CN110156473A - 一种s包覆的中空c3n4纳米陶瓷球体及其制备方法 - Google Patents

一种s包覆的中空c3n4纳米陶瓷球体及其制备方法 Download PDF

Info

Publication number
CN110156473A
CN110156473A CN201910386492.5A CN201910386492A CN110156473A CN 110156473 A CN110156473 A CN 110156473A CN 201910386492 A CN201910386492 A CN 201910386492A CN 110156473 A CN110156473 A CN 110156473A
Authority
CN
China
Prior art keywords
hollow
sio
sphere
nano ceramics
meso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910386492.5A
Other languages
English (en)
Inventor
刘守法
豆素勤
吴松林
马世臣
王新元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xijing University
Original Assignee
Xijing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xijing University filed Critical Xijing University
Priority to CN201910386492.5A priority Critical patent/CN110156473A/zh
Publication of CN110156473A publication Critical patent/CN110156473A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5097Sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种S包覆的中空C3N4纳米陶瓷球体及其制备方法,该方法包含:(1)将粒径为70~80nm的SiO2介孔纳米球在500~570℃保温去除杂质,将三聚氰胺混合进该SiO2介孔纳米球中,在空气氛围下于500~570℃保温,采用KOH溶液去除SiO2,得到中空C3N4纳米陶瓷球体;(2)将所述中空C3N4纳米陶瓷球体与S混合,于150~180℃保温,获得S包覆的中空C3N4纳米陶瓷球体。本发明的S包覆的中空C3N4纳米陶瓷球体用于电极提高了电池的比容量,同时具有较好的循环稳定性。

Description

一种S包覆的中空C3N4纳米陶瓷球体及其制备方法
技术领域
本发明涉及一种C3N4纳米陶瓷球体,具体涉及一种S包覆的中空C3N4纳米陶瓷球体及其制备方法。
背景技术
随着科学技术的发展,环境污染日益严重,特别是汽车产生的尾气。因此,电动汽车正在取代由汽油驱动的传统汽车。目前,针对电动汽车已经开发了许多能量存储系统,如锂离子电池、锂-硫电池和锂-空气电池等。在这些储能电池中,由于锂硫电池比容量高、能量密度高而最有前景应用于电动汽车。
然而,锂-硫电池也存在一些缺点,例如:
(1)电子电导率差导致活性物质利用率低,降低了比容量;
(2)多硫化物易溶于电解质,导致阴极与阴极之间严重的穿梭效应阳极;
(3)硫颗粒的体积变化将导致阴极的结构损坏。
上述这些问题都导致锂硫电池的循环性能差,只有处理这些问题才能改善电化学性能。
氮化碳(C3N4)是一种硬度可以和金刚石相媲美而在自然界中尚未发现的新的共价化合物,其一共有5种结构,它们分别是α相、β相、立方相、准立方相和类石墨相。其中,类石墨相(g-C3N4)的结构最稳定,其具有类似石墨的层状结构,并且包含了两种同素异形体,一种是以三嗪为结构单元连接形成,另一种是以3-s-三嗪为结构单元连接形成。
g-C3N4具有良好的光催化性能,能够吸收可见光、热稳定性和化学稳定性良好,但其导电性差,会阻碍电化学反应过程的进行,其常被用于作为光催化剂。
发明内容
本发明的目的是提供一种S包覆的中空C3N4纳米陶瓷球体及其制备方法,解决了现有锂-硫电池比容量低的问题,该S包覆的中空C3N4纳米陶瓷球体用于电极提高了电池的比容量,同时具有较好的循环稳定性。
为了达到上述目的,本发明提供了一种S包覆的中空C3N4纳米陶瓷球体的制备方法,该方法包含:
(1)将粒径为70~80nm的SiO2介孔纳米球在500~570℃保温去除杂质,将三聚氰胺混合进该SiO2介孔纳米球中,在空气氛围下于500~570℃保温,采用KOH溶液去除SiO2,得到中空C3N4纳米陶瓷球体;
(2)将所述中空C3N4纳米陶瓷球体与S混合,于150~180℃保温,获得S包覆的中空C3N4纳米陶瓷球体。
优选地,在步骤(1)中,所述SiO2介孔纳米球与三聚氰胺的质量比为5:8~12;所述SiO2介孔纳米球的内外径之比为(1~1.5):3。
优选地,在步骤(1)中,所述SiO2介孔纳米球在500~570℃保温10~15h;所述三聚氰胺和SiO2介孔纳米球的混合物在500~570℃保温4~6h;在步骤(2)中,所述中空C3N4纳米陶瓷球体与S混合后于150~180℃保温10~15h。
优选地,在步骤(1)中,所述KOH溶液的浓度为8mol/mL,将三聚氰胺和SiO2介孔纳米球的混合物经保温后于KOH溶液中浸泡22~25h。
优选地,所述S包覆的中空C3N4纳米陶瓷球体的直径为74~85nm。
本发明还提供了一种S包覆的中空C3N4纳米陶瓷球体,S包覆在中空C3N4纳米陶瓷球体上,所述中空C3N4纳米陶瓷球体的外径为70~80nm。
优选地,该球体通过所述的S包覆的中空C3N4纳米陶瓷球体的制备方法获得。
优选地,所述S包覆的中空C3N4纳米陶瓷球体的直径为74~85nm。
本发明还提供了一种中空C3N4纳米陶瓷球体,采用SiO2介孔纳米球与三聚氰胺焙烧获得,所述SiO2介孔纳米球的粒径为70~80nm。
优选地,该球体通过所述的S包覆的中空C3N4纳米陶瓷球体的制备方法中的步骤(1)获得。
优选地,SiO2介孔纳米球的内外径之比为(1~1.5):3。
本发明还提供了一种电池正极材料,该正极材料包含:如权利要求5所述的S包覆的中空C3N4纳米陶瓷球体、导电剂超级P碳、粘结剂聚偏氟乙烯和N-甲基吡咯烷酮。
优选地,所述的S包覆的中空C3N4纳米陶瓷球体、导电剂超级P碳、粘结剂聚偏氟乙烯和N-甲基吡咯烷酮的重量比为15~17:2:1:1。
本发明还提供了一种电池正极,该正极采用所述的电池正极材料作为正极活性材料,采用铝箔作为基板。
优选地,正极活性材料在基板上的涂抹量为0.16~0.18g/cm2
本发明还提供了一种锂硫电池,该电池采用所述的电池正极,金属锂箔作为负极,微孔聚丙烯膜作为隔膜,LiTFSI/EC+DEC作为电解液。
本发明的S包覆的中空C3N4纳米陶瓷球体及其制备方法,解决了现有锂-硫电池比容量低的问题,具有以下优点:
本发明的S包覆的中空C3N4纳米陶瓷球体,用于制备电极,在电池中可以改善电子传导性,该材料显示出优异的电化学性能,其初始比容量为1400mAh/g,明显高于S的初始比容量,其在0.5C电流密度下,经过500次循环,其比容量仍能达到726mAh/g,具有较好的循环稳定性。
附图说明
图1为本发明的中空的C3N4纳米陶瓷球体的SEM形貌图。
图2为本发明的S包覆的中空C3N4纳米陶瓷球的X射线能谱元素分布图。
图3为本发明实施例2制备的S包覆的中空C3N4纳米陶瓷球体与对比材料S的恒流充放电曲线图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种S包覆的中空C3N4纳米陶瓷球体的制备方法,包含:
(1)取100g的SiO2介孔纳米球(购自西安瑞禧生物科技有限公司),外径为70~80nm,内外径比为(1~1.5)/3,将SiO2介孔纳米球通过在550℃下空气中保温10小时,以除去杂质;
(2)取5g SiO2介孔纳米球,将8g三聚氰胺混合进处理后的介孔SiO2纳米球中,并在空气中加热至550℃后保温4h,在200mL浓度为8mol/mL的KOH溶液中浸泡22h,去除掉SiO2,得到中空的C3N4纳米陶瓷球体,其SEM形貌如图1所示,得到的中空的C3N4纳米陶瓷球外径为70~80nm;
(3)将上一步制备的C3N4纳米陶瓷球体与S单质混合,然后加热到155℃并保温10h,制备出S包覆的中空C3N4纳米陶瓷球体,其直径为74~85nm。
一种电池正极的制备方法,包含:
(S1)将上述制备的S包覆的中空C3N4纳米陶瓷球体、导电剂超级P碳、粘结剂聚偏氟乙烯和N-甲基吡咯烷酮混合,混合的重量比为15:2:1:1,得到浆状物;
(S2)利用涂抹器将浆状物均匀涂抹在铝箔表面,涂抹量为0.16~0.18g/cm2
(S3)再用冲子裁成的圆片,放入80℃的真空干燥箱内干燥24h,得到该电池正极。
以电池正极、金属锂箔负极、隔膜和电解液组装电池,隔膜用Celgard2400微孔聚丙烯膜,电解液为0.8mol/L的LiTFSI/EC+DEC(LiTFSI为:双三氟甲烷磺酰亚胺锂;EC为碳酸乙烯酯,DEC为碳酸二乙酯)溶液。组装时,可在充满干燥氩气(水分含量<0.1×10-5,氧含量<1×10-5)的手套箱内组装该电池。
实施例2
一种S包覆的中空C3N4纳米陶瓷球体的制备方法,与实施例1的纳米陶瓷球体的制备方法基本相同,区别在于:在步骤(2)中,将介孔SiO2纳米球在550℃下保温12h,所用三聚氰胺的量为10g,在KOH溶液中浸泡时间为24h;在步骤(3)中,在155℃下保温12h。
一种电池正极的制备方法,与实施例1的电池正极的制备方法基本相同,区别在于:在步骤(S1)中,S包覆的中空C3N4纳米陶瓷球体、导电剂超级P碳、粘结剂聚偏氟乙烯和N-甲基吡咯烷酮的重量比为16:2:1:1。
实施例3
一种S包覆的中空C3N4纳米陶瓷球体的制备方法,与实施例1的纳米陶瓷球体的制备方法基本相同,区别在于:在步骤(2)中,将介孔SiO2纳米球在550℃下保温15h,所用三聚氰胺的量为12g,在KOH溶液中浸泡时间为25h;在步骤(3)中,在155℃下保温15h。
一种电池正极的制备方法,与实施例1的电池正极的制备方法基本相同,区别在于:在步骤(S1)中,S包覆的中空C3N4纳米陶瓷球体、导电剂超级P碳、粘结剂聚偏氟乙烯和N-甲基吡咯烷酮的重量比为17:2:1:1。
实施例4
一种S包覆的中空C3N4纳米陶瓷球体的制备方法,与实施例1的纳米陶瓷球体的制备方法基本相同,区别在于:在步骤(2)中,将三聚氰胺和介孔SiO2纳米球的混合物在空气中加热至550℃后保温5h。
一种电池正极的制备方法,与实施例1的电池正极的制备方法基本相同,区别在于:在步骤(S3)中,将涂抹有浆状物的铝箔压制成厚度为0.6mm的薄片,然后再在95℃的真空干燥箱内干燥18h。
以电池正极、金属锂箔负极、隔膜和电解液组装电池,隔膜用Celgard2400微孔聚丙烯膜,电解液为1mol/L的LiTFSI/EC+DEC溶液。组装时,可在充满干燥氩气(水分含量<0.1×10-5,氧含量<1×10-5)的手套箱内组装该电池。
实施例5
一种S包覆的中空C3N4纳米陶瓷球体的制备方法,与实施例1的纳米陶瓷球体的制备方法基本相同,区别在于:在步骤(2)中,将三聚氰胺和介孔SiO2纳米球的混合物在空气中加热至550℃后保温6h。
一种电池正极的制备方法,与实施例1的电池正极的制备方法基本相同,区别在于:在步骤(S3)中,将涂抹有浆状物的铝箔压制成厚度为0.7mm厚,然后再在110℃的真空干燥箱内干燥24h。
以电池正极、金属锂箔负极、隔膜和电解液组装电池,隔膜用Celgard2400微孔聚丙烯膜,电解液为1.2mol/L的LiTFSI/EC+DEC溶液。组装时,可在充满干燥氩气(水分含量<0.1×10-5,氧含量<1×10-5)的手套箱内组装该电池。
本发明实施例2制备的S包覆的中空C3N4纳米陶瓷球的成分及性能的检测结果如下:
如图2所示,为本发明的S包覆的中空C3N4纳米陶瓷球的X射线能谱元素分布图,实施例2制备的S包覆的中空C3N4纳米陶瓷球为规则的球体,球体中存在C、N和S元素,且分布均匀。
对本发明实施例2组装的电池进行半电池测试,在电池测试系统(LandCT2001A)上进行恒流充电/放电循环实验,电流密度为0.1C时,并获得充电/放电曲线。如图3所示,为本发明实施例2制备的S包覆的中空C3N4纳米陶瓷球体与对比材料S的恒流充放电曲线图,可以看出:实施例2中材料初始比容量为1400mAh/g,而S的初始比容量仅为1156mAh/g,实施例2中材料初始比容量值明显高于S的初始比容量,表明实施例2中材料具有较好的电子传导性。
本发明实施例2制备的S包覆的中空C3N4纳米陶瓷球体与文献中锂-硫电池正极材料的比容量对比,如下表1可见实施例2中制备的材料做为正极具有较好的循环稳定性。
注:[1]R.Wu,S.G.Chen,J.H.Deng,et al.Hierarchically porous nitrogen-doped carbon as cathode for lithium–sulfur batteries[J].Journal of EnergyChemistry,2018,27:1661-1667;[2]N.Li,X.He,K.H.Chen,et al.Confine sulfur inurchin-like nitrogen doped carbon particles for lithium-sulfur batteries[J].Materials Letters,2018,228:195-198;[3]G.S.Jiang,F.Xu,S.H.Yang,etal.Mesoporous,conductive molybdenum nitride as efficient sulfur hosts forhigh-performance lithium-sulfur batteries[J].Journal of Power Sources,2018,395:77-84.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

1.一种S包覆的中空C3N4纳米陶瓷球体的制备方法,其特征在于,该方法包含:
(1)将粒径为70~80nm的SiO2介孔纳米球在500~570℃保温去除杂质,将三聚氰胺混合进该SiO2介孔纳米球中,在空气氛围下于500~570℃保温,采用KOH溶液去除SiO2,得到中空C3N4纳米陶瓷球体;
(2)将所述中空C3N4纳米陶瓷球体与S混合,于150~180℃保温,获得S包覆的中空C3N4纳米陶瓷球体。
2.根据权利要求1所述的S包覆的中空C3N4纳米陶瓷球体的制备方法,其特征在于,在步骤(1)中,所述SiO2介孔纳米球与三聚氰胺的质量比为5:8~12;所述SiO2介孔纳米球的内外径之比为(1~1.5):3。
3.根据权利要求1所述的S包覆的中空C3N4纳米陶瓷球体的制备方法,其特征在于,在步骤(1)中,所述SiO2介孔纳米球在500~570℃保温10~15h;所述三聚氰胺和SiO2介孔纳米球的混合物在500~570℃保温4~6h;在步骤(2)中,所述中空C3N4纳米陶瓷球体与S混合后于150~180℃保温10~15h。
4.根据权利要求1所述的S包覆的中空C3N4纳米陶瓷球体的制备方法,其特征在于,在步骤(1)中,所述KOH溶液的浓度为8mol/mL,将三聚氰胺和SiO2介孔纳米球的混合物经保温后于KOH溶液中浸泡22~25h。
5.一种S包覆的中空C3N4纳米陶瓷球体,其特征在于,S包覆在中空C3N4纳米陶瓷球体上,所述中空C3N4纳米陶瓷球体的外径为70~80nm。
6.一种中空C3N4纳米陶瓷球体,其特征在于,采用SiO2介孔纳米球与三聚氰胺焙烧获得,所述SiO2介孔纳米球的粒径为70~80nm。
7.一种电池正极材料,其特征在于,该正极材料包含:如权利要求5所述的S包覆的中空C3N4纳米陶瓷球体、导电剂超级P碳、粘结剂聚偏氟乙烯和N-甲基吡咯烷酮。
8.根据权利要求7所述的电池正极材料,其特征在于,所述的S包覆的中空C3N4纳米陶瓷球体、导电剂超级P碳、粘结剂聚偏氟乙烯和N-甲基吡咯烷酮的重量比为15~17:2:1:1。
9.一种电池正极,其特征在于,该正极采用如权利要求7所述的电池正极材料作为正极活性材料,采用铝箔作为基板。
10.一种锂硫电池,其特征在于,该电池采用如权利要求7所述的电池正极,金属锂箔作为负极,微孔聚丙烯膜作为隔膜,LiTFSI/EC+DEC作为电解液。
CN201910386492.5A 2019-05-09 2019-05-09 一种s包覆的中空c3n4纳米陶瓷球体及其制备方法 Pending CN110156473A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910386492.5A CN110156473A (zh) 2019-05-09 2019-05-09 一种s包覆的中空c3n4纳米陶瓷球体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910386492.5A CN110156473A (zh) 2019-05-09 2019-05-09 一种s包覆的中空c3n4纳米陶瓷球体及其制备方法

Publications (1)

Publication Number Publication Date
CN110156473A true CN110156473A (zh) 2019-08-23

Family

ID=67634041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910386492.5A Pending CN110156473A (zh) 2019-05-09 2019-05-09 一种s包覆的中空c3n4纳米陶瓷球体及其制备方法

Country Status (1)

Country Link
CN (1) CN110156473A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993909A (zh) * 2019-11-29 2020-04-10 桂林电子科技大学 一种基于三聚氰胺的外包覆多孔碳-硫复合材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549157A (zh) * 2015-09-18 2017-03-29 中国科学院宁波材料技术与工程研究所 空心球形类石墨相c3n4和单质硫复合材料及其制法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549157A (zh) * 2015-09-18 2017-03-29 中国科学院宁波材料技术与工程研究所 空心球形类石墨相c3n4和单质硫复合材料及其制法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANHUA SUN ET AL.: "Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles", 《NATURE COMMUNICATIONS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993909A (zh) * 2019-11-29 2020-04-10 桂林电子科技大学 一种基于三聚氰胺的外包覆多孔碳-硫复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108780880B (zh) 一种锂硫固态电池用正极材料及其制造方法
CN106328890B (zh) 一种碳柱撑MXene复合材料及其应用
CN109921090B (zh) 一种锂离子全固态全电池及其制备方法
CN104201389B (zh) 一种锂硒电池正极的制备方法
CN104393290B (zh) 一种采用MoS2为正极材料的铝离子电池及其制备方法
CN105489901B (zh) 一种锂硫电池三维碳集流体的制备方法及其应用
CN107887638B (zh) 一种具有超长循环寿命和优异低温性能的钠离子全电池
US4379817A (en) Organic solvent-treated manganese dioxide-containing cathodes
WO2000033404A1 (fr) Pile secondaire au lithium et son procede de fabrication
CN106099061A (zh) 一种多孔石墨烯/硅复合材料、其制备方法及锂离子电池
CN106935861B (zh) 一种钠离子电池用碳负极材料及其制备方法
US20180248178A1 (en) Anode materials for lithium battery of improved temperature performance
CN112117444A (zh) 碳包覆硫化钴正极材料、制备方法、正极及铝离子电池
CN108321438A (zh) 全石墨锂硫电池及其制备方法
CN109286002A (zh) 一种千层树皮生物质碳负载红磷钠离子电池负极材料及其制备方法
CN114956043A (zh) 高性能硬碳材料的制备方法及其应用
CN110156473A (zh) 一种s包覆的中空c3n4纳米陶瓷球体及其制备方法
CN109671907A (zh) 锂硫电池用复合正极片、其制备方法及应用
Zhang et al. Preparation and optimization of nanoporous hollow carbon spheres/S composite cathode materials for Li-S battery
CN110783542A (zh) 一种纸巾衍生碳纤维负载MoS2微米花复合材料的制备方法及其在锂硫电池中的应用
CN106299308A (zh) 一种具有双核壳结构的硫基复合材料及其制备方法
CN115832617A (zh) 一种插层复合薄膜及其制备方法和锂硫电池
CN113540447B (zh) 一种超长循环多原子掺杂中空碳电极材料的制备及应用
Ou et al. Nitrogen-rich porous carbon anode with high performance for sodium ion batteries
CN107959016A (zh) 石墨烯/氧化锌包覆实心碳球锂离子负极电极片及其扣式锂离子电池制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190823