·6H2O(M=434.22)及Bi(NO3)3·6H2O(M=485.07)溶于去离子水中(两种金属元素Bi与Ce的摩尔比为3:1),搅拌至完全溶解呈透明状盐溶液(溶液A);同时,准确量取定量浓氨水,用去离子水稀释后,配制成碱溶液(溶液B)。在一定温度下,缓慢地将碱溶液B滴入不断搅拌的、盛有溶液A的四口烧瓶中,控制终点pH值恒定(控制终点pH值恒定为9-12中的任一值)。待碱溶液B完全滴完后,在恒温油浴中缓慢搅拌下晶化48h。抽滤获得样品,用去离子水反复洗涤3~6次,最后用无水乙醇洗涤一遍,然后将样品在烘箱中干燥24h,研磨得BiCe-OH粉末,干燥保存。
步骤B:Bi金属催化剂的催化性能评价在微型管式催化剂评价装置上进行。称取一定量的Bi金属催化剂前体,装入反应管中。首先将催化剂在线原位还原,通入还原气H2还原制备催化剂(还原的温度为500℃时间为1-3h)。。还原结束后待温度降到催化反应温度(170℃)时,将液体进料泵打开,压力为常压,而后进行催化反应评价。采用在线气相色谱分析。乙醇转化率99%,乙缩醛选择性达到88%。
实施例3
步骤A:共沉淀动态晶化法,准确称取定量的Na2MoO4·2H2O(M=205.95)及Bi(NO3)3·6H2O(M=485.07)溶于去离子水中(两种金属元素Bi与Mo的摩尔比为3:1),搅拌至完全溶解呈透明状盐溶液(溶液A);同时,准确量取定量浓氨水,用去离子水稀释后,配制成碱溶液(溶液B)。在一定温度下,缓慢地将碱溶液B滴入不断搅拌的、盛有溶液A的四口烧瓶中,控制终点pH值恒定(控制终点pH值恒定为9-12中的任一值)。待碱溶液B完全滴完后,在恒温油浴130℃中缓慢搅拌下晶化48h。抽滤获得样品,用去离子水反复洗涤3~6次,最后用无水乙醇洗涤一遍,然后将样品在烘箱中干燥24h,研磨得BiMo-OH粉末,干燥保存。
步骤B:Bi金属催化剂的催化性能评价在微型管式催化剂评价装置上进行。称取一定量的Bi金属催化剂前体,装入反应管中。首先将催化剂在线原位还原,通入还原气H2还原制备催化剂(还原的温度为500℃时间为1-3h)。。还原结束后待温度降到催化反应温度(170℃)时,将液体进料泵打开,压力为常压,而后进行催化反应评价。采用在线气相色谱分析。乙醇转化率93%,乙缩醛选择性达到84%。
实施例4
步骤A:共沉淀静态晶化法,准确称取定量的Na2MoO4·2H2O(M=205.95)及Bi(NO3)3·6H2O(M=485.07)溶于去离子水中(两种金属元素Bi与Mo的摩尔比为3:1),搅拌至完全溶解呈透明状盐溶液(溶液A);同时,准确量取定量浓氨水,用去离子水稀释后,配制成碱溶液(溶液B)。将溶液A、B快速加入到高速搅拌的胶体磨中(控制终点pH值恒定为9-12中的任一值),搅拌一定时间后,将所得浆液倒入水热釜的聚四氟乙烯内衬中,所得浆液倒入水热釜的聚四氟乙烯内衬中,密封后置入一定温度60℃的烘箱中晶化48h。减压抽滤获得样品,用去离子水反复洗涤3~6次,最后用无水乙醇洗涤一遍,然后将样品在烘箱中干燥24h,研磨得BiMo-OH粉末,干燥保存。
步骤B:Bi金属催化剂的催化性能评价在微型管式催化剂评价装置上进行。称取一定量的Bi金属催化剂前体,装入反应管中。首先将催化剂在线原位还原,通入还原气H2还原制备催化剂(还原的温度为500℃时间为1-3h)。还原结束后待温度降到催化反应温度(170℃)时,将液体进料泵打开,压力为常压,而后进行催化反应评价。采用在线气相色谱分析。乙醇转化率69%,乙缩醛选择性达到79%。

Claims (6)

1.一种高效催化乙醇制备乙缩醛的催化剂,其特征在于,Bi基催化剂为由均匀分散的Bi金属活性中心纳米颗粒及BiM复合氧化物固溶体组成,Bi为金属活性中心和固溶体载体为缩醛作用活性中心;M=Zr、Ce、Ti、Mo中的一种;
催化剂中Bi金属活性中心的含量为1~20wt.%,Bi金属活性中心粒径范围30~100nm。
2.按照权利要求1所述的一种高效催化乙醇制备乙缩醛的催化剂,其特征在于,催化剂中Bi元素与M元素的摩尔比为(0.1-5):1。
3.权利要求1所述的一种高效催化乙醇制备乙缩醛的催化剂的制备方法,其特征在于,含Bi催化剂的制备:以双金属BiM复合氢氧化物为前体,前体样品在H2气氛中直接焙烧还原,还原温度控制在400℃~550℃,还原时间控制在30min~300min,即可得到Bi基催化剂。
4.按照权利要求3的方法,其特征在于,通过控制Bi与M的摩尔比、还原的温度和时间控制Bi金属活性中心的含量。
5.权利要求1-2任一项所述的催化剂的应用,用于催化乙醇制备乙缩醛。
6.按照权利要求5的应用,反应温度为100~300℃,反应压力为常压,反应时间为0.5-4h。
CN201910563862.8A 2019-06-26 2019-06-26 一种高效催化乙醇制备乙缩醛的催化剂及其制备方法 Active CN110227440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910563862.8A CN110227440B (zh) 2019-06-26 2019-06-26 一种高效催化乙醇制备乙缩醛的催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910563862.8A CN110227440B (zh) 2019-06-26 2019-06-26 一种高效催化乙醇制备乙缩醛的催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110227440A CN110227440A (zh) 2019-09-13
CN110227440B true CN110227440B (zh) 2020-11-20

Family

ID=67857408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910563862.8A Active CN110227440B (zh) 2019-06-26 2019-06-26 一种高效催化乙醇制备乙缩醛的催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110227440B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272652B (zh) * 2013-05-02 2014-12-17 华南师范大学 纳米花状可见光催化剂Bi12TiO20的制备方法
CN103263908B (zh) * 2013-05-22 2014-11-05 北京化工大学 一种CeO2基固溶体纳米材料的合成及其催化降解染料的应用

Also Published As

Publication number Publication date
CN110227440A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN102527377B (zh) 一种浸渍-可控还原法制备的CO羰化制草酸酯用高效纳米Pd催化剂
CN110368928B (zh) 一种用于苯甲醇氧化合成苯甲醛的催化剂及其制备方法和应用
CN113058596B (zh) 一种高稳定性的co2加氢制乙醇的催化剂的制备及其应用
WO2024078051A1 (zh) 生物质骨架炭-金属复合微纳结构催化材料及制备方法和应用
CN108623436B (zh) 一种一锅法转化纤维素为生物乙醇的方法
CN111408392A (zh) 钴氮共掺杂多孔碳材料催化剂及其制备方法和应用
CN104923218A (zh) 一种衣康酸加氢的催化剂及其制备方法和用途,以及由衣康酸制备高附加值产品的方法
CN107185532B (zh) 一种大孔二氧化钛组装纳米金属催化剂、制备及用于乙醇液相催化反应
CN110227440B (zh) 一种高效催化乙醇制备乙缩醛的催化剂及其制备方法
CN110256230B (zh) 一种无碱条件下高效催化甘油制备甘油酸的催化剂及其制备方法
CN109851473B (zh) 一种甘油溶液氢解制备1,3-丙二醇的方法
CN101322943A (zh) 一种TiO2纳米管负载的V2O5复合催化剂
CN108126701B (zh) 一种合成气催化转化催化剂及其制备方法
CN114522738B (zh) 一种由3-乙酰氧基丙醛一步加氢制备1,3-丙二醇的方法
CN110860297B (zh) Cu-Ag/La@HAP催化剂的制备方法及其催化氧化1,2-丙二醇制备乳酸的应用
CN109420485B (zh) 用于二氧化碳加氢制甲醇的CdO-TiO2催化剂及制备和应用
CN111036287A (zh) 负载型催化剂及其制备方法以及甘油加氢方法
CN111454126B (zh) 纳米棒状CeO2纳米晶催化剂在气-固相巴豆醛选择加氢催化反应中的应用
CN105646196B (zh) 一种对甲基环己烯甲醛制备4‑甲基‑环己‑3‑烯‑1‑羧酸的方法
CN111253230A (zh) 一种水相催化5-羟甲基糠醛加氢制备3-羟甲基环戊酮的方法
CN103977840B (zh) 一种高导热性催化剂载体及制备方法和应用
CN112778088B (zh) 一种甘油同步制备丙烯酸和1,2-丙二醇的方法
CN113185389B (zh) 一种高效光催化乙醇制备乙缩醛的方法及催化剂
Sun et al. Photocatalytic Oxidation of Methanol Selectivity in the Preparation of the Application of Methylformate
CN109896921B (zh) 一种含硫化钼催化剂用于四氢糠醇催化加氢制1,5-戊二醇的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant