CN110129413A - 一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用 - Google Patents

一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用 Download PDF

Info

Publication number
CN110129413A
CN110129413A CN201910323809.0A CN201910323809A CN110129413A CN 110129413 A CN110129413 A CN 110129413A CN 201910323809 A CN201910323809 A CN 201910323809A CN 110129413 A CN110129413 A CN 110129413A
Authority
CN
China
Prior art keywords
mirna
particle
nano
antisense strand
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910323809.0A
Other languages
English (en)
Inventor
杨春燕
段小红
承康平
丁蕊
王东亮
周启明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Hope Gene Technology Co Ltd
Original Assignee
Nanjing Hope Gene Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Hope Gene Technology Co Ltd filed Critical Nanjing Hope Gene Technology Co Ltd
Priority to CN201910323809.0A priority Critical patent/CN110129413A/zh
Publication of CN110129413A publication Critical patent/CN110129413A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用。一种选择性捕获和纯化microRNA的纳米磁性颗粒,所述的纳米磁性颗粒为表面共价键偶联miRNA反义链探针的Fe3O4@SiO2‑COOH纳米颗粒,所述的miRNA反义链含有一个或多个LNA核苷酸。本发明使用LNA合成miRNA反义链用于捕获检测miRNA,通过二代测序的手段,即提高了实验的准确度和精确度,也准确反映了miRNA的表达情况;利用氧化铁修饰的颗粒,用于miRNA检测,避免了传统方法中使用聚丙烯酰胺凝胶电泳的纯化步骤,大大简化了后期实验中的分离步骤。

Description

一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方 法和应用
技术领域
本发明属于生物检测技术领域,涉及一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用。
背景技术
MicroRNA(miRNA),是一种小的内源性非编码RNA,在转录后调控中起着重要作用,因此是定制治疗靶向的候选分子。大量的人类基因都是由miRNA基于其互补序列进行调控的,miRNA调控将抑制蛋白质翻译。尽管越来越多的miRNA已被探索发现,但是miRNA检测在技术层面上由于其片段太小始终面临着诸多问题。
miRNA表达量分析是现有的直接用来评估特定miRNA生物学功能最主要的方法。这其中主要用到几项专业的技术,包括实时荧光定量PCR法,微阵列芯片检测法以及聚丙烯酰胺凝胶电泳法。这几项技术各有其对应的优势和劣势。实时荧光定量PCR法利用目标miRNA与PCR产物各自对应的产量之间的关系,从而计算得到miRNA的表达量,仅需初始少量的样本即得到准确的结果,但是在设计引物时需要非常特殊的设备和丰富的经验;高通量测序技术可以捕捉更多更复杂的检测信息。在进行高通量测序检测时,由于miRNA片段小,一条测序read就可以完全覆盖对应的miRNA信息。其测序深度可以应需求调整,高通量测序技术可以检测到杂交印迹法无法满足的表达量检测下限,从而发现新miRNA的表达情况。由此可见高通量测序技术在应用过程中既能满足对新miRNA发现,又能满足对miRNA低表达情况的检测。但是,在测序前需要将miRNA进行分离,常常使用聚丙烯酰胺凝胶电泳的方法,此方法流程较为繁琐,通过单体丙烯酰胺在过硫酸铵与TEMED(四甲基乙二胺)的催化和诱导下聚合成长链分子,当有亚甲基双丙烯酰胺参与聚合反应时,长链分子之间就交联成凝胶,每次实验流程较长;电泳过程中所用的丙烯酰胺和亚甲基双丙烯酰胺单体都具有生物学毒性,因此增加了在检测miRNA时的难度;该技术同样需要特殊的工具和丰富的经验来设计芯片;最常用的聚丙烯酰胺凝胶电泳不需要以上方法中对于特殊工具和经验的要求,可以检测miRNA的表达量以及分析RNA的大小,但是常规使用的仍然是DNA探针去捕获目标miRNA分子,灵敏度较低,尤其是在检测丰度较低的miRNA样品时,需要加入大量已纯化的RNA样本。在样本稀缺时,这样的要求往往是无法实现的。
由于miRNA通常是18-24bp的核苷酸短片段,在使用传统PCR扩增分析miRNA时,常常设计短的引物,这容易引起PCR的扩增效率降低,同时将会增加非特异性的扩增。尽管芯片法在检测miRNA时具有高通量的特性,但是微阵列芯片在捕获miRNA同样面临交叉杂交和低灵敏度的问题。即便是用RNA印迹法这样的金标准去检测细胞中或者是血液中的miRNA,也无法灵敏地检出。
发明内容
本发明的目的是针对现有技术的上述不足,提供一种选择性捕获和纯化microRNA的纳米磁性颗粒。
本发明的另一目的是提供该纳米磁性颗粒制备方法。
本发明的又一目的是提供该纳米磁性颗粒的应用。
本发明的目的可通过以下技术方案实现:
一种选择性捕获和纯化microRNA的纳米磁性颗粒,所述的纳米磁性颗粒为表面共价键偶联miRNA反义链探针的Fe3O4@SiO2-COOH纳米颗粒,所述的miRNA反义链含有一个或多个LNA核苷酸。
作为本发明所述的纳米磁性颗粒的优选,整条miRNA反义链均由LNA合成。
作为本发明所述的纳米磁性颗粒的优选,所述的miRNA反义链3’端通过C6连接臂与NH2基团相连。
本发明所述的纳米磁性颗粒的制备方法,包含以下步骤:
(1)设计并合成miRNA反义链寡聚核苷酸探针,其中miRNA 3’端通过C6连接臂与NH2基团相连;
(2)制备Fe3O4@SiO2-COOH纳米颗粒;
(3)共价键连接miRNA反义链寡聚核苷酸探针与Fe3O4@SiO2-COOH纳米颗粒。
作为本发明所述的纳米磁性颗粒的制备方法的优选,整条miRNA反义链均由LNA合成。作为本发明所述的纳米磁性颗粒的制备方法的优选,所述的Fe3O4@SiO2-COOH纳米颗粒制备方法如下:
1)将Fe3O4@SiO2纳米颗粒与1:1乙醇和水的混合液混合,超声30-35min;
2)将Citric acid monohydrate溶解在1:1-2乙醇和水的混合液中;
3)将1)中的纳米颗粒混合液加热到82-86℃,随即加入2)中的混合液;
4)82-86℃反应1-1.5h,随后冷却到室温;
5)置于磁力架上吸附磁性颗粒进行分离,并用PBS缓冲液清洗;
6)在真空环境下干燥Fe3O4@SiO2-COOH磁性颗粒。
作为本发明所述的纳米磁性颗粒的制备方法的优选,所述的共价键连接miRNA反义链寡聚核苷酸探针与Fe3O4@SiO2-COOH纳米颗粒方法如下:
1)使用蒸馏水配制31mM的EDC hydrochloride溶液和0.35M的NHS溶液;
2)将Fe3O4@SiO2-COOH磁性颗粒置于无菌水中;
3)将磁性颗粒悬液与配制好的EDC溶液混合;
4)加入NHS溶液和蒸馏水至3)中的溶液,搅拌1-1.5h;
5)加入miRNA反义链寡聚核苷酸探针,过夜搅拌;
6)置于磁力架上吸附磁性颗粒进行分离,并用无菌水清洗。
本发明所述的纳米磁性颗粒在miRNA检测中的应用。
本发明所述的应用,优选所述的纳米磁性颗粒在miRNA高通量检测中的应用。
一种miRNA检测方法,包括利用本发明所述的纳米磁性颗粒选择性捕获和纯化待检测miRNA;利用高通量测序技术检测纯化后的miRNA。
作为本发明miRNA检测方法,包括利用本发明所述的纳米磁性颗粒选择性捕获和纯化待检测miRNA;利用高通量测序技术检测经过多重所述的纳米磁性颗粒纯化后的miRNA。
有益效果:
LNA单体是双环状核苷酸衍生物,是一类与RNA具有高亲和性的核苷酸类似物。结构中含有一个或多个2’-O-4’-C-亚甲基-β-D-呋喃核糖核酸单体。对比传统方法,通过在寡聚核苷酸链中引入LNA的结构,在检测miRNA时将显著提升其灵敏度,精确到单一核苷酸的区别。不仅如此,LNA有着非常稳定的化学结构且易于在实验室中实现设计和订购。新设计的LNA修饰的反义链探针可以实现低样本量的检测,同时不要求昂贵的设备或是专业的经验。本发明使用LNA合成miRNA反义链用于捕获检测miRNA,通过二代测序的手段,即提高了实验的准确度和精确度,也准确反映了miRNA的表达情况。
本发明中,生物连接修饰的氧化铁纳米颗粒用于miRNA的捕获检测。由于氧化铁纳米颗粒具有磁性,可以实现与细胞、蛋白和核酸等生物分子分离,避免了聚丙烯酰胺凝胶电泳纯化的步骤,简化了后期的检测实验。由于miRNA相对较小的结构以及组成上的相似性,使用氧化铁纳米颗粒准确识别生理环境下的miRNA仍然为一大挑战。为提升miRNA特异性识别与捕获的准确性,本发明使用经表面修饰添加了miRNA反义链的氧化铁纳米颗粒,提高了癌症早期诊断和治疗监控中针对miRNA的检测能力。
使用传统的miRNA反义链介导的纳米磁性颗粒与LNA修饰过后的miR-31反义链介导的纳米磁性颗粒去捕获不同浓度的目标miRNA时,LNA在目标单位低浓度的情况下,依然具有良好的捕获检测效果,具有更显著的特异性。
附图说明
图1纳米磁性颗粒合成流程图
图2透射电镜下Fe3O4@SiO2纳米磁性颗粒视图
图3传统反义链探针与LNA修饰的反义链探针在检测灵敏度上的区别
“1”表示20pmol的miR-31模板,“2”表示1pmol的miR-31模板,“3”表示阴性样本
图4 LNA合成的miR-31反义链介导的纳米磁性颗粒与对照磁性颗粒相对检测量比较
具体实施方式
实施例1
1.反义链寡聚核苷酸链的合成
传统的DNA寡聚核苷酸探针的灵敏度不如LNA修饰的反义链寡聚核苷酸探针。为了提高其杂交捕获时的灵敏度,在线设计完成目标miRNA的反义链(http://www.exiqon.comand http://lnatools.com)。本发明中只选取miR-31和miR-100作为示例设计反义链探针,其中miR-100作为对照,反义链探针见下表。实际捕获检测时,可根据需求设计特定探针。反义链序列的每个碱基均采用LNA核苷酸去合成,LNA反义链的合成委托罗氏诊断产品(上海)有限公司。
表1反义链序列
目标 序列
miR-31 3’AmMC6–TCCGTTCTACGACCGTATCGAA-5’(SEQ ID NO.1)
miR-100(对照) 3’AmMC6–TTGGGCATCTAGGCTTGAACAC-5’(SEQ ID NO.2)
备注:AmMC6表示NH2基团通过C6连接臂与反义链相连,C6又称为Aminolinker C6,是在合成循环的最后一步以亚磷酸胺的形式通过B-氰乙基化学反应添加到引物5’糖环上的。
2.纳米磁性颗粒合成
磁性颗粒合成所购买的化学试剂见下表,PBS缓冲液为实验室自配试剂。
化学试剂名称及对应品牌
试剂名称 品牌
FeCl<sub>3</sub>·6H<sub>2</sub>O Merk
油酸钠(Sodium oleate) Sigma Aldrich
IGEPAL C250 Sigma Aldrich
Tetraethyl orthosilicate Sigma Aldrich
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC)hydrochloride Sigma Aldrich
N-hydroxysuccinimide(NHS) Sigma Aldrich
Ammonium hydroxide Sigma Aldrich
Citric acid monohydrate Sigma Aldrich
2.1合成反义链纳米磁性颗粒流程见图1
2.1.1纳米磁性颗粒的合成
1)取11.8g FeCl3·6H2O和37.5g油酸钠(Sodium oleate)溶解在150ml的环己烷(Cyclohexane)中,加入80ml乙醇和60ml蒸馏水;
2)溶液置于70℃搅拌4.5h;
3)冷却至室温,有机层使用分液漏斗分离并使用蒸馏水清洗3次;
4)抽真空去除溶剂得到产物。
2.1.2 Fe3O4@SiO2纳米颗粒的合成
1)将25mg第一项中制备的氧化铁纳米磁性颗粒通过超声分散到160ml环己烷中;
2)一边搅拌,一边加入8ml IGEPAL溶液和25ml环己烷;
3)加入125μl的Ammonium hydroxide到以上溶液中,超声35min;
4)缓慢加入共计1ml的正硅酸乙酯(Tetraethyl orthosilicate),每次100μl,持续24小时;
5)离心11000rpm,30min得到Fe3O4@SiO2纳米颗粒;
6)使用乙醇清洗3次,并在真空下干燥。
2.1.3 Fe3O4@SiO2-COOH纳米颗粒的合成
1)将25mg Fe3O4@SiO2纳米颗粒与6ml 1:1乙醇和水的混合液混合,超声35min;
2)将11mg Citric acid monohydrate溶解在4ml 1:1乙醇和水的混合液中;
3)将1)中的纳米颗粒混合液加热到84℃,随即加入2)中的混合液;
4)84℃反应1h,随后冷却到室温;
5)置于磁力架上吸附磁性颗粒进行分离,并用PBS缓冲液清洗;
6)在真空环境下干燥Fe3O4@SiO2-COOH磁性颗粒。
2.1.4共价键连接miRNA反义链寡聚核苷酸探针与Fe3O4@SiO2-COOH纳米颗粒
1)使用蒸馏水配置100μl,31mM的EDC hydrochloride溶液和100μl,0.35M的NHS溶液;
2)将2.0mg的Fe3O4@SiO2-COOH磁性颗粒置于1ml无菌水中;
3)将200μl的磁性颗粒悬液与配置好的EDC溶液混合;
4)加入NHS溶液和280μl蒸馏水至3)中的溶液,搅拌1.5h;
5)加入120μl 10μM的miRNA反义链寡聚核苷酸探针,过夜搅拌;
6)置于磁力架上吸附磁性颗粒进行分离,并用无菌水清洗。
制备的纳米磁性颗粒大小为14.8±1.2nm(透射电镜下视图见图2)。磁性颗粒为小立方体。由于其表面的亲水结构,Fe3O4@SiO2核心颗粒能够在水环境下保持一个稳定的结构。
实施例2
使用传统的miR-31反义链介导的纳米磁性颗粒与LNA修饰过后的miR-31反义链介导的纳米磁性颗粒去捕获不同浓度的目标miR-31,结果见图3,由图可见LNA修饰的反义链探针在检测的灵敏度上优于传统反义链探针,LNA在目标单位低浓度的情况下,依然具有良好的捕获检测效果。
实施例3 LNA修饰的反义链探针特异性实验
为验证是否已特异地捕获了目标miRNA,使用经过修饰的miR-100和miR-31共同捕获检测仅含有miRNA-31的RNA模板。
1.在离心管中加入50μL的RNA模板
2.在不同的离心管中分别加入100μL的miR-100纳米磁性颗粒和100μL的miR-31纳米磁性颗粒,在室温下温浴5min
3.在磁力架上放置2min,使用移液器取出并丢弃每个离心管中的上层清液
4.从磁力架上取下离心管,加入磁珠重悬液150μL(0.01M Tris)重悬磁性纳米颗粒,并使用移液器上下吸打以混匀液体
5.重复3-4步骤,在磁力架上保持5min,弃上清液
6.向离心管中加入50μL去离子水,充分重悬磁性纳米颗粒
7.短暂离心1min后,将上一步离心管置于磁力架上静置2min,使磁珠完全吸附在侧壁后使用移液器将洗脱液转移至新的离心管中用于后续的测序分析实验
测序完成后,实验数据表明,与对照纳米磁性颗粒相比,反义链介导的纳米颗粒捕获目标区域的产量比对照组高出约15倍(图4)。说明,不同反义链介导的纳米磁性颗粒对于目标miRNA的捕获具有显著的特异性。
序列表
<110> 南京求臻基因科技有限公司
<120> 一种选择性捕获和纯化microRNA 的纳米磁性颗粒及其制备方法和应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 22
<212> DNA
<213> 人类(Homo sapiens )
<400> 1
tccgttctac gaccgtatcg aa 22
<210> 2
<211> 22
<212> DNA
<213> 人类(Homo sapiens )
<400> 2
ttgggcatct aggcttgaac ac 22

Claims (10)

1.一种选择性捕获和纯化microRNA的纳米磁性颗粒,其特征在于,所述的纳米磁性颗粒为表面通过共价键偶联miRNA反义链探针的Fe3O4@SiO2-COOH纳米颗粒,所述的miRNA反义链中一个或多个核苷酸为LNA核苷酸。
2.根据权利要求1所述的纳米磁性颗粒,其特征在于,整条miRNA反义链均由LNA合成。
3.根据权利要求2所述的纳米磁性颗粒,其特征在于,所述的miRNA反义链3’端通过C6连接臂与NH2基团相连。
4.权利要求1-3中任一项所述的纳米磁性颗粒的制备方法,其特征在于,包含以下步骤:
(1)设计并合成miRNA反义链寡聚核苷酸探针,其中miRNA反义链3’端通过C6连接臂与NH2基团相连;所述的miRNA反义链寡聚核苷酸探针中一个或多个核苷酸为LNA核苷酸;
(2)制备Fe3O4@SiO2-COOH纳米颗粒;
(3)共价键连接miRNA反义链寡聚核苷酸探针与Fe3O4@SiO2-COOH纳米颗粒。
5.根据权利要求4所述的制备方法,其特征在于,整条miRNA反义链寡聚核苷酸探针均由LNA合成。
6.根据权利要求4所述的制备方法,其特征在于,所述的Fe3O4@SiO2-COOH纳米颗粒制备方法如下:
1)将Fe3O4@SiO2纳米颗粒与1:1乙醇和水的混合液混合,超声30-35min;
2)将Citric acid monohydrate溶解在1:1-2乙醇和水的混合液中;
3)将1)中的纳米颗粒混合液加热到82-86℃,随即加入2)中的混合液;
4)82-86℃反应1-1.5h,随后冷却到室温;
5)置于磁力架上吸附磁性颗粒进行分离,并用PBS缓冲液清洗;
6)在真空环境下干燥Fe3O4@SiO2-COOH磁性颗粒。
7.根据权利要求4所述的制备方法,其特征在于,所述的共价键连接miRNA反义链寡聚核苷酸探针与Fe3O4@SiO2-COOH纳米颗粒方法如下:
1)使用蒸馏水配制31mM的EDC hydrochloride溶液和0.35M的NHS溶液;
2)将Fe3O4@SiO2-COOH磁性颗粒置于无菌水中;
3)将磁性颗粒悬液与配制好的EDC溶液混合;
4)加入NHS溶液和蒸馏水至3)中的溶液,搅拌1-1.5h;
5)加入miRNA反义链寡聚核苷酸探针,过夜搅拌;
6)置于磁力架上吸附磁性颗粒进行分离,并用无菌水清洗。
8.权利要求1-3中任一项所述的纳米磁性颗粒在miRNA检测中的应用。
9.根据权利要求8所述的应用,其特征在于权利要求1-3中任一项所述的纳米磁性颗粒在miRNA高通量检测中的应用。
10.一种miRNA检测方法,其特征在于包括利用权利要求1-3中任一项所述的纳米磁性颗粒选择性捕获和纯化待检测miRNA;通过二代测序的手段检测纯化后的miRNA表达量。
CN201910323809.0A 2019-04-22 2019-04-22 一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用 Pending CN110129413A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910323809.0A CN110129413A (zh) 2019-04-22 2019-04-22 一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910323809.0A CN110129413A (zh) 2019-04-22 2019-04-22 一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110129413A true CN110129413A (zh) 2019-08-16

Family

ID=67570590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910323809.0A Pending CN110129413A (zh) 2019-04-22 2019-04-22 一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110129413A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363822A (zh) * 2019-11-20 2020-07-03 深圳市鲲鹏未来科技有限公司 包含血液稳定性纳米颗粒的溶液、其制备方法及miRNA标志物的检测方法
CN114377145A (zh) * 2022-02-18 2022-04-22 江西中洪博元生物技术有限公司 一种新的四氧化三铁纳米粒子及其制备方法
CN115354070A (zh) * 2022-10-19 2022-11-18 伟博基因科技(天津)有限公司 一种基于微球检测核酸的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358910A (zh) * 2011-11-03 2012-02-22 东南大学 基于磁分离与引物延伸的化学发光检测拷贝数多态性的方法
CN104271768A (zh) * 2012-02-14 2015-01-07 约翰霍普金斯大学 miRNA分析方法
KR20160071925A (ko) * 2014-12-12 2016-06-22 가톨릭관동대학교산학협력단 타겟 분자 탐지를 위한 자기 공명 비콘
CN107354227A (zh) * 2017-09-06 2017-11-17 苏州吉玛基因股份有限公司 microRNA探针一步法实时荧光定量PCR检测方法
CN107893101A (zh) * 2017-12-22 2018-04-10 郑州大学 一种用于肿瘤疾病早期诊断的试剂盒、方法及应用
CN108103148A (zh) * 2017-12-22 2018-06-01 惠州清水湾生物材料有限公司 一种miRNA超敏检测用探针液体芯片的制备及应用
CN108096588A (zh) * 2017-11-07 2018-06-01 江苏省中医院 一种用于胰腺癌诊疗一体化的纳米探针及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358910A (zh) * 2011-11-03 2012-02-22 东南大学 基于磁分离与引物延伸的化学发光检测拷贝数多态性的方法
CN104271768A (zh) * 2012-02-14 2015-01-07 约翰霍普金斯大学 miRNA分析方法
KR20160071925A (ko) * 2014-12-12 2016-06-22 가톨릭관동대학교산학협력단 타겟 분자 탐지를 위한 자기 공명 비콘
CN107354227A (zh) * 2017-09-06 2017-11-17 苏州吉玛基因股份有限公司 microRNA探针一步法实时荧光定量PCR检测方法
CN108096588A (zh) * 2017-11-07 2018-06-01 江苏省中医院 一种用于胰腺癌诊疗一体化的纳米探针及其制备方法和应用
CN107893101A (zh) * 2017-12-22 2018-04-10 郑州大学 一种用于肿瘤疾病早期诊断的试剂盒、方法及应用
CN108103148A (zh) * 2017-12-22 2018-06-01 惠州清水湾生物材料有限公司 一种miRNA超敏检测用探针液体芯片的制备及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
展宗瑞 等: "纳米粒子三明治型传感器的组装及其在BRCA-1检测中的应用", 《云南化工》 *
涂丽君: "超顺磁性Fe3O4纳米粒子的表面改性、包覆及其性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363822A (zh) * 2019-11-20 2020-07-03 深圳市鲲鹏未来科技有限公司 包含血液稳定性纳米颗粒的溶液、其制备方法及miRNA标志物的检测方法
CN111363822B (zh) * 2019-11-20 2024-03-19 深圳市鲲鹏未来科技有限公司 包含血液稳定性纳米颗粒的溶液、其制备方法及miRNA标志物的检测方法
CN114377145A (zh) * 2022-02-18 2022-04-22 江西中洪博元生物技术有限公司 一种新的四氧化三铁纳米粒子及其制备方法
CN115354070A (zh) * 2022-10-19 2022-11-18 伟博基因科技(天津)有限公司 一种基于微球检测核酸的方法

Similar Documents

Publication Publication Date Title
CN110129413A (zh) 一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用
Jin et al. Cancer biomarker discovery using DNA aptamers
Li et al. Covalent binding of streptavidin on gold magnetic nanoparticles for bead array fabrication
CN106755460B (zh) 一种单碱基突变检测方法
CN109055381B (zh) 用于鳗弧菌特异性识别的ssDNA核酸适配体及筛选与应用
CN107254550B (zh) 一种检测hiv相关基因的spr传感器及其制备与应用
EP3800268A1 (en) Analyte enrichment methods and compositions
CN109844514B (zh) 非编码rna的电化学传感器的制备方法及其应用
CN113215167A (zh) 核酸适配体及其在检测大口黑鲈虹彩病毒感染的细胞中的应用
CN110568046B (zh) 基于hrp催化聚苯胺原位生成用于afb1的检测方法
CN109628573B (zh) 一种用于无创产前检测12种染色体微缺失微重复综合征的试剂盒及其专用探针组
CN109097365B (zh) 用于创伤弧菌识别的核酸适配体及筛选方法与应用
CN107858357B (zh) 牛呼吸道合胞体g蛋白特异性核酸适配体
KR101891406B1 (ko) 살모넬라 타이피뮤리움 생균의 표면에 특이적으로 결합하는 dna 앱타머 및 이의 용도
CN114045281A (zh) 一种神经胶质瘤标志物及核酸适配体的筛选方法
CN117487813A (zh) 特异性识别阿奇霉素的单链dna适配体序列及其应用
JP2009000099A (ja) 検体中の核酸の検出方法、それに用いるプローブ設計方法、プローブ設計システム
CN112813071B (zh) 一种特异性识别利巴韦林的适配体序列及其应用
CN113073100B (zh) 奈替米星核酸适配体及筛选和在奈替米星检测上的应用
CN118086315B (zh) 一种识别原多甲藻酸-1的核酸适配体及其应用
CN112961906A (zh) 金纳米棒检测探针、制备方法、检测方法及其应用
CN112961859B (zh) 特异性识别金刚烷胺的适配体及其应用
CN111363749A (zh) 一种用于检测中华鳖虹彩病毒的核酸适配体及其构建方法和应用
CN110819632A (zh) 用于结合曲妥珠抗体的核酸适体
CN111363748A (zh) 一种核酸适配体及其构建方法和其在检测中华鳖彩虹病毒中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816