CN110224021A - 一种肖特基二极管及其制备方法 - Google Patents

一种肖特基二极管及其制备方法 Download PDF

Info

Publication number
CN110224021A
CN110224021A CN201910443142.8A CN201910443142A CN110224021A CN 110224021 A CN110224021 A CN 110224021A CN 201910443142 A CN201910443142 A CN 201910443142A CN 110224021 A CN110224021 A CN 110224021A
Authority
CN
China
Prior art keywords
preparation
schottky diode
target
sputtering
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910443142.8A
Other languages
English (en)
Inventor
于仕辉
张春梅
杨盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910443142.8A priority Critical patent/CN110224021A/zh
Publication of CN110224021A publication Critical patent/CN110224021A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • H01L21/443Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开一种肖特基二极管及其制备方法,肖特基二极管由Pt、AlxNbxTi1‑2xO2、Au组成;制备方法包括以下步骤:(1)将Pt靶材、AlxNbxTi1‑2xO2靶材装入磁控溅射腔体内;(2)将硅基片放置在磁控溅射腔体的样品台上;(3)将磁控溅射系统的本底真空度抽至3.0×10‑3Pa以下,使用纯Ar气体开始溅射Pt层;(4)使用掩膜版覆盖部分Pt层,然后将磁控溅射系统的本底真空度抽至3.0×10‑3Pa以下,使用Ar和O2混合气体作为溅射气体;溅射功率为50~300W,进行沉积得到AlxNbxTi1‑2xO2层,从而得到结构为Si/Pt/AlxNbxTi1‑2xO2的样品;(5)将样品转移至热蒸镀设备蒸发室内的样品台上,其上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内;(6)将热蒸镀设备的本底真空抽至9.0×10‑4Pa以下,将电流控制在80~130A,待Au蒸镀完全后关闭蒸发电源。

Description

一种肖特基二极管及其制备方法
技术领域
本发明属于半导体技术领域,特别是涉及一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管及其制备方法。
背景技术
肖特基二极管又称肖特基势垒二极管,它是一种低功耗、超高速半导体器件。肖特基二极管是以金属为正极,半导体为负极,利用二者接触面上形成的势垒具有整流特性而制成的器件。肖特基二极管具有正向电压低、反向恢复时间快、串联电阻小、开关频率高等优点。广泛应用于开关电源、变频器、驱动器等电路,作高频、低压、大电流整流二极管、续流二极管、保护二极管使用,或在微波通信等电路中作整流二极管、小信号检波二极管使用。
尽管有大量的应用开发,但现有肖特基二极管仍存在一些缺点,例如泄露电流大、热稳定性低、反向耐压低等。制备新型的性能优良的肖特基二极管是未来肖特基器件的发展趋势。
发明内容
本发明的目的是为了克服现有技术中的不足,提供一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管及其制备方法,本发明利用磁控溅射技术和热蒸镀技术,可得到具有良好整流性能的Pt/AlxNbxTi1-2xO2/Au肖特基二极管。
本发明的目的是通过以下技术方案实现的:
一种肖特基二极管,由Si衬底、Pt欧姆接触层、AlxNbxTi1-2xO2半导体层和Au金属电极层组成。
一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法包括以下步骤:
(1)将Pt靶材、AlxNbxTi1-2xO2靶材装入磁控溅射腔体内;
(2)将硅基片放置在磁控溅射腔体的样品台上;
(3)将磁控溅射系统的本底真空度抽至3.0×10-3Pa以下,使用纯Ar气体开始溅射Pt层;
(4)使用掩膜版覆盖部分Pt层,然后将磁控溅射系统的本底真空度抽至3.0×10- 3Pa以下准备溅射AlxNbxTi1-2xO2层,使用Ar和O2混合气体作为溅射气体,溅射功率为50~300W,进行沉积得到AlxNbxTi1-2xO2层,从而得到结构为Si/Pt/AlxNbxTi1-2xO2的样品;
(5)将Si/Pt/AlxNbxTi1-2xO2样品转移至热蒸镀设备蒸发室内的样品台上,样品上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内;
(6)将热蒸镀设备的本底真空抽至9.0×10-4Pa以下,将电流控制在80~130A,待Au蒸镀完全后关闭蒸发电源。
进一步的,步骤(1)中Pt靶材的纯度为99%以上;AlxNbxTi1-2xO2靶材通过常规的固相烧结法自制而成,x范围为0.02~0.08,AlxNbxTi1-2xO2靶材的纯度为98%以上。所述Pt靶材、AlxNbxTi1-2xO2靶材与衬底的距离为40mm~90mm。
进一步的,步骤(3)中Ar气体纯度在99.99%以上;Pt层厚度为30nm~300nm。
进一步的,步骤(4)中Ar和O2的纯度均在99.99%以上,氧氩比为1/50~2/3。所述AlxNbxTi1-2xO2层的厚度通过调节制备工艺参数或沉积时间控制。溅射总气压为0.3~15Pa。
与现有技术相比,本发明的技术方案所带来的有益效果是:
本发明使用AlxNbxTi1-2xO2材料制备肖特基二极管,利用磁控溅射技术和热蒸镀技术制备的Pt/AlxNbxTi1-2xO2/Au肖特基二极管具有良好的整流特性,Al、Nb的掺杂能够有效提高的TiO2中载流子的数目,有利于降低串联电阻从而降低损耗提高整流性能,与传统的ZnO材料肖特基二极管相比具有更高的稳定性,此外其制备工艺简单,适合工业化生产。
附图说明
图1为具体实施例1中制备在硅衬底上Pt/AlxNbxTi1-2xO2/Au肖特基二极管的电流-电压(I-V)测试曲线图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1、Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法如下:
1.将Pt靶材、Al0.05Nb0.05Ti0.90O2靶材装入磁控溅射腔体内。
2.然后,先后用无水乙醇和去离子水超声清洗硅衬底,并用高纯氮气吹干,放入磁控溅射样品台上。
3.步骤2完成后,将磁控溅射系统的本底真空度抽至2.0×10-4Pa。通入高纯(99.99%)Ar气体。进行沉积得到200nm的Pt层。
步骤3结束后,使用掩膜版覆盖部分Pt层,将磁控溅射系统的本底真空度抽至2.0×10-4Pa,通入高纯Ar和O2。溅射功率为200w,氧氩比为1:9,温度为室温。进行沉积得到65nm厚的Al0.05Nb0.05Ti0.90O2薄膜,从而得到结构为Si/Pt/Al0.05Nb0.05Ti0.90O2的样品。
4.步骤4结束后,将Si/Pt/Al0.05Nb0.05Ti0.90O2样品转移至热蒸镀设备蒸发室内的样品台上,样品上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内。
5.步骤5完成后,将热蒸镀设备的本底真空抽至5.0×10-4Pa,将电流从90A逐渐升至120A,待Au蒸镀完全后关闭蒸发电源。
图1为本实施例中制备在硅衬底上Pt/AlxNbxTi1-2xO2/Au肖特基二极管样品的电流-电压I-V测试曲线图,可见所制肖特基二极管具有良好的整流特性。在1V的电压下开关比为21。
实施例2、Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法如下:
1.将Pt靶材、Al0.05Nb0.05Ti0.90O2靶材装入磁控溅射腔体内。
2.然后,先后用无水乙醇和去离子水超声清洗硅衬底,并用高纯氮气吹干,放入磁控溅射样品台上。
3.步骤2完成后,使用掩膜版覆盖部分Pt层,将磁控溅射系统的本底真空度抽至2.0×10-4Pa。通入高纯(99.99%)Ar气体。进行沉积得到200nm的Pt层。
步骤3结束后,将磁控溅射系统的本底真空度抽至2.0×10-4Pa,通入高纯Ar和O2。溅射功率为150w,氧氩比为1:16,温度为室温。进行沉积得到100nm厚的Al0.05Nb0.05Ti0.90O2薄膜,从而得到结构为Si/Pt/Al0.05Nb0.05Ti0.90O2的样品。
4.步骤4结束后,将Si/Pt/Al0.05Nb0.05Ti0.90O2样品转移至热蒸镀设备蒸发室内的样品台上,样品上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内。
5.步骤5完成后,将热蒸镀设备的本底真空抽至5.0×10-4Pa,将电流从90A逐渐升至120A,待Au蒸镀完全后关闭蒸发电源。
经测试,在硅衬底上Al0.05Nb0.05Ti0.90O2肖特基二极管具有良好的整流特性,在1V的电压下开关比为19。
实施例3、Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法如下:
1.将Pt靶材、Al0.05Nb0.05Ti0.90O2靶材装入磁控溅射腔体内。
2.然后,先后用无水乙醇和去离子水超声清洗硅衬底,并用高纯氮气吹干,放入磁控溅射样品台上。
3.步骤2完成后,将磁控溅射系统的本底真空度抽至2.0×10-4Pa。通入高纯(99.99%)Ar气体。进行沉积得到100nm的Pt层。
4.步骤3结束后,使用掩膜版覆盖部分Pt层,将磁控溅射系统的本底真空度抽至2.0×10-4Pa,通入高纯Ar和O2。溅射功率为200w,氧氩比为15:85,温度为室温。进行沉积得到85nm厚的Al0.05Nb0.05Ti0.90O2薄膜,从而得到结构为Si/Pt/Al0.05Nb0.05Ti0.90O2的样品。。
5.步骤4结束后,将Si/Pt/Al0.05Nb0.05Ti0.90O2样品转移至热蒸镀设备蒸发室内的样品台上,样品上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内。
6.步骤5完成后,将热蒸镀设备的本底真空抽至5.0×10-4Pa,将电流从90A逐渐升至110A,待Au蒸镀完全后关闭蒸发电源。
经测试,在硅衬底上Al0.05Nb0.05Ti0.90O2肖特基二极管具有良好的整流特性,在1V的电压下开关比为16。
本发明并不限于上文描述的实施方式。以上对具体实施方式的描述旨在描述和说明本发明的技术方案,上述的具体实施方式仅仅是示意性的,并不是限制性的。在不脱离本发明宗旨和权利要求所保护的范围情况下,本领域的普通技术人员在本发明的启示下还可做出很多形式的具体变换,这些均属于本发明的保护范围之内。

Claims (8)

1.一种肖特基二极管,其特征在于,由Si衬底、Pt欧姆接触层、AlxNbxTi1-2xO2半导体层和Au金属电极层组成。
2.一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法,其特征在于,包括以下步骤:
(1)将Pt靶材、AlxNbxTi1-2xO2靶材装入磁控溅射腔体内;
(2)将硅基片放置在磁控溅射腔体的样品台上;
(3)将磁控溅射系统的本底真空度抽至3.0×10-3Pa以下,使用纯Ar气体开始溅射Pt层;
(4)使用掩膜版覆盖部分Pt层,然后将磁控溅射系统的本底真空度抽至3.0×10-3Pa以下准备溅射AlxNbxTi1-2xO2层,使用Ar和O2混合气体作为溅射气体;溅射功率为50~300W,进行沉积得到AlxNbxTi1-2xO2层,最终得到结构为Si/Pt/AlxNbxTi1-2xO2的样品;
(5)将Si/Pt/AlxNbxTi1-2xO2样品移至热蒸镀设备蒸发室内的样品台上,样品上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内;
(6)将热蒸镀设备的本底真空抽至9.0×10-4Pa以下,将电流控制在80~130A,待Au蒸镀完全后关闭蒸发电源。
3.根据权利要求2所述一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法,其特征在于,步骤(1)中Pt靶材的纯度为99%以上;AlxNbxTi1-2xO2靶材通过常规的固相烧结法自制而成,x范围为0.02~0.08,AlxNbxTi1-2xO2靶材的纯度为98%以上。
4.根据权利要求2或3所述一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法,其特征在于,所述Pt靶材、AlxNbxTi1-2xO2靶材与衬底的距离为40mm~90mm。
5.根据权利要求2所述一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法,其特征在于,步骤(3)中Ar气体纯度在99.99%以上;Pt层厚度为30nm~300nm。
6.根据权利要求2所述一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法,其特征在于,步骤(4)中Ar和O2的纯度均在99.99%以上,氧氩比为1/50~2/3。
7.根据权利要求2或6所述一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法,其特征在于,步骤(4)中所述AlxNbxTi1-2xO2层的厚度通过调节制备工艺参数或沉积时间控制。
8.根据权利要求2或6所述一种Pt/AlxNbxTi1-2xO2/Au肖特基二极管的制备方法,其特征在于,步骤(4)中溅射总气压为0.3~15Pa。
CN201910443142.8A 2019-05-26 2019-05-26 一种肖特基二极管及其制备方法 Pending CN110224021A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910443142.8A CN110224021A (zh) 2019-05-26 2019-05-26 一种肖特基二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910443142.8A CN110224021A (zh) 2019-05-26 2019-05-26 一种肖特基二极管及其制备方法

Publications (1)

Publication Number Publication Date
CN110224021A true CN110224021A (zh) 2019-09-10

Family

ID=67818366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910443142.8A Pending CN110224021A (zh) 2019-05-26 2019-05-26 一种肖特基二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN110224021A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285148A1 (en) * 2004-12-28 2007-12-13 Nec Corporation Switching Element, Reconfigurable Logic Integrated Circuit And Memory Element
US20100276684A1 (en) * 2007-10-30 2010-11-04 Hisashi Shima Rectifier and Process for Producing the Rectifier
CN102142516A (zh) * 2010-12-09 2011-08-03 北京大学 具有自选择抗串扰功能的阻变存储器及交叉阵列存储电路
CN103493144A (zh) * 2011-04-28 2014-01-01 法国圣戈班玻璃厂 透明电导体
CN106033780A (zh) * 2015-03-09 2016-10-19 中国科学院物理研究所 一种整流特性可控的二极管及其制造和操作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285148A1 (en) * 2004-12-28 2007-12-13 Nec Corporation Switching Element, Reconfigurable Logic Integrated Circuit And Memory Element
US20100276684A1 (en) * 2007-10-30 2010-11-04 Hisashi Shima Rectifier and Process for Producing the Rectifier
CN102142516A (zh) * 2010-12-09 2011-08-03 北京大学 具有自选择抗串扰功能的阻变存储器及交叉阵列存储电路
CN103493144A (zh) * 2011-04-28 2014-01-01 法国圣戈班玻璃厂 透明电导体
CN106033780A (zh) * 2015-03-09 2016-10-19 中国科学院物理研究所 一种整流特性可控的二极管及其制造和操作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴星波: "《Ti1-2xAlxNbxO2陶瓷及薄膜介电性质的研究》", 31 May 2017, 《中国优秀硕士学位论文全文数据库(电子期刊)》 *

Similar Documents

Publication Publication Date Title
CN107994118B (zh) 钙钛矿太阳能电池、双层金属电极及其制备方法
CN103219153B (zh) 一种耐高压高储能密度电容器及其制备方法
CN103839928B (zh) 一种高耐压、低漏电、高极化强度铁酸铋薄膜及其制备方法
CN103456802B (zh) 一种用于聚酰亚胺衬底铜铟镓硒薄膜太阳能电池的背电极
CN103872367A (zh) 一种固体氧化物燃料电池氧化锆基电解质薄膜
CN104362194A (zh) 背接触层结构及包含其的CdTe太阳能电池
CN105529399B (zh) 一种基于多元金属氧化物薄膜的阻变储存器及其制备方法
CN105633280A (zh) 莫特晶体管及制备方法
CN103296139B (zh) 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
CN107425090B (zh) 垂直型光电探测器及其制备方法
CN109037050A (zh) 基于TiN的GaN基HEMT无金欧姆接触电极的制备方法
CN110224021A (zh) 一种肖特基二极管及其制备方法
CN108447983A (zh) 基于掺杂钛酸锶薄膜的低功耗电阻开关存储单元及其制备方法和应用
CN105296946B (zh) 一种具有a轴高度取向的铌酸铋钙薄膜材料体系及制备方法
CN101831618B (zh) 一种TiO2/ZrO2两层堆栈结构高介电常数栅介质薄膜及其制备方法
CN101980368A (zh) 铜铟镓硒薄膜电池及其制备方法
CN105449004B (zh) 一种AlGaAs梁式引线PIN二极管及其制备方法
CN110364357A (zh) 一种高储能密度电容器及其制备方法
CN105261703A (zh) 一种以Cu:CrOx薄膜作为空穴传输层的钙钛矿光伏电池及其制备方法
CN100431157C (zh) 一种氧化物铁电存储单元及制备方法
CN105742492B (zh) 具有单边阻变特性的碳基材料阻变存储单元及其制备方法
CN101789382B (zh) 钛镍银多层金属电力半导体器件电极的制备方法
CN109536904A (zh) 一种掺杂TiO2阻挡层薄膜及其制备方法
CN105322026B (zh) 一种NiO:Ag/TiOx异质pn结二极管
CN111081886A (zh) 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20211119