CN110201696A - 一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法 - Google Patents

一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法 Download PDF

Info

Publication number
CN110201696A
CN110201696A CN201910370910.1A CN201910370910A CN110201696A CN 110201696 A CN110201696 A CN 110201696A CN 201910370910 A CN201910370910 A CN 201910370910A CN 110201696 A CN110201696 A CN 110201696A
Authority
CN
China
Prior art keywords
noble metal
nano particles
metal nano
carbon fiber
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910370910.1A
Other languages
English (en)
Other versions
CN110201696B (zh
Inventor
殷义霞
姚远
阳晓宇
肖宇轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910370910.1A priority Critical patent/CN110201696B/zh
Publication of CN110201696A publication Critical patent/CN110201696A/zh
Application granted granted Critical
Publication of CN110201696B publication Critical patent/CN110201696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种多孔碳纤维担载贵金属纳米颗粒的制备方法。本发明通过在贵金属纳米颗粒周围原位生长金属‑有机框架材料,基于有机框架材料的限域效应稳定贵金属纳米颗粒,防止金属纳米颗粒团聚,进而以聚丙烯腈作为碳源,利用静电纺丝法形成纤维,碳化后得到的碳纤维尺寸均匀、具有介孔结构、且含有氮原子掺杂,有利于传质和催化。此方法具有方法简单、重复性高的优势,金属‑有机框架材料材料不仅稳定了贵金属纳米颗粒,而且煅烧后得到的碳纤维材料具有介孔结构,并且作为碳源得到了含有丰富氮原子掺杂的碳材料。本发明合成的多孔碳纤维担载贵金属纳米颗粒材料具有良好的电催化活性。

Description

一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法
技术领域
本发明属于贵金属纳米材料与纳米技术领域,具体涉及一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法。
背景技术
贵金属纳米颗粒由于其优异的性能,在催化领域受到极大的重视。碳材料由于其良好的导电性、与贵金属纳米颗粒良好的结合能力,而成为贵金属纳米颗粒的良好载体。在电催化领域,碳材料担载贵金属纳米颗粒催化剂已经成为最广泛使用的电催化材料之一。但是这样的贵金属纳米粒子存在两个缺点:一是贵金属金属的储量低,成本很高;二是纳米粒子体系通常具有很高的比表面能,很容易发生团聚,导致纳米粒子失去原有的催化活性。因此,提高贵金属材料的利用率和防止其团聚是贵金属纳米颗粒的需要解决的重要问题。此外,碳载体材料的腐蚀也是催化剂性能下降的重要原因,构建更加稳定的碳载体材料也非常重要。
碳纤维作为一维材料,具有电子传输效率高,不易被腐蚀的特点。但是其比表面积低,不利于传质。制备具有多孔结构的碳纤维材料是提高其比表面积,暴露出更多活性位点的良好解决办法。但是,目前多孔碳纤维担载贵金属纳米粒子材料研究较少,存在着制备方法复杂,难以获得高分散小尺寸纳米颗粒和难以大规模合成等问题,从而影响其深入的应用。因此,提供一种通过简便的工艺合成多孔碳纤维担载贵金属纳米颗粒的方法是迫切需要的。
发明内容
本发明所要解决的技术问题是:提供一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法。
本发明为解决上述技术问题所采取的技术方案为:
一种多孔碳纤维担载贵金属纳米颗粒的制备方法,它包括如下步骤:
1)提供贵金属纳米颗粒材料分散液;
2)将贵金属纳米颗粒材料分散液和金属-有机框架材料前驱物剧烈搅拌,静置,离心,洗涤,真空干燥过夜,得到贵金属纳米颗粒-金属-有机框架材料杂化物;
3)取上述贵金属纳米颗粒-金属-有机框架材料杂化物产物加入溶剂中,均匀混合后超声,再加入聚丙烯腈,搅拌直至形成均匀的混合液进行静电纺丝,干燥后处理;
4)在惰性气氛保护下煅烧上述样品,后处理得到多孔碳纤维担载贵金属纳米颗粒。
作为上述技术方案的优选,本发明提供的的制备方法进一步包括下列技术特征的部分或全部:
作为上述技术方案的改进,所述多孔碳纤维担载贵金属纳米颗粒掺杂有氮,多孔碳纤维载体直径100nm-1μm,多孔碳纤维上有介孔结构,孔径大小为20-40nm;多孔碳纤维上担载有分散均匀的贵金属纳米颗粒,贵金属纳米颗粒尺寸为5-10nm,担载量为5%-20%。
作为上述技术方案的改进,所述贵金属包括铂、钯、铂钯双金属。
作为上述技术方案的改进,所述的步骤(1)为:将贵金属的前驱物溶液和还原性溶剂混合后加热,恒温反应一段时间,后处理得到贵金属纳米颗粒材料,然后分散到溶剂中,配制贵金属纳米颗粒材料分散液。
作为上述技术方案的改进,上述还原性溶剂为甲醇或乙二醇;上述的贵金属的前驱物为六水合氯铂酸或氯钯酸钾。
作为上述技术方案的改进,上述反应中还含有表面活性剂,所述的表面活性剂为聚乙烯吡咯烷酮,用量为3-6mg/ml。
作为上述技术方案的改进,上述反应温度为80-160℃,反应时间2-4h。
作为上述技术方案的改进,所述步骤2)中的金属-有机框架材料前驱物为2-甲基咪唑和硝酸锌;或为2-甲基咪唑和硝酸钴;或为2,2联吡啶-5,5二羧酸和氯化铝。
作为上述技术方案的改进,所述步骤2)为:将贵金属纳米颗粒分散液和金属-有机框架材料的有机配体混合均匀后,加入金属有机框架材料的金属盐溶液剧烈搅拌,获得贵金属纳米颗粒分散液和金属-有机框架材料前驱物的混合溶液。
作为上述技术方案的改进,所述步骤2)的贵金属纳米颗粒-金属-有机框架材料杂化物中贵金属的质量分数为5%-20%。
作为上述技术方案的改进,所述步骤2)的静置时间为12-24h。
作为上述技术方案的改进,所述步骤3)中聚丙烯腈与贵金属纳米颗粒-金属-有机框架材料杂化物的质量比为0.75-2:1。
作为上述技术方案的改进,所述步骤3)中的溶剂为二甲基甲酰胺,乙醇,甲醇或四氢呋喃。
作为上述技术方案的改进,所述步骤3)中的静电纺丝电压为10-20kV,注射速率为0.5-2ml/h,接收距离为10-20cm。
作为上述技术方案的改进,所述步骤4)中的煅烧温度为800-1000℃。
作为上述技术方案的改进,所述步骤4)中的后处理为:冷却至室温后研磨成粉末,用酸浸泡,离心,干燥。
本发明的有益效果为:
本发明提供了一种简便有效合成多孔碳纤维担载贵金属纳米颗粒材料的方法。本发明通过在贵金属纳米颗粒周围原位生长金属-有机框架材料,基于有机框架材料的限域效应稳定贵金属纳米颗粒,防止金属纳米颗粒团聚。进而以聚丙烯腈作为碳源,利用静电纺丝法形成纤维,碳化后得到的碳纤维尺寸均匀、具有介孔结构、且含有氮原子掺杂,有利于传质和催化。
此方法具有方法简单、重复性高的优势,金属-有机框架材料材料不仅稳定了贵金属纳米颗粒,而且煅烧后得到的碳纤维材料具有介孔结构,并且作为碳源得到了含有丰富氮原子掺杂的碳材料。并且,本发明合成的多孔碳纤维担载贵金属纳米颗粒材料具有良好的电催化活性。
附图说明
图1是实施例1所得多孔碳纤维担载铂纳米颗粒材料扫描电镜的照片。
图2是实施例1所得多孔碳纤维担载铂纳米颗粒材料透射电镜照片。
图3是实施例1所得多孔碳纤维担载铂纳米颗粒材料X射线衍射分析图。
图4是实施例1所得多孔碳纤维担载铂纳米颗粒材料氮气吸附-脱附曲线图及孔径分布图。
图5是实施例1所得多孔碳纤维担载铂纳米颗粒材料氮区XPS图。
图6是实施例1所得多孔碳纤维担载铂纳米颗粒材料与商业Pt/C材料的甲醇氧化性能对比图。
图7是实施例2所得多孔碳纤维担载铂纳米颗粒材料扫描电镜的照片。
具体实施方式
下面结合附图和实施例对本发明作进一步的描述,当然下述实施例不应理解为对本发明的限制。
实施例1:
本实施例提供一种多孔碳纤维担载铂纳米颗粒材料的制备,其具体操作步骤如下:
1)将六水合氯铂酸(6mM,5ml)水溶液,聚乙烯吡咯烷酮133mg(分子量29000),加入45ml甲醇中,加热至80℃,恒温3h,在60℃下蒸发甲醇,加入丙酮离心,再用三氯甲烷和正己烷洗3次,分散在5ml甲醇中,获得贮存液。
2)将上述贮存液(20ml)、2-甲基咪唑(4g)和甲醇(50ml)在烧杯中均匀混合。然后,在剧烈搅拌下,将含有Zn(NO3)2·6H2O(1.68g)的甲醇溶液(30mL)加入上述溶液中。3h后停止搅拌,静置24h,离心收集,甲醇洗涤3次,真空干燥过夜。
3)取上述材料0.54g加入二甲基甲酰胺5ml中,均匀混合后超声0.5h,再加入聚丙烯腈0.54g(平均分子量150000),在50℃下搅拌12h,直至形成均匀的混合液。
用静电纺丝仪进行静电纺丝。将上述液体加入注射器(5ml),注射器与高压电源相连,用铝箔接收。阳极和阴极的电压、进给速率、距离分别固定在20kV、1.0ml/h、18cm。然后,将样品在真空干燥箱(60℃)中干燥过夜。
4)在氩气保护下煅烧上述样品。在加热速率3℃/分钟下升温至800℃,恒温2h,随炉冷却。冷却至室温后研磨成粉末,用盐酸浸泡24h,离心,干燥。
如图1所示,本发明合成了比较均匀的纤维状材料,碳纤维直径约为400nm,碳纤维表面有许多孔洞,纤维之间有较大空隙,形成大孔结构,孔径0.1-1μm。结合图2-图4,可以看出:本发明制备的纤维上具有许多孔洞的结构,其为材料形成的介孔,经氮气吸附-脱附曲线表征,可以看出材料具有介孔,孔径主要分布在20-40nm间,比表面积是390m2/g,证明了材料具有多孔结构;铂纳米颗粒均匀分散在纤维上,颗粒尺寸为5-10nm,XRD衍射结果如图3所示,图3说明:本实施例制备的材料具有明显的晶体衍射峰特征,其对应铂的衍射峰。衍射峰较宽,说明纳米颗粒较小。图5是实施例1所得多孔碳纤维担载铂纳米颗粒材料氮区XPS图。XPS结果表明N元素含量约为10.7%,表明我们得到的材料含有丰富的氮元素。最终产物金属担载量由电感耦合等离子体发射光谱仪确定。结果表明,实施例1的产品铂的担载量为12.7%。
图6是实施例1所制备的材料的甲醇氧化催化性能与商业Pt/C的比较图。测试溶液为1M甲醇和0.1M高氯酸,测试温度为25℃,可以看出所制备的材料具有明显优于商业Pt/C的催化性能,其质量活性约为商业Pt/C的2倍。
实施例2:
本实施例提供一种多孔碳纤维担载铂纳米颗粒材料的制备,其具体操作步骤如下:
1)将六水合氯铂酸(0.05mmol),氯钯酸钾(0.05mmol),加入10ml乙二醇中,搅拌15min,加热至180℃,恒温4h,加入乙醇丙酮混合液(1:1)离心,再用乙醇洗3次,分散在5ml乙醇中,获得贮存液。
2)将上述贮存液(20ml)、2-甲基咪唑(4g)和甲醇(50ml)在烧杯中均匀混合。然后,在剧烈搅拌下,将含有Co(NO3)2·6H2O(1.684g)的甲醇溶液(40mL)加入上述溶液中。3h后停止搅拌,静置24h,离心收集,甲醇洗涤3次,真空干燥过夜。
3)取上述材料0.45g加入二甲基甲酰胺0.5ml中,均匀混合后超声0.5h,再加入聚丙烯腈0.55g(平均分子量150000),在50℃下搅拌12h,直至形成均匀的混合液。
用静电纺丝仪进行静电纺丝。将上述液体加入注射器(5ml),注射器与高压电源相连,用铝箔接收。阳极和阴极的高压、进给速率、距离分别固定在18kV、1.0ml/h、13cm。然后,将样品在真空干燥箱(60℃)中干燥过夜。
4)在氩气保护下煅烧上述样品。在加热速率3℃/分钟下升温至800℃,恒温2h,随炉冷却。冷却至室温后研磨成粉末,用盐酸浸泡24h,离心,干燥。
最终产品金属担载量由电感耦合等离子体发射光谱仪确定。结果表明,实施例1的产品铂的担载量为5.3%。图7是实施例2的产物的扫描电子显微镜图片。其结构特征与实施例1类似。

Claims (10)

1.一种多孔碳纤维担载贵金属纳米颗粒的制备方法,其特征在于:它包括如下步骤:
1)提供贵金属纳米颗粒材料分散液;
2)将贵金属纳米颗粒材料分散液和金属-有机框架材料前驱物剧烈搅拌,静置,离心,洗涤,真空干燥过夜,得到贵金属纳米颗粒-金属-有机框架材料杂化物;
3)取上述贵金属纳米颗粒-金属-有机框架材料杂化物产物加入溶剂中,均匀混合后超声,再加入聚丙烯腈,搅拌直至形成均匀的混合液进行静电纺丝,干燥后处理;
4)在惰性气氛保护下煅烧上述样品,后处理得到多孔碳纤维担载贵金属纳米颗粒。
2.根据权利要求1所述的制备方法,其特征在于:所述多孔碳纤维担载贵金属纳米颗粒掺杂有氮,多孔碳纤维载体直径100nm-1μm,多孔碳纤维上有介孔结构,孔径大小为20-40nm;多孔碳纤维上担载有分散均匀的贵金属纳米颗粒,贵金属纳米颗粒尺寸为5-10nm,担载量为5%-20%;所述贵金属包括铂、钯、铂钯双金属。
3.根据权利要求1所述的制备方法,其特征在于:所述的步骤(1)为:将贵金属的前驱物溶液和还原性溶剂混合后加热,恒温反应一段时间,后处理得到贵金属纳米颗粒材料,然后分散到溶剂中,配制贵金属纳米颗粒材料分散液;所述还原性溶剂为甲醇或乙二醇;上述反应温度为80-160℃,反应时间2-4h。
4.根据权利要求3所述的制备方法,其特征在于:上述反应中还含有表面活性剂,所述的表面活性剂为聚乙烯吡咯烷酮,用量为3-6mg/ml。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤2)中的金属-有机框架材料前驱物为2-甲基咪唑和硝酸锌;或为2-甲基咪唑和硝酸钴;或为2,2联吡啶-5,5二羧酸和氯化铝;将贵金属纳米颗粒分散液和金属-有机框架材料的有机配体混合均匀后,加入金属有机框架材料的金属盐溶液剧烈搅拌,获得贵金属纳米颗粒分散液和金属-有机框架材料前驱物的混合溶液。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤2)的贵金属纳米颗粒-金属-有机框架材料杂化物中贵金属的质量分数为5%-20%。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤2)的静置时间为12-24h。
8.根据权利要求1所述的制备方法,其特征在于:所述步骤3)中聚丙烯腈与贵金属纳米颗粒-金属-有机框架材料杂化物的质量比为0.75-2:1。
9.根据权利要求1所述的制备方法,其特征在于:所述步骤3)中的溶剂为二甲基甲酰胺,乙醇,甲醇或四氢呋喃;所述步骤3)中的静电纺丝电压为10-20kV,注射速率为0.5-2ml/h,接收距离为10-20cm。
10.根据权利要求1所述的制备方法,其特征在于:所述步骤4)中的煅烧温度为800-1000℃。
CN201910370910.1A 2019-05-06 2019-05-06 一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法 Active CN110201696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910370910.1A CN110201696B (zh) 2019-05-06 2019-05-06 一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910370910.1A CN110201696B (zh) 2019-05-06 2019-05-06 一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN110201696A true CN110201696A (zh) 2019-09-06
CN110201696B CN110201696B (zh) 2022-10-11

Family

ID=67786956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910370910.1A Active CN110201696B (zh) 2019-05-06 2019-05-06 一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN110201696B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068734A (zh) * 2019-12-24 2020-04-28 新疆大学 一种用于高效双功能电催化的竹节状氮掺杂碳纳米纤维包覆过渡金属合金纳米粒子催化材料
CN111129511A (zh) * 2019-12-17 2020-05-08 一汽解放汽车有限公司 一种氮掺杂碳载铂基催化剂及其制备方法和用途
CN111346660A (zh) * 2020-03-06 2020-06-30 浙江大学 一种纳米合金M-Zn/NC催化剂的制备方法及产品应用
CN112342693A (zh) * 2020-10-30 2021-02-09 西安交通大学苏州研究院 限域生长的金属有机框架化合物柔性膜的合成方法
CN113083293A (zh) * 2021-04-21 2021-07-09 河北科技大学 中空碳纤维限域Pd催化剂及其制备方法与应用
CN113089136A (zh) * 2021-03-25 2021-07-09 华北电力大学 一种铂负载氮/硫共掺杂多孔碳纳米纤维材料及其制备和应用
CN113351259A (zh) * 2021-07-16 2021-09-07 河南科技大学 钴纳米粒子/碳纤维复合介孔材料催化巯基化合物氧化合成二硫化物的方法
CN115162053A (zh) * 2022-07-26 2022-10-11 陕西煤业化工技术研究院有限责任公司 一种高导电性碳纤维纸及其制备方法
CN115770568A (zh) * 2022-11-30 2023-03-10 中国地质大学(北京) 一种基于静电纺丝技术制备多孔碳纤维负载贵金属纳米颗粒复合材料的方法
CN115780799A (zh) * 2022-12-06 2023-03-14 中国科学院长春应用化学研究所 一种含氮多孔碳负载金属纳米粒子的敏感材料及其制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867762A1 (en) * 2006-06-13 2007-12-19 Sabanci Üniversitesi Carbon nanofibers containing catalyst nanoparticles
CN105862174A (zh) * 2016-04-08 2016-08-17 合肥工业大学 一种新型金属有机配合物纤维及其衍生多孔碳纤维的制备方法
CN106835362A (zh) * 2017-01-16 2017-06-13 中国科学院长春应用化学研究所 共掺杂的微米球‑碳纤维复合材料及其制备方法
CN106902842A (zh) * 2017-03-20 2017-06-30 北京工业大学 一种以MOFs衍生碳基材料为载体的负载型钯催化剂的制备及应用
CN107349964A (zh) * 2017-07-15 2017-11-17 北京化工大学 一种纳米颗粒@小尺寸金属有机框架材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867762A1 (en) * 2006-06-13 2007-12-19 Sabanci Üniversitesi Carbon nanofibers containing catalyst nanoparticles
CN105862174A (zh) * 2016-04-08 2016-08-17 合肥工业大学 一种新型金属有机配合物纤维及其衍生多孔碳纤维的制备方法
CN106835362A (zh) * 2017-01-16 2017-06-13 中国科学院长春应用化学研究所 共掺杂的微米球‑碳纤维复合材料及其制备方法
CN106902842A (zh) * 2017-03-20 2017-06-30 北京工业大学 一种以MOFs衍生碳基材料为载体的负载型钯催化剂的制备及应用
CN107349964A (zh) * 2017-07-15 2017-11-17 北京化工大学 一种纳米颗粒@小尺寸金属有机框架材料的制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129511A (zh) * 2019-12-17 2020-05-08 一汽解放汽车有限公司 一种氮掺杂碳载铂基催化剂及其制备方法和用途
CN111068734A (zh) * 2019-12-24 2020-04-28 新疆大学 一种用于高效双功能电催化的竹节状氮掺杂碳纳米纤维包覆过渡金属合金纳米粒子催化材料
CN111346660B (zh) * 2020-03-06 2021-09-21 浙江大学 一种纳米合金M-Zn/NC催化剂的制备方法及产品应用
CN111346660A (zh) * 2020-03-06 2020-06-30 浙江大学 一种纳米合金M-Zn/NC催化剂的制备方法及产品应用
CN112342693A (zh) * 2020-10-30 2021-02-09 西安交通大学苏州研究院 限域生长的金属有机框架化合物柔性膜的合成方法
CN112342693B (zh) * 2020-10-30 2022-04-15 西安交通大学苏州研究院 限域生长的金属有机框架化合物柔性膜的合成方法
CN113089136A (zh) * 2021-03-25 2021-07-09 华北电力大学 一种铂负载氮/硫共掺杂多孔碳纳米纤维材料及其制备和应用
CN113083293B (zh) * 2021-04-21 2022-06-17 河北科技大学 中空碳纤维限域Pd催化剂及其制备方法与应用
CN113083293A (zh) * 2021-04-21 2021-07-09 河北科技大学 中空碳纤维限域Pd催化剂及其制备方法与应用
CN113351259A (zh) * 2021-07-16 2021-09-07 河南科技大学 钴纳米粒子/碳纤维复合介孔材料催化巯基化合物氧化合成二硫化物的方法
CN113351259B (zh) * 2021-07-16 2023-08-25 河南科技大学 钴纳米粒子/碳纤维复合介孔材料催化巯基化合物氧化合成二硫化物的方法
CN115162053A (zh) * 2022-07-26 2022-10-11 陕西煤业化工技术研究院有限责任公司 一种高导电性碳纤维纸及其制备方法
CN115162053B (zh) * 2022-07-26 2023-08-29 陕西煤业化工技术研究院有限责任公司 一种高导电性碳纤维纸及其制备方法
CN115770568A (zh) * 2022-11-30 2023-03-10 中国地质大学(北京) 一种基于静电纺丝技术制备多孔碳纤维负载贵金属纳米颗粒复合材料的方法
CN115780799A (zh) * 2022-12-06 2023-03-14 中国科学院长春应用化学研究所 一种含氮多孔碳负载金属纳米粒子的敏感材料及其制备方法、应用

Also Published As

Publication number Publication date
CN110201696B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN110201696A (zh) 一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法
Wang et al. Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution
EP2959970B1 (en) Carbon material for catalyst support use
CN109675599B (zh) 一种氮掺杂碳包覆碳化钼及其制备方法和应用
CN103495432B (zh) 一种高效稳定的燃料电池催化剂制备方法
CN109621998B (zh) 一种三维介孔碳负载碳化钼及其制备方法和应用
KR101349068B1 (ko) 연료전지용 코어-쉘 타입의 담지촉매 제조방법
CN108722460A (zh) 基于MOFs的NiCo@N-C双功能氧电极催化剂及其制备方法
CN102872886B (zh) 一种碲基贵金属合金纳米线催化剂的制备方法及其应用
CN108486605A (zh) 一种具有优异电解水性能的碳包覆硒化镍钴纳米材料及其制备方法
CN113774422A (zh) 一种应用于电解水的PdCuFeCoNi高熵合金纳米颗粒催化剂的制备方法
Sharma et al. PdO/CuO nanoparticles on zeolite-Y for nitroarene reduction and methanol oxidation
Sun et al. Self‐Assembly of Hierarchical Ni‐Mo‐Polydopamine Microflowers and their Conversion to a Ni‐Mo2C/C Composite for Water Splitting
CN108611657B (zh) 一种含氮钴钼的纳米碳纤维电化学催化剂的合成及应用
Chen et al. Pressure-induced bimetallic carbon nanotubes from metal–organic frameworks as optimized bifunctional electrocatalysts for water splitting
CN107342427B (zh) 一种直接乙醇燃料电池用Pd/Ag纳米合金催化剂的制备方法
Hong et al. Multi-walled carbon nanotube supported Pd nanocubes with enhanced electrocatalytic activity
CN114522706A (zh) 一种碳化物负载贵金属单原子催化剂及制备和应用
CN109546168A (zh) 一种碳材料负载的银铂纳米合金复合材料及其制备方法
Liu et al. Nitrogen-doped porous carbons supported Pt nanoparticles for methanol oxidation in alkaline medium
Zhao et al. Pt nanowires on monolayered graphene oxide for electrocatalytic oxidation of methanol
Long et al. Improving the electrical catalytic activity of Pt/TiO 2 nanocomposites by a combination of electrospinning and microwave irradiation
Wu et al. Facile synthesis of carboxylated-graphene nanosheets supported PtRu catalysts and their electrocatalytic oxidation of methanol
Nie et al. Biomass-based Hierarchical Porous ORR and OER Bifunctional Catalysts with Strong Stability for Zn-Air Batteries
Batool et al. Encapsulation of Pt Nanocrystals inside Pyrolyzed UiO-66-NH2 Metal–Organic Framework Supports as Oxygen Reduction Catalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant