CN110102301B - 一种基于阳极氧化法的纳米金属氧化物的负载制备方法 - Google Patents

一种基于阳极氧化法的纳米金属氧化物的负载制备方法 Download PDF

Info

Publication number
CN110102301B
CN110102301B CN201910417925.9A CN201910417925A CN110102301B CN 110102301 B CN110102301 B CN 110102301B CN 201910417925 A CN201910417925 A CN 201910417925A CN 110102301 B CN110102301 B CN 110102301B
Authority
CN
China
Prior art keywords
metal oxide
cathode
anode
nano
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910417925.9A
Other languages
English (en)
Other versions
CN110102301A (zh
Inventor
钱群
冯道伦
林越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201910417925.9A priority Critical patent/CN110102301B/zh
Priority to US16/963,420 priority patent/US11358124B2/en
Priority to PCT/CN2019/088781 priority patent/WO2020232731A1/zh
Publication of CN110102301A publication Critical patent/CN110102301A/zh
Application granted granted Critical
Publication of CN110102301B publication Critical patent/CN110102301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种基于阳极氧化法的纳米金属氧化物的负载制备方法,包含:步骤1,相对固定阴极和阳极,沉浸在电解液中,阳极采用纳米金属氧化物的金属单质材料,阴极采用载体金属材料;步骤2,匀速搅拌电解液,转速不低于500rpm;步骤3,连通电源,输出电压在10‑50v之间;金属单质材料发生阳极氧化反应,表面生成金属氧化物纳米管/纳米颗粒,在搅拌作用下,阳极表面的金属氧化物纳米管/纳米颗粒逐渐溶解并脱落,进入电解液;在电场力的作用下,溶解脱落的纳米碎片向阴极移动,附着在阴极材料表面,形成金属氧化物纳米薄膜。本发明提供的薄膜的制备方法,条件温和,设备简单,操作方便且成本低,制备的薄膜负载效果好,金属氧化物不易脱落。

Description

一种基于阳极氧化法的纳米金属氧化物的负载制备方法
技术领域
本发明属于纳米材料领域,具体涉及一种基于阳极氧化法的纳米金属氧化物的负载制备方法。
背景技术
纳米二氧化钛能将光能转变为化学能而有效地降解有机污染物等,同时由于催化活性高、稳定性好、价格低廉、对人体无害等优点,被认为是极具有开发前景和应用潜力的环保型光催化材料。
纳米二氧化钛颗粒在实际应用中较为广泛,但其在制备和使用过程中极易团聚,从而无法有效发挥催化性能,同时降解处理完后,纳米颗粒分散在溶液中,很难自由沉降与溶液分离,使得纳米颗粒的回收和重复利用比较困难。
为解决这些缺点,人们将二氧化钛纳米颗粒负载于各类基体上,金属由于其容易成型且加工方法多样等优点成为其中一类较为特殊的载体。常见的负载方法有粉体烧结法、沉积法、溅射法、溶胶-凝胶法等。
粉体烧结法是将二氧化钛纳米粉体溶于水或醇类溶剂形成悬浮液,再将载体浸渍入悬浮分散液中加以搅拌或用超声波分散,浸渍一定的时间使载体表面负载一定量的光催化剂,然后取出载体进行烘干、烧结,从而制备得到负载型二氧化钛光催化材料。需提前制备好二氧化钛纳米颗粒,且负载牢固度较差。
沉积法是使含钛的反应物质在载体上进行物理化学反应,生成二氧化钛沉积在载体上,分为液相沉积法和化学气相沉积法两类。液相沉积法的缺点为制备得到的薄膜中易有杂质,二氧化钛纯度较低;化学气相沉积法则制备条件严苛且费用高。
溅射法是在高压电场作用下使惰性气体(如氩气)发生电离,然后以电离产生的正离子体高速轰击靶材,使靶材的原子或分子被击出,即溅射,而溅射产生的原子或分子沉积到载体上形成薄膜,就得到负载型催化剂。该方法在溅射过程中会产生高温,且成本较高。
溶胶-凝胶法是以钛的无机盐或钛酸酯类作为原料,在溶剂中溶解,经水解制得二氧化钛溶胶,再通过浸渍提拉、旋涂等方法将二氧化钛溶胶涂覆到载体上,并经过凝胶、陈化、热处理等步骤制得负载型催化剂。在凝胶陈化过程中,大量的水和有机物溶剂会挥发,不仅会造成环境污染,还容易使二氧化钛薄膜发生龟裂。
综上,粉体烧结法和液相沉积法的负载效果较差,化学气相沉积法和溅射法的制备条件严苛且成本高,溶胶-凝胶法则易产生环境污染且容易由于凝胶过程中热收缩不均而产生龟裂现象。因此,亟需开发一种新的工艺制备纳米二氧化钛复合催化剂。
发明内容
本发明的目的是提供一种低成本的纳米金属氧化物的负载制备方法,特别是纳米二氧化钛复合催化剂的制备方法。
为了达到上述目的,本发明提供了一种基于阳极氧化法的纳米金属氧化物的负载制备方法,该制备方法包含:
步骤1,向反应池中加入电解液,并相对固定阴极和阳极,阳极采用所述纳米金属氧化物的金属单质材料,阴极采用载体金属材料;
步骤2,采用磁力搅拌器匀速搅拌电解液,转速不低于500rpm(转/分钟);
步骤3,连通电源,输出电压设置在10-50v之间;阳极的金属单质材料发生阳极氧化反应,表面生成金属氧化物纳米管/纳米颗粒,随着氧化时间的增加,在搅拌作用下,阳极表面的金属氧化物纳米管/纳米颗粒溶解并脱落,进入电解液;在电场力的作用下,溶解脱落的纳米碎片向阴极移动,附着在阴极材料表面,形成金属氧化物纳米薄膜。
本文所述的“金属氧化物纳米管/纳米颗粒”是指包含金属氧化物纳米管和金属氧化物纳米颗粒的混合物。
较佳地,所述的电解液选择1M(NH4)2SO4+0.5wt%NH4F、1M NaH2PO4+0.3wt%HF、0.05M NaClO4+0.05M NaCl、1M Na2SO4+0.5wt%NaF中的任意一种;上述的“+”代表组合、混合的含义,如1M(NH4)2SO4+0.5wt%NH4F代表1M(NH4)2SO4与0.5wt%NH4F的混合。
较佳地,所述阴极和阳极的间距保持在0.5cm-25cm厘米。
较佳地,阳极采用金属钛、铝、钨、铬中的任意一种。
较佳地,所述的阳极选择钛片或钛滤板。
较佳地,所述的阴极选择导电金属或导电非金属。
较佳地,所述的阴极选择钢板。
较佳地,所述的阴极为多孔导电金属或多孔导电非金属,可实现纳米金属氧化物对阴极内部的均匀负载。
较佳地,步骤2中,所述的转速为500-750转/分钟。
本发明针对金属类及易导电载体,以阳极氧化法为基础,设计了一种低成本的纳米二氧化钛复合催化剂制备方法,实现了同一反应池中在常温下同时进行二氧化钛纳米颗粒的制备及负载过程,且阳极纯钛材料可持续使用,为不同的载体进行负载,直至完全转化为二氧化钛纳米管/纳米颗粒。整个薄膜制备方法还具有设备简单,制备条件温和,操作方便、成本低等优点。本发明制备的负载在载体金属上的纳米薄膜负载牢固,不易脱落,且表面致密均匀,没有龟裂。
附图说明
图1为本发明的反应装置的结构示意图。
具体实施方式
以下结合附图和实施例对本发明的技术方案做进一步的说明。
本发明采用的反应装置如图1所示包含:
反应池10,反应池内盛放有电解液11,阳极12和阴极13浸没在电解液11中且相对设置;
磁力搅拌器20,该磁力搅拌器还包含转子21,反应池10位于磁力搅拌器20的上方,转子21置于反应池内;
阴极、阳极的固定组件,其包含固定架31及分别连接阴极、阳极的滑动板32;
阴极、阳极的移动组件,其包含导轨41、连接滑动板的螺杆42,该螺杆42还连接电机43,通过控制系统,如电脑44等控制;及
电源50,该电源的正极与阳极12连接,电源的负极与阴极13连接。
以下以阳极为纯钛为例说明本发明的基本原理:在上述反应装置中,通过阳极氧化在阳极上生成二氧化钛纳米管/纳米颗粒,由于“场致溶解”以及氟离子效应促进溶解,阳极所产生的TiO2纳米管/纳米颗粒在生成的过程中也同时进行着电化学腐蚀:TiO2+6F-+4H+→[TiF6]2-+2H2O。所以,阳极氧化生成纳米管的过程是“自上而下”的,即顶部的纳米管最先生成并持续暴露在含氟电解质和电场中,管壁不断被腐蚀、变薄、局部破碎。而加大电解液的搅拌功率也可增加TiO2纳米管破碎的速率,形成的微小的TiO2纳米管碎片进入电解质中。随着氧化时间的增加以及搅拌作用下,纳米管/纳米颗粒溶解并脱落,进入电解液,形成稳定的胶体分散体。电化学原理中的电动力学效应指出,固液相边界产生双电子层,具有离子吸附特性。此时,过剩电荷不处于固体内部,而是位于固体表面。因此这些粒子(TiO2纳米管碎片)由于与溶剂分子的静电相互作用,吸附阳离子,获得表面正电荷。在电场力的作用下,这些“带电”粒子倾向于向电解质中向阴极(相反电荷电极)自由移动,这种现象通常被称为“电泳”。当这些带电粒子到达带相反电荷的电极时,它们失去了表面电荷,变成了电中性,即沉积在阴极。由此溶解脱落的纳米碎片向阴极移动,并附着在阴极材料表面,形成二氧化钛纳米薄膜。常规的在阳极上通过阳极氧化法制备得到的纳米管在电化学腐蚀中生长,其纳米管底部与钛基底附着不牢固。相比而言,本发明中电解液中纳米颗粒通过电泳沉积附着在阴极金属板,更为牢固且均匀。
本文所述的“场致溶解”是指界面双电子层的电场以及外加电场会对氧化物中离子移动产生影响,再加上氟离子效应,两者能够解释在TiO2纳米管的生成和溶解机理。
具体制备步骤如下:
S1,搭建反应装置,如图1所示,以电脑44设置,通过电机43控制螺杆42,使阳极12在导轨41上运动,从而确定阴极13和阳极12的间距保持在2厘米。
S2,配置电解液11,电解液成分为1M(NH4)2SO4+0.5wt%NH4F;液面高度应浸没样品。
S3,采用磁力搅拌器20匀速搅拌电解液11,通常转速不高于750rpm。由于实验室目前的搅拌器本身限制,转速不宜超过750转/分钟。当更换其他牌号或其他形式的搅拌器时,只要能实现工作稳定、不跳跃,转速还可提高。加大磁力搅拌器的功率,加入超声等增强手段,都可增加TiO2纳米管破碎的速率。
S4,以纯钛(如钛片、钛滤板等)为阳极材料,作为载体的金属(如钢板)为阴极材料(其他导电金属也可作为阴极材料)。
S5,连接电源50,输出电压一般设置在10-50v之间,开启电源。
S6,连接正极的纯钛材料发生阳极氧化反应,表面生成二氧化钛纳米管/纳米颗粒。
S7,随着氧化时间的增加,在搅拌作用下,阳极表面的二氧化钛纳米管/纳米颗粒溶解并脱落,进入电解液。在电场力的作用下,溶解脱落的纳米碎片向阴极移动,附着在阴极材料表面,形成二氧化钛纳米薄膜。
实施例1
载体使用不锈钢片(3mm×2.5mm×0.3mm),阳极材料为钛片(3mm×2.5mm×0.3mm),包括如下步骤:
以钛片为阳极材料,不锈钢片为阴极材料搭建反应装置。取198克(NH4)2SO4和7.5克NH4F,加入1.5升蒸馏水充分溶解,配置电解液。磁力搅拌器参数设置为500转每分钟,开启磁力搅拌器,使转子匀速搅拌电解液。连接电源,恒压输出,电压设置在20v,开启电源,反应时间持续1.5小时。关闭电源及磁力搅拌器,取下阴极不锈钢片,用去离子水清洗干净,获得以不锈钢片为载体的二氧化钛纳米材料,其纳米薄膜厚度为120nm。将生成纳米薄膜的不锈钢片放入马弗炉进行高温退火,退火条件为(每分钟1℃的速度升温至450℃保持3h后随炉温自然冷却到室温)。生成二氧化钛纳米复合催化材料。
使用上述制备的二氧化钛纳米复合催化材料,以甲基橙溶液为降解对象进行光催化实验。将不锈钢片放入培养皿中,加入10mL浓度为3×10-5mol/L甲基橙溶液,静置10min。打开紫外灯,对溶液中的不锈钢片进行照射,计时开始。每隔30min,测量一次甲基橙溶液浓度,直到测定4次截止,经过测量计算,其2h的降解率约为15%。
实施例2
载体使用不锈钢片(3mm×2.5mm×0.3mm),阳极材料为多孔钛板(3mm×2.5mm×1.5mm,孔隙70μm),包括如下步骤:
以多孔钛板为阳极材料,不锈钢片为阴极材料搭建反应装置。取198克(NH4)2SO4和7.5克NH4F,加入1.5升蒸馏水充分溶解,配置电解液。磁力搅拌器参数设置为750转每分钟,开启磁力搅拌器,使转子匀速搅拌电解液。连接电源,恒压输出,电压设置在20v,开启电源,反应时间持续1小时。关闭电源及磁力搅拌器,取下阴极不锈钢片,用去离子水清洗干净,获得以不锈钢片为载体的二氧化钛纳米材料,其纳米薄膜厚度为500nm。将生成纳米薄膜的不锈钢片放入马弗炉进行高温退火,退火条件为(每分钟1℃的速度升温至450℃保持3h后随炉温自然冷却到室温)。生成二氧化钛纳米复合催化材料。
使用上述制备的二氧化钛纳米复合催化材料,以甲基橙溶液为降解对象进行光催化实验。将不锈钢片放入培养皿中,加入10mL浓度为3×10-5mol/L甲基橙溶液,静置10min。打开紫外灯,对溶液中的不锈钢片进行照射,计时开始。每隔30min,测量一次甲基橙溶液浓度,直到测定4次截止,经过测量计算,其2h的降解率约为35%。
本发明所述的阳极材料可以为钛(Ti)、铝(Al)、钨(W)、铬(Zr)等,通过本发明的方法,实现氧化物的负载,甚至可以通过不同阳极组合以及时间先后的阳极氧化,实现负载多层和复合层的金属氧化物。
本发明所述的电解液还可以为1M NaH2PO4+0.3wt%HF、0.05M NaClO4+0.05MNaCl、1M Na2SO4+0.5wt%NaF等。
由于阳极氧化过程中场致溶解的存在,再加上磁力搅拌器设置为500-750转每分钟后对阳极金属氧化物的搅拌作用力,通过调节电解液的组成和阳极氧化电压的大小,可实现纳米颗粒进入电解液,进而负载在阴极材料上的过程。如果使用多孔性的阴极,本发明的方法也可以实现对阴极内部的均匀负载。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (5)

1.一种基于阳极氧化法的纳米金属氧化物的负载制备方法,其特征在于,该制备方法包含:
步骤1,向反应池中加入电解液,并相对固定阴极和阳极,所述阴极和阳极的间距保持在0.5cm-25cm厘米,阳极采用所述纳米金属氧化物的金属单质材料,采用金属钛、铝、钨、铬中的任意一种;阴极采用载体金属材料,选择导电金属;
步骤2,采用磁力搅拌器匀速搅拌电解液,转速不低于500转/分钟;所述的电解液选择1M(NH4)2SO4+0.5wt%NH4F、1M NaH2PO4+0.3wt%HF、0.05M NaClO4+0.05M NaCl、1M Na2SO4+0.5wt%NaF中的任意一种;
步骤3,连通电源,输出电压设置在10-50v之间;阳极的金属单质材料发生阳极氧化反应,表面生成金属氧化物纳米管/纳米颗粒,随着氧化时间的增加,在搅拌作用下,阳极表面的金属氧化物纳米管/纳米颗粒溶解并脱落,进入电解液;在电场力的作用下,溶解脱落的纳米碎片向阴极移动,附着在阴极材料表面,形成金属氧化物纳米薄膜。
2.如权利要求1所述的基于阳极氧化法的纳米金属氧化物的负载制备方法,其特征在于,所述的阳极选择钛片或钛滤板。
3.如权利要求1所述的基于阳极氧化法的纳米金属氧化物的负载制备方法,其特征在于,所述的阴极选择钢板。
4.如权利要求1所述的基于阳极氧化法的纳米金属氧化物的负载制备方法,其特征在于,所述的阴极为多孔导电金属。
5.如权利要求1所述的基于阳极氧化法的纳米金属氧化物的负载制备方法,其特征在于,步骤2中,所述的转速为500-750转/分钟。
CN201910417925.9A 2019-05-20 2019-05-20 一种基于阳极氧化法的纳米金属氧化物的负载制备方法 Active CN110102301B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910417925.9A CN110102301B (zh) 2019-05-20 2019-05-20 一种基于阳极氧化法的纳米金属氧化物的负载制备方法
US16/963,420 US11358124B2 (en) 2019-05-20 2019-05-28 Preparation method of a nanometer metal oxide supported carrier based on anodic oxidation
PCT/CN2019/088781 WO2020232731A1 (zh) 2019-05-20 2019-05-28 一种基于阳极氧化法的负载纳米金属氧化物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910417925.9A CN110102301B (zh) 2019-05-20 2019-05-20 一种基于阳极氧化法的纳米金属氧化物的负载制备方法

Publications (2)

Publication Number Publication Date
CN110102301A CN110102301A (zh) 2019-08-09
CN110102301B true CN110102301B (zh) 2021-04-20

Family

ID=67491059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910417925.9A Active CN110102301B (zh) 2019-05-20 2019-05-20 一种基于阳极氧化法的纳米金属氧化物的负载制备方法

Country Status (3)

Country Link
US (1) US11358124B2 (zh)
CN (1) CN110102301B (zh)
WO (1) WO2020232731A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113399766B (zh) * 2021-06-02 2022-06-14 贵州大学 一种高速钢轧辊材质电解磨削所用电解液的试验方法
CN114950515B (zh) * 2022-05-31 2023-09-26 常州大学 一种表面改性Pt/SiC催化剂、制备方法及电化学氧化装置
CN118685832A (zh) * 2024-08-22 2024-09-24 南方科技大学嘉兴研究院 多孔材料抛光系统、抛光方法及金属粉末低温除氧方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3758768B2 (ja) * 1996-11-20 2006-03-22 株式会社半導体エネルギー研究所 液晶表示パネル
CN1089636C (zh) * 1999-05-27 2002-08-28 华东理工大学 具有金属载体的机动车排气净化催化剂及其制备方法
TWI458862B (zh) * 2009-05-12 2014-11-01 Nat Univ Tsing Hua 二氧化鈦鍍膜方法及其使用之電解液
CN101625930B (zh) * 2009-06-19 2012-04-11 东南大学 有序纳米管阵列结构电极材料及其制备方法和储能应用
CN101891146B (zh) * 2010-07-01 2012-11-21 淮阴工学院 一种磁性掺杂二氧化钛纳米管的制备方法
CN104475121A (zh) * 2014-12-10 2015-04-01 辽宁石油化工大学 一种以TiO2纳米管为载体的加氢脱硫催化剂的制备方法及应用
CN106629813B (zh) * 2017-01-11 2017-11-17 河北工业大学 一种泡沫铜负载多孔氧化铜纳米线复合材料及其制备方法和应用
CN106654244B (zh) * 2017-01-11 2019-02-22 河北工业大学 一种多级纳米结构的锂离子电池负极材料及其制备方法和应用
CN108144620B (zh) * 2017-12-05 2020-11-06 西北工业大学 泡沫镍负载复合纳米金属氧化物电极材料制备方法

Also Published As

Publication number Publication date
CN110102301A (zh) 2019-08-09
WO2020232731A1 (zh) 2020-11-26
US20220062863A1 (en) 2022-03-03
US11358124B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
CN110102301B (zh) 一种基于阳极氧化法的纳米金属氧化物的负载制备方法
Chanmanee et al. Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization
He et al. Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application
Xing et al. Preparation and characterization of a novel porous Ti/SnO 2–Sb 2 O 3–CNT/PbO 2 electrode for the anodic oxidation of phenol wastewater
CN101651046B (zh) 一种Al2O3/TiO2复合介质膜铝电极箔的制备方法
Asim et al. Controlled fabrication of hierarchically porous Ti/Sb–SnO 2 anode from honeycomb to network structure with high electrocatalytic activity
WO2013107392A1 (zh) 一种通过电泳沉积制备二氧化钒薄膜的方法
Chun Chen et al. A review on production, characterization, and photocatalytic applications of TiO2 nanoparticles and nanotubes
CN108385150A (zh) 一种复合薄膜及其制备方法
Park et al. Controlled fabrication of nanoporous oxide layers on zircaloy by anodization
Yu et al. Effects of electrolyte composition on the growth and properties of titanium oxide nanotubes
David et al. A comparative study on the morphological features of highly ordered titania nanotube arrays prepared via galvanostatic and potentiostatic modes
Dong et al. TiO2 with hybrid nanostructures via anodization: fabrication and its mechanism
Wu et al. Photoactive TiO2 ceramic coatings obtained by laser-assisted plasma electrolytic oxidation on commercial pure titanium
Narayan et al. Deposition and characterisation of titanium dioxide films formed by electrophoretic deposition
KR101210416B1 (ko) 양극 전해 산화처리에 의한 결정성 산화티탄 피막의제조방법
JP2000178791A (ja) 多孔質酸化チタン皮膜の製造方法
Li et al. The growth rate of nanotubes and the quantity of charge during anodization
EP1912918A2 (en) Method for preparation of stable solutions of inorganic-organic polymers
Xie et al. Effects of coating precursor states on performance of titanium-based metal oxide coating anode for Mn electrowinning
Ye et al. Pulse electrodeposition of Ti/Sn-SbOX/β-PbO2 anodes with high oxygen evolution activity in zinc electrowinning
JP5339346B2 (ja) アルミニウム置換α型水酸化ニッケルの製造方法
Cao et al. Designing micro-nano structure of anodized iron oxide films by metallographic adjustment on T8 steel
Mohamed et al. Fabrication of titania nanotube arrays in viscous electrolytes
Santos et al. Influence of synthesis conditions on the properties of electrochemically synthesized BaTiO3 nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant