CN110124059A - 一种缓释抑菌剂的制备方法 - Google Patents

一种缓释抑菌剂的制备方法 Download PDF

Info

Publication number
CN110124059A
CN110124059A CN201910553005.XA CN201910553005A CN110124059A CN 110124059 A CN110124059 A CN 110124059A CN 201910553005 A CN201910553005 A CN 201910553005A CN 110124059 A CN110124059 A CN 110124059A
Authority
CN
China
Prior art keywords
beta
cyclodextrin
preparation
sustained release
aspirin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910553005.XA
Other languages
English (en)
Other versions
CN110124059B (zh
Inventor
张洪文
郭秋月
刘俊
李欣
姜彦�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201910553005.XA priority Critical patent/CN110124059B/zh
Publication of CN110124059A publication Critical patent/CN110124059A/zh
Application granted granted Critical
Publication of CN110124059B publication Critical patent/CN110124059B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • A61K31/612Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid
    • A61K31/616Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid by carboxylic acids, e.g. acetylsalicylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种缓释抑菌剂的制备方法,首先β‑环糊精与顺丁烯二酸酐通过酯化反应得到顺丁烯二酸酐酯化β‑环糊精衍生物。该衍生物与二乙醇胺发生酰胺化反应得到功能化β‑环糊精衍生物。以偶氮二异丁腈作为引发剂,四氢呋喃作为溶剂,功能化β‑环糊精衍生物与苯乙烯、甲基丙烯酸丁酯等单体发生自由基聚合合成两亲性β‑环糊精聚合物。β‑环糊精聚合物与阿司匹林进行逐步滴加法制备β‑环糊精聚合物/阿司匹林包合物,β‑环糊精聚合物使得包合物具有较好的缓释性能。本发明成功制备出一种缓释抑菌剂,且该缓释抑菌剂具有较好的缓释性能和抗黏附性能。

Description

一种缓释抑菌剂的制备方法
技术领域
本发明属于高分子功能材料领域,具体涉及一种缓释抑菌剂的制备方法。
背景技术
环糊精(Cyclodextrin,CD)是由环糊精葡萄糖残基转移酶作用于淀粉、糖原、麦芽寡聚糖等葡萄糖聚合物而形成的,最常见主要有环糊精α、β、γ三种。在三种环糊精中,β-环糊精(β-Cyclodex,简称β-CD)为水溶性非还原性的白色结晶或无定型粉末,主体构型像个中间有空洞,两端不封闭的锥状圆筒。在空洞结构中,内腔呈现疏水性,可以包含许多客体分子,在医药上的应用就充分体现出其出色的“包埋”作用。
β-CD主要具有以下优点:(1)增加药物的稳定性,形成包合物之后,目标药物避免直接与外界光照、温度等因素直接接触,也减少了发生氧化和水解的可能性;(2)降低药物的毒副作用,例如大剂量服用阿司匹林可有抗炎的作用,但是对胃肠刺激较大,如果制备成β-环糊精聚合物/阿司匹林包合物,可减少其对胃肠的不良刺激,同时达到所需的临床目的;(3)增加药物的溶解度,利用相溶解度法可以评价包合物溶解性能;(4)使药物具有缓释作用,缓释技术是指通过采取某些措施以降低特定体系内某种活性成分的释放速率,从而保证在特定的时间内体系中的活性成分可维持有效浓度。缓释体系的活性成分可在较长时间内保持在有效的浓度范围内,延长了药剂的作用时间,提高了药效。
阿司匹林(Acetylsalicylic acid,ASA)呈现为一种白色结晶状态。它具有解热、镇痛、抗炎、抗风湿、促进尿酸排泄和抗血小板凝集等作用,广泛应用于治疗伤风、感冒、头痛、神经痛、关节痛、急性和慢性风湿痛及类风湿痛等,小剂量时具有抗血小板聚集作用,但是常见的不良反应有胃肠道反应、凝血障碍、过敏反应、水杨酸反应等。其水溶性差,易水解,因此影响其制剂的质量。
为提高阿司匹林的溶解性和稳定性,可采用环糊精出色的“包埋”作用,来达到其目的。目前已经有不少专著和长篇综述描述环糊精的结构、性质和应用,及其包合物形成的条件、常用制备方法、影响制备工艺的因素、包合物的验证与含量测定技术研究和应用。
发明内容
本发明提供了一种缓释抑菌剂的制备方法,具体操作为:
(1)酯化反应:
将β-环糊精与顺丁烯二酸酐以摩尔比为1:20进行充分研磨,混合均匀,在80℃的油浴锅中进行反应。置于锥形瓶中后需用保鲜膜和锡箔纸封口,反应初期用玻璃棒进行搅拌,直至体系变得粘稠。8小时后将产物进行提纯,分别用丙酮、无水乙醇进行洗涤研磨三次,干燥;
(2)酰胺反应:
将步骤(1)中得到的顺丁烯二酸酐酯化β-环糊精衍生物与二乙醇胺以摩尔比为1:99溶解于四氢呋喃溶剂中,在60℃、300r/min油浴锅中反应5小时且需冷凝回流。产物需通过丙酮沉淀,分离,干燥;
(3)环糊精聚合物制备:
将步骤(2)得到的酰胺化β-环糊精衍生物与苯乙烯以摩尔比为1:99溶解于四氢呋喃溶剂中,同时加入引发剂偶氮二异丁腈,软化剂甲基丙烯酸丁酯(软化剂的作用是降低β-环糊精聚合物的刚性,用量占苯乙烯量的15%)。通氮气除氧,在65℃-80℃油浴锅,电子搅拌器转动条件下反应8小时且需冷凝回流。产物用无水甲醇沉淀,分离,干燥;
(4)包合物制备:
将步骤(3)得到的β-环糊精聚合物溶解于N,N-二甲基甲酰胺中,阿司匹林溶解于水中。通过分液漏斗使得β-环糊精聚合物溶液逐渐滴加至阿司匹林水溶液中,60℃环境下包合6小时。产物需趁热过滤,抽滤,干燥。
β-环糊精聚合物与阿司匹林的摩尔比为1:99。
与现有技术相比,本发明的有益效果在于:
(1)本发明利用酯化反应制备出顺丁烯二酸酐酯化β-环糊精衍生物,该方法制备得到功能化的β-环糊精衍生物。没有破坏β-环糊精本身的空腔结构的同时,在β-环糊精结构中引入了羧基官能团,能够进行更多的表面改性。
(2)本发明通过酰胺反应得到酰胺化β-环糊精衍生物,让体系在不破坏本体结构的条件下变得更加稳定,同时因为β-环糊精聚合物结构中的酰胺基团,酰胺基极性较大,熔沸点均分子量相近的羧酸高,稳定性增加。同时引入羟基基团,使得体系的极性增加。改善β-环糊精聚合物本身的疏水性能,对包合物的抗细菌黏附性能会提高,当包合物的亲水性能增加时,材料的表面自由能增加,材料表面与细菌之间的粘附力减小,黏附自由能增大,细菌黏附量减小,且大量的羟基可以通过不同的方法使得体系能够进行表面修饰。
(3)本发明合成出两亲性的β-环糊精聚合物,小分子变为大分子,不仅改善了β-环糊精本身的亲水性能,还使得体系具有一定的刚性。
(4)β-环糊精聚合物与阿司匹林发生包合作用,是因为环糊精优秀的包埋作用。由于四氢呋喃的极性小于β-环糊精的内腔极性,可以使阿司匹林利用非共价键的弱相互作用的驱动包合至β-环糊精的空腔中。包合方法大致相同,但是特色在于不仅通过环糊精空腔进行包结,还由于β-环糊精聚合物结构中具有二乙醇胺引入的醇羟基,可以在环糊精空腔包合量达到最高以后增加一定的包合量,使得缓释性能增加。本发明采用逐步滴加法制备出β-环糊精聚合物/阿司匹林包合物,成功将阿司匹林包结于空腔结构中。阿司匹林的耐亲水性能增加,弥补了阿司匹林本身易水解的缺陷,提升了它的稳定性。同时β-环糊精聚合物/阿司匹林包合物也具有较好的疏水性能、缓释性能和抗黏附性能。
附图说明
图1为实施例1步骤(1)中β-环糊精的红外光谱图;
图2为实施例1步骤(1)中制备的顺丁烯二酸酐酯化β-环糊精衍生物的红外光谱图;
图3为实施例1步骤(2)中制备的酰胺化β-环糊精衍生物的红外光谱图;
图4为实施例1步骤(3)中制备的β-环糊精聚合物的红外光谱图;
图5为实施例1步骤(4)中制备的β-环糊精聚合物/阿司匹林包合物的红外光谱图;
图6为实施例1制备的β-环糊精聚合物/阿司匹林包合物缓释实验的释放曲线;
图7为实施例2制备的β-环糊精聚合物/阿司匹林包合物缓释实验的释放曲线;
图8为实施例1制备的β-环糊精聚合物/阿司匹林包合物抑菌实验中细菌黏附柱状图(a:纯样PS;b:0.5g包合物;c:1.0g包合物;d:1.5g包合物);
图9为阿司匹林标准曲线;
图10为对比例1制备的β-环糊精聚合物/阿司匹林包合物缓释实验的释放曲线;
图11为对比例1制备的β-环糊精聚合物/阿司匹林包合物抑菌实验中细菌黏附柱状图(a:纯样PS;b:0.5g包合物;c:1.0g包合物;d:1.5g包合物)。
具体实施方式
本发明下面结合实施例作进一步详述:
实施例1:
(1)通过酯化反应制备顺丁烯二酸酐酯化β-环糊精衍生物
称取5gβ-环糊精和8.8g顺丁烯二酸酐,在研钵中进行充分研磨,直至体系混合均匀。用药匙将混合研磨好的粉末转移至锥形瓶中,在80℃的油浴锅中加热保温8h。加热前期需搅拌,使粉末充分接触反应,反应体系开始变粘稠时要继续搅拌,直至体系搅拌不动。密封锥形瓶。反应8h后取出锥形瓶中的固体,研磨成粉末状。随后用丙酮和无水乙醇依次充分洗涤抽滤,分别洗涤3次,抽滤,干燥,得到顺丁烯二酸酐酯化β-环糊精衍生物。
图2顺丁烯二酸酐酯化β-环糊精衍生物红外谱图曲线中可以看出,在1728cm-1处出现了不饱和羧酸酯对称伸缩振动引起的红外特征振动吸收峰。而它与图1β-环糊精在580cm-1处的环振动和940cm-1处的含α-1,4糖苷键的骨架振动基本一致。这个数据表明采用酯化反应,体系引入具有羧基的顺丁烯二酸酐,即证明成功制备出顺丁烯二酸酐酯化β-环糊精衍生物;
(2)通过酰胺反应制备酰胺化β-环糊精衍生物
将1g步骤(1)中得到的顺丁烯二酸酐酯化β-环糊精衍生物、6.21mL二乙醇胺、15mL四氢呋喃加入三口烧瓶,放入转子。在磁力搅拌器的作用下,60℃、300r/min油浴锅中进行充分反应且需冷凝回流。5小时后用吸管将产物沉淀于丙酮溶液中,分离,干燥,得到酰胺化β-环糊精衍生物;
图3酰胺化β-环糊精衍生物红外谱图曲线中可以看出,在3050~3700cm-1处出现了-OH的伸缩振动峰。由于-C=O是叔酰胺,因此1630cm-1出现了-C=O吸收峰,647cm-1-CN吸收峰。而它与图1β-环糊精在580cm-1处的环振动和940cm-1处的含α-1,4糖苷键的骨架振动基本一致。这个数据表明由酰胺反应,引入了含有羟基的二乙醇胺,即证明成功制备出酰胺化β-环糊精衍生物;
(3)通过自由基聚合制备β-环糊精聚合物
量取3.2mL步骤(2)得到的酰胺化β-环糊精衍生物、12mL苯乙烯、1.8mL甲基丙烯酸丁酯、12mL四氢呋喃和140mg偶氮二异丁腈于三口烧瓶中,通氮气10min。在电子搅拌器的作用下于65℃油浴锅中反应且需冷凝回流。8小时以后用吸管将产物滴至无水甲醇中沉淀,分离,干燥,得到β-环糊精聚合物;
图4β-环糊精聚合物红外谱图曲线中可以看出,2900~3150cm-1范围内出现了Ar-H的伸缩振动吸收峰,而单取代苯基的特征吸收峰则出现在755cm-1和698cm-1两处。它与图1β-环糊精在580cm-1处的环振动和940cm-1处的含α-1,4糖苷键的骨架振动基本一致。这个数据表明由自由基聚合引入了具有苯基基团的苯乙烯,即证明成功制备出β-环糊精聚合物;
(4)通过逐步滴加法制备β-环糊精聚合物/阿司匹林包合物
称取1g步骤(3)得到的β-环糊精聚合物,溶解于15mL的N,N-二甲基甲酰胺中。称取7.54g阿司匹林,溶解于100mL的蒸馏水中。将β-环糊精聚合物溶液置于分液漏斗中,控制滴速,逐渐滴加到阿司匹林水溶液中。于60℃水浴环境中包合6小时。产物趁热进行抽滤,干燥,得到β-环糊精聚合物/阿司匹林包合物。
图5β-环糊精聚合物红外谱图曲线中可以看出,阿司匹林与共聚物发生包合反应后酯基增加,在1670cm-1处是新增酯基峰。它与图1β-环糊精在580cm-1处的环振动和940cm-1处的含α-1,4糖苷键的骨架振动基本一致。这个数据表明通过逐步滴加法,让带有羧基的阿司匹林包结于β-环糊精的空腔中,即证明成功制备出β-环糊精聚合物/阿司匹林包合物;
实施例2
(1)酯化反应制备顺丁烯二酸酐酯化β-环糊精衍生物的方法同实施例1;
(2)酰胺反应制备酰胺化β-环糊精衍生物;
将1g步骤(1)中得到的顺丁烯二酸酐酯化β-环糊精衍生物、5.27mL二乙醇胺、15mL四氢呋喃加入三口烧瓶,放入转子。在磁力搅拌器的作用下,60℃、300r/min油浴锅中进行充分反应且需冷凝回流。5小时后用吸管将产物沉淀于丙酮溶液中,分离,干燥,得到酰胺化β-环糊精衍生物。
(3)自由基聚合制备β-环糊精聚合物的方法同实施例1,聚合温度为80℃;
(4)逐步滴加法制备β-环糊精聚合物/阿司匹林包合物的方法同实施例1。
实施例1制备的β-环糊精聚合物/阿司匹林包合物进行缓释性能研究,具体为:
(1)酯化反应制备顺丁烯二酸酐酯化β-环糊精衍生物的方法同实施例1;
(2)酰胺反应制备酰胺化β-环糊精衍生物的方法同实施例1;
(3)自由基聚合制备β-环糊精聚合物的方法同实施例1;
(4)逐步滴加法制备β-环糊精聚合物/阿司匹林包合物的方法同实施例1;
(5)β-环糊精聚合物/阿司匹林包合物的缓释研究;
将150mg步骤(4)中得到的β-环糊精聚合物/阿司匹林包合物溶解于100mL蒸馏水。在37℃、100r/min水浴锅中进行缓释。时间设置为15min、30min、45min、60min、90min、120min、150min、180min、210min、240min、270min、330min、390min、450min、570min,每到该时间取3mL清液,同时补充3mL相同温度的续滤液,用0.1mol/mL氢氧化钠滴定至pH为9-10,再用0.1mol/mL盐酸滴定至pH为3-4,加入稍过量的六水合三氯化铁这里首先通过不同浓度的阿司匹林制备出它的标准曲线A=0.0072C-0.01397,R=0.9994(图9),随后通过缓释过程,绘制β-环糊精聚合物/阿司匹林包合物的缓释曲线(图6),在可见光波长526.5nm条件下测量样品吸光度A。
从图6β-环糊精聚合物/阿司匹林包合物缓释曲线中可以看出,随着时间的增加,缓释出阿司匹林的含量也在逐渐地增加。刚开始阿司匹林的含量缓释速度很快,逐渐变缓。60min时释放速度变快,300min后速度加快,480min后趋于平缓,表明缓释达到最高;
图6中缓释浓度达到52.5μg/mL,具有较好的缓释性能,可以作为一种载药功能材料应用于医学药物领域。与阿司匹林形成包合物后,增加药物不受外界影响的能力,提高阿司匹林的稳定性。从而降低药物活性成分的释放速率,维持其本身的有效浓度,使药物达到最佳的缓释效果。总的而言,制备的包合物不仅不会对人体造成伤害,还会有效地降低药物对其他器官的刺激。
实施例2制备的β-环糊精聚合物/阿司匹林包合物进行缓释性能研究,具体为:
(1)酯化反应制备顺丁烯二酸酐酯化β-环糊精衍生物的方法同实施例2;
(2)酰胺反应制备酰胺化β-环糊精衍生物的方法同实施例2;
(3)自由基聚合制备β-环糊精聚合物的方法同实施例2;
(4)逐步滴加法制备β-环糊精聚合物/阿司匹林包合物的方法同实施例2;
(5)变量β-环糊精聚合物/阿司匹林包合物的缓释研究的方法同对比实施例1;
图7β-环糊精聚合物/阿司匹林包合物缓释曲线中可以看出,随着时间的增加,缓释出阿司匹林的含量也在逐渐增加。刚开始阿司匹林的含量缓释速度很快,逐渐变缓。60min时缓释速度变快,240min后速度逐渐变缓,420min后趋于平缓,表明缓释达到最高;
实施例1制备的β-环糊精聚合物/阿司匹林包合物进行抗细菌黏附性能研究,具体为:
(1)酯化反应制备顺丁烯二酸酐酯化β-环糊精衍生物的方法同实施例1;
(2)酰胺反应制备酰胺化β-环糊精衍生物的方法同实施例1;
(3)自由基聚合制备β-环糊精聚合物的方法同实施例1;
(4)逐步滴加法制备β-环糊精聚合物/阿司匹林包合物的方法同实施例1;
(5)β-环糊精聚合物/阿司匹林包合物的细菌黏附研究;
称取β-环糊精聚合物/阿司匹林包合物0.5g、1.0g、1.5g,分别和9.5g、9.0g、8.5g聚苯乙烯。在微型双锥螺杆挤出机中密炼5min,结束后,将密炼完成的产品室温下冷却,取模具,用压片机压为厚度1mm薄板。切成直径为1cm的圆,用酒精浸泡5min,烘干,进行细菌黏附实验。同样,称取10g聚苯乙烯制成厚度1mm纯样薄板,进行细菌黏附实验。
从图8细菌黏附柱状图中可以看出,包合物含量与菌落数量呈负相关,间接说明了β-环糊精聚合物中包合的阿司匹林量越多,从切片中释放出的阿司匹林量也越多,使细菌黏附性显著下降,β-环糊精聚合物/阿司匹林包合物具有较好的抗细菌黏附性能,其中含有1.5gβ-环糊精聚合物/阿司匹林包合物的纯样薄板抗细菌黏附效果显著,黏附量低于10×103cfu/cm2,抗细菌黏附效果达到93%。
对比例1
(1)酯化反应制备顺丁烯二酸酐酯化β-环糊精衍生物的方法同实施例1;
(2)将步骤(1)制备的顺丁烯二酸酐酯化β-环糊精衍生物与苯乙烯以摩尔比为1:99溶解于四氢呋喃溶剂中,同时加入引发剂偶氮二异丁腈,甲基丙烯酸丁酯,通氮气除氧,在65℃-80℃油浴锅,电子搅拌器转动条件下反应8小时且需冷凝回流,聚合制备β-环糊精聚合物;
(3)将步骤(2)得到的β-环糊精聚合物溶解于N,N-二甲基甲酰胺中,7.54g阿司匹林溶解于100mL水中(β-环糊精聚合物与阿司匹林的摩尔比为1:99)。通过分液漏斗使得β-环糊精聚合物溶液逐渐滴加至阿司匹林水溶液中,60℃环境下包合6小时逐步滴加法制备β-环糊精聚合物/阿司匹林包合物。
对比例1与实施例1相比,主要区别在于:缺少步骤(2)的酰胺反应。
将对比例1制备的包合物进行缓释性能研究:
将150mgβ-环糊精聚合物/阿司匹林包合物溶解于100mL蒸馏水。在37℃、100r/min水浴锅中进行缓释。时间设置为15min、30min、45min、60min、90min、120min、150min、180min、210min、240min、270min、330min、390min、450min、570min,每到该时间取3mL清液,同时补充3mL相同温度的续滤液,得到缓释曲线。
通过图10可以发现刚开始缓释速率达到最大,直到60min时缓释速率缓慢增加。当时间到达180min后速率加快,于420min后缓释速率趋于稳定,达到27.48mg/mL。
将对比例1制备的β-环糊精聚合物/阿司匹林包合物进行细菌黏附实验,实验方法同实施例1。从图11可以发现随着包合物量的增加,细菌黏附的量也在逐渐减小,当1.5gβ-环糊精聚合物/阿司匹林包合物((其中β-环糊精聚合物与阿司匹林的摩尔比为1:99)和8.5g聚苯乙烯共混得到的薄片最大抗细菌黏附效果达到77%,最低黏附量为35×103cfu/cm2。与实施例1包合物的抗细菌黏附效果相比,抗细菌黏附性能明显下降。
从上述对比数据可知,对比例1的β-环糊精聚合物结构中不具有酰胺基团以及引进的醇羟基。其缓释、抗细菌黏附性能均有所降低。进一步证明了,本申请的聚合物结构中的酰胺基团对缓释、抗细菌黏附发挥了重要作用。叔酰胺不仅具有较高的稳定性,且具有两亲性,可以作为一种表面活性剂,能够降低材料表面与细菌的黏附力。醇羟基能够与阿司匹林结构中的羧基发生酯化发应,结合更多的阿司匹林,对包合作用、缓释性能、抗细菌黏附性能。

Claims (10)

1.一种缓释抑菌剂的制备方法,其特征在于:所述制备方法步骤如下:
(1)酯化反应:将β-环糊精与顺丁烯二酸酐进行充分研磨,直至体系混合均匀,得顺丁烯二酸酐酯化β-环糊精衍生物;
(2)酰胺反应:取步骤(1)产物与二乙醇胺在四氢呋喃溶剂中发生反应,得酰胺化β-环糊精衍生物;
(3)环糊精聚合物制备:将步骤(2)产物、苯乙烯、甲基丙烯酸丁酯、偶氮二异丁腈在四氢呋喃溶剂中进行自由基聚合反应;
(4)包合物制备:按照一定配比将步骤(3)环糊精聚合物与阿司匹林进行包合,得缓释抑菌剂。
2.根据权利要求1所述的缓释抑菌剂的制备方法,其特征在于:步骤(1)所述酯化反应的具体制备步骤为:
将研磨、混合均匀的β-环糊精、顺丁烯二酸酐粉末置于锥形瓶中,在80℃下反应8小时,在反应初期用玻璃棒不停地搅拌,直至体系变得粘稠,得产物后进行提纯。
3.根据权利要求1所述的缓释抑菌剂的制备方法,其特征在于:步骤(2)所述酰胺化反应的具体制备步骤为:
将步骤(1)得到的顺丁烯二酸酐酯化β-环糊精衍生物与二乙醇胺、四氢呋喃混合充分,在60℃、300r/min条件下反应5小时,得产物后进行提纯。
4.根据权利要求1所述的缓释抑菌剂的制备方法,其特征在于:步骤(3)所述自由基聚合的具体制备步骤为:
将步骤(2)得到的酰胺化β-环糊精衍生物与苯乙烯、甲基丙烯酸丁酯、偶氮二异丁腈、四氢呋喃混合均匀,通氮气除氧,在电动搅拌器的带动下于65℃-80℃环境中反应8小时,得产物后进行提纯。
5.根据权利要求1所述的缓释抑菌剂的制备方法,其特征在于:步骤(4)所述包合物制备的具体制备步骤为:
将步骤(3)得到的β-环糊精聚合物溶解于N,N-二甲基甲酰胺中,阿司匹林溶解于水中,通过分液漏斗将β-环糊精聚合物溶液逐渐滴加入阿司匹林水溶液中,60℃环境下包合6小时,得产物。
6.根据权利要求2所述的缓释抑菌剂的制备方法,其特征在于:提纯顺丁烯二酸酐酯化β-环糊精衍生物的操作为:向反应所得产物中分别加入丙酮、无水乙醇依次研磨且洗涤三次,抽滤,干燥。
7.如权利要求3所述的缓释抑菌剂的制备方法,其特征在于:提纯酰胺化β-环糊精衍生物的操作为:以丙酮为沉淀剂沉淀产物,分离,干燥。
8.根据权利要求4所述的缓释抑菌剂的制备方法,其特征在于:提纯β-环糊精聚合物的操作为:以无水甲醇为沉淀剂沉淀产物,分离,干燥。
9.如权利要求1所述的缓释抑菌剂的制备方法,其特征在于:步骤(1)中,β-环糊精与顺丁烯二酸酐的摩尔比为1:20;步骤(2)顺丁烯二酸酐酯化β-环糊精衍生物与二乙醇胺的摩尔比为1:99。
10.如权利要求1所述的缓释抑菌剂的制备方法,其特征在于:步骤(3)酰胺化β-环糊精衍生物与苯乙烯的摩尔比为1:99;步骤(4)β-环糊精聚合物与阿司匹林的摩尔比为1:99。
CN201910553005.XA 2019-06-25 2019-06-25 一种缓释抑菌剂的制备方法 Active CN110124059B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910553005.XA CN110124059B (zh) 2019-06-25 2019-06-25 一种缓释抑菌剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910553005.XA CN110124059B (zh) 2019-06-25 2019-06-25 一种缓释抑菌剂的制备方法

Publications (2)

Publication Number Publication Date
CN110124059A true CN110124059A (zh) 2019-08-16
CN110124059B CN110124059B (zh) 2021-11-23

Family

ID=67579283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910553005.XA Active CN110124059B (zh) 2019-06-25 2019-06-25 一种缓释抑菌剂的制备方法

Country Status (1)

Country Link
CN (1) CN110124059B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951091A (zh) * 2019-12-10 2020-04-03 常州大学 一种双重敏感缓释β-环糊精水凝胶的制备方法
CN111171187A (zh) * 2020-02-12 2020-05-19 贵州省现代农业发展研究所 一种丁烯酸-β-环糊精酯的制备方法
CN113150312A (zh) * 2021-04-23 2021-07-23 江南大学 一种乙酰化淀粉纳米胶束的制备方法及其应用
CN113416266A (zh) * 2021-06-23 2021-09-21 湖北工业大学 一种芳酰肼类化合物-环糊精包合物及其制备方法
CN114163817A (zh) * 2021-11-10 2022-03-11 浙江大学 一种缓释抗菌膜及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632929A (ja) * 1986-06-20 1988-01-07 Kao Corp アセチルサリチル酸製剤
CA2103511A1 (en) * 1992-08-17 1994-02-18 Randy J. Koslo Gastroprotective complexes
US20030203991A1 (en) * 2002-04-30 2003-10-30 Hydromer, Inc. Coating composition for multiple hydrophilic applications
WO2006084650A1 (en) * 2005-02-10 2006-08-17 Qiagen Gmbh Sample lysis and coating of reaction surface
WO2008006216A1 (en) * 2006-07-14 2008-01-17 Mistral Pharma, Inc. Anti-inflammatory and cytoprotectant chronotherapy
CN101721713A (zh) * 2009-12-01 2010-06-09 河北科技大学 3,5-二羟基-4-异丙基二苯乙烯的环糊精包合物及其制备方法
CN102850495A (zh) * 2012-07-25 2013-01-02 常州大学 一种β-环糊精的亲水性交联聚合物空心微球的制备方法
CN103830742A (zh) * 2014-03-05 2014-06-04 吉林化工学院 一种阿司匹林包合物及其制备方法
CN106413717A (zh) * 2014-04-10 2017-02-15 查尔斯顿实验室公司 药物组合物
EP3208316A1 (en) * 2016-02-22 2017-08-23 Immo de Moor N.V. Vehicle body filler comprising an unsaturated polyester resin
CN109053960A (zh) * 2018-07-18 2018-12-21 常州大学 一种温度敏感的β-环糊精纳米粒子的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632929A (ja) * 1986-06-20 1988-01-07 Kao Corp アセチルサリチル酸製剤
CA2103511A1 (en) * 1992-08-17 1994-02-18 Randy J. Koslo Gastroprotective complexes
US20030203991A1 (en) * 2002-04-30 2003-10-30 Hydromer, Inc. Coating composition for multiple hydrophilic applications
WO2006084650A1 (en) * 2005-02-10 2006-08-17 Qiagen Gmbh Sample lysis and coating of reaction surface
EP1856168A1 (en) * 2005-02-10 2007-11-21 Qiagen GmbH Sample lysis and coating of reaction surface
WO2008006216A1 (en) * 2006-07-14 2008-01-17 Mistral Pharma, Inc. Anti-inflammatory and cytoprotectant chronotherapy
CN101721713A (zh) * 2009-12-01 2010-06-09 河北科技大学 3,5-二羟基-4-异丙基二苯乙烯的环糊精包合物及其制备方法
CN102850495A (zh) * 2012-07-25 2013-01-02 常州大学 一种β-环糊精的亲水性交联聚合物空心微球的制备方法
CN103830742A (zh) * 2014-03-05 2014-06-04 吉林化工学院 一种阿司匹林包合物及其制备方法
CN106413717A (zh) * 2014-04-10 2017-02-15 查尔斯顿实验室公司 药物组合物
EP3208316A1 (en) * 2016-02-22 2017-08-23 Immo de Moor N.V. Vehicle body filler comprising an unsaturated polyester resin
CN109053960A (zh) * 2018-07-18 2018-12-21 常州大学 一种温度敏感的β-环糊精纳米粒子的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
STEINER T等: "Isostructural replacement of an n-h-center-dot-center-dot-center-dot-o by a c-h-center-dot-center-dot-center-dot-o hydrogen-bond in complex stabilization - crystal-structures of beta-cyclodextrin complexed with diethanolamine and with pentane-1,5-diol", 《JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS》 *
ZHANG XM等: "Adsorption of Basic Dyes on beta-Cyclodextrin Functionalized Poly (Styrene-Alt-Maleic Anhydride)", 《SEPARATION SCIENCE AND TECHNOLOGY》 *
姜彦,等: "β-环糊精共聚物及其金属配合物的制备与性能", 《应用化学》 *
宋伟强,等: "顺丁烯二酸酐与二乙醇胺合成的超支化不饱和聚合物的聚合机理", 《郑州大学学报(理学版)》 *
张海涛: "超分子聚合物和接枝共聚物纳米载体的合成与药物控释研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 *
王央霞,等: "阿司匹林对铜绿假单胞菌生物膜形成和分散的影响", 《临床检验杂志》 *
王静,等: "阿司匹林对幽门螺杆菌定植的影响", 《世界华人消化杂志》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951091A (zh) * 2019-12-10 2020-04-03 常州大学 一种双重敏感缓释β-环糊精水凝胶的制备方法
CN111171187A (zh) * 2020-02-12 2020-05-19 贵州省现代农业发展研究所 一种丁烯酸-β-环糊精酯的制备方法
CN113150312A (zh) * 2021-04-23 2021-07-23 江南大学 一种乙酰化淀粉纳米胶束的制备方法及其应用
CN113416266A (zh) * 2021-06-23 2021-09-21 湖北工业大学 一种芳酰肼类化合物-环糊精包合物及其制备方法
CN114163817A (zh) * 2021-11-10 2022-03-11 浙江大学 一种缓释抗菌膜及其制备方法
CN114163817B (zh) * 2021-11-10 2022-08-05 浙江大学 一种缓释抗菌膜及其制备方法

Also Published As

Publication number Publication date
CN110124059B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN110124059A (zh) 一种缓释抑菌剂的制备方法
CN107550921B (zh) 一种纳米颗粒-高分子可注射复合水凝胶双载药体系及其制备方法
Huang et al. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy
US3563978A (en) Polyvalent metal complexes of natural polymers
CN102827293B (zh) 一种炔基羟丙基纤维素及其温敏性水凝胶的制备方法与应用
CN103396521B (zh) 两亲性β-环糊精星型聚合物的合成及其胶束化应用
CN113372494B (zh) 一种抗凝血聚合物涂层材料及其制备方法
CN110694076A (zh) 一种羟基氯喹两亲性聚合物药物前体、制备方法及其应用
CN104558419A (zh) 一种环境敏感型环糊精衍生物水凝胶的制备方法
CN113457587A (zh) 一种多重响应核壳结构纳米凝胶及其制备方法、应用
Wu et al. Phenylboronic acid-diol crosslinked 6-O-vinylazeloyl-d-galactose nanocarriers for insulin delivery
Kumar et al. Synthesis of vildagliptin loaded acrylamide-g-psyllium/alginate-based core-shell nanoparticles for diabetes treatment
CN102977293A (zh) 一种具有超声和pH双重响应的聚合物囊泡及其制备方法
Mate et al. In vitro release kinetics of graft matrices from Lannea coromandelica (Houtt) gum for treatment of colonic diseases by 5-ASA
KR20110095445A (ko) pH 감응형 하이드로젤의 제조방법
Afgan et al. Studies on non-gelatinous & thermo-responsive chitosan with the N-isopropylacrylamide by RAFT methodology for control release of levofloxacin
CN101708342B (zh) 温度敏感性创面敷膜及其制备方法
CN105646890A (zh) 一种化学交联pH值响应性多臂聚合物和纳米多孔胶囊
Suhail et al. In-vitro and in-vivo evaluation of biocompatible polymeric microgels for pH-driven delivery of Ketorolac tromethamine
CN110590975A (zh) 一种药用聚乙烯醇及其制备方法
CN102579388A (zh) 美沙拉秦结肠定位给药缓释片的制备
CN103623413B (zh) 一种蔗糖酯控释载体材料的制备方法及应用
Singh et al. Modification of dietary fiber psyllium with poly (vinyl pyrrolidone) through network formation for use in slow drug delivery application
JP2014176605A (ja) キチン系ナノファイバーを含む生体接着剤
CN103524756B (zh) 一种光/pH敏感型芘功能化聚合物胶束的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant