CN110079788A - 一种基于peald的紫外减反射薄膜的镀制方法 - Google Patents

一种基于peald的紫外减反射薄膜的镀制方法 Download PDF

Info

Publication number
CN110079788A
CN110079788A CN201910366232.1A CN201910366232A CN110079788A CN 110079788 A CN110079788 A CN 110079788A CN 201910366232 A CN201910366232 A CN 201910366232A CN 110079788 A CN110079788 A CN 110079788A
Authority
CN
China
Prior art keywords
seconds
atomic layer
layer deposition
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910366232.1A
Other languages
English (en)
Inventor
朱美萍
尹超奕
邵建达
宋晨
许诺
曾婷婷
赵元安
胡国行
易葵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201910366232.1A priority Critical patent/CN110079788A/zh
Publication of CN110079788A publication Critical patent/CN110079788A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

一种基于等离子体增强原子层沉积(PEALD)的紫外减反射薄膜的镀制方法,采用类似于熔石英体材料化学反应的原理沉积SiO2薄膜材料。本发明能够避免溶胶‑凝胶技术(sol‑gel)薄膜稳定性差、电子束沉积(E‑beam deposition)薄膜纳米吸收性缺陷密度高的问题,获得同时具备高稳定性和高激光损伤阈值的高性能紫外减反射薄膜。

Description

一种基于PEALD的紫外减反射薄膜的镀制方法
技术领域
本发明属于光学薄膜技术领域,涉及一种基于等离子体增强原子层沉积(PEALD)的紫外减反射薄膜的镀制方法。
背景技术
紫外减反膜作为强激光系统中的重要组成元件之一,其损伤阈值是限制大型激光系统输出功率的“瓶颈”之一。传统的紫外减反射薄膜沉积方法包括溶胶-凝胶法(sol-gel)和电子束沉积(E-beam deposition)。溶胶-凝胶法(sol-gel)镀制的紫外减反射薄膜具有相对较高的激光损伤阈值,但膜层稳定性差,不利于长期使用;而电子束沉积法(E-beamdeposition)镀制的减反射薄膜稳定性较高,但激光损伤阈值低,在激光辐照下容易发生损伤,不能满足当前激光系统的使用要求。诸多研究表明,在紫外纳秒脉冲激光辐照下,光学薄膜的损伤目前主要源于各种类型的吸收性杂质与缺陷。等离子体增强原子层沉积(PEALD)属于化学沉积方法的一种,使用高能等离子体作为氧化源,通过交替通入前驱体源脉冲,在基底上逐层沉积原子层。由于其反应的自限制性,可以十分精确地控制沉积薄膜厚度与结构,膜层具有高的致密性和稳定性;同时,PEALD可以采用类似于体材料化学反应的原理生长薄膜态材料,降低薄膜态材料的吸收性缺陷密度。PEALD作为最具潜力的新兴激光薄膜镀膜技术之一受到国际广泛关注,在紫外减反射薄膜制备领域具有良好的应用前景。
发明内容
本发明要解决的技术问题在于克服传统镀膜技术的不足,提供一种基于等离子体增强原子层沉积(PEALD)的紫外减反射薄膜的镀制方法,提升紫外减反膜损伤阈值。本发明能够避免溶胶-凝胶技术薄膜稳定性差、电子束沉积薄膜纳米吸收性缺陷密度高的问题,获得同时具备高稳定性和高激光损伤阈值的高性能紫外减反射薄膜。
本发明的技术解决方案
一种基于等离子体增强原子层沉积的紫外减反射薄膜的镀制方法,其特点在于采用等离子体增强原子层沉积来镀制紫外减反射膜层,具体步骤如下:
1)设定原子层沉积系统的温度、脉冲时间、脉冲序列和等离子体功率参数;
2)采用超声方法清洗基片,基片烘干后装入镀膜机;
3)抽取真空至600Pa,控制镀膜机将基片加热至150℃,恒温60分钟;
4)采用等离子体增强原子层沉积HfO2膜层,具体步骤如下:
①向原子层沉积反应腔体中通入铪前驱体源脉冲后,用纯度为99.9999%的氮气清洗,冲掉反应副产物和残留的前驱体源;
②向原子层沉积反应腔体中通入氧等离子体和氩气混合脉冲后,用纯度为99.9999%的氮气清洗,冲掉反应副产物和残留的氧等离子体以及氩气;
③重复步骤①②,直至HfO2膜层光学厚度达到1/4参考波长厚度(参考波长为188.6nm)。
5)采用等离子体增强原子层沉积SiO2膜层,具体步骤如下:
④向原子层沉积反应腔体中通入硅前驱体源脉冲后,用纯度为99.9999%的氮气清洗,冲掉反应副产物和残留的前驱体源;
⑤向原子层沉积反应腔体中通入氧等离子体和氩气混合脉冲后,用纯度为99.9999%的氮气清洗,冲掉反应副产物和残留的氧等离子体以及氩气;
⑥重复步骤④⑤,直至SiO2膜层光学厚度达到5/8参考波长厚度(参考波长为188.6nm)。
6)其中镀制的膜系结构为:S丨H2.5L丨Air,其中S代表基底,H代表HfO2,L代表SiO2,Air代表空气,参考波长为188.6nm;铪前驱体源为(N(CH3)(C2H5))4Hf或HfCl4,硅前驱体源为(N(CH3)2)3Si、H2N(CH2)3Si(OC2H5)3或SiCl4。。
本发明的技术效果:
本发明可有效提升紫外减反膜的损伤阈值。对比传统电子束沉积,本方法沉积的减反膜的损伤阈值有明显提高。并且可以通过选取合适的工艺参数,来精确地控制所需的膜层性能。
本发明能够避免溶胶-凝胶技术薄膜稳定性差、电子束沉积薄膜纳米吸收性缺陷密度高的问题,获得同时具备高稳定性和高激光损伤阈值的高性能紫外减反射薄膜。
附图说明
图1为本发明的等离子体增强原子层沉积流程图。
图2为本发明方法与传统电子束沉积的紫外减反膜损伤阈值测试对比图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
实施例1:
如图1所示的等离子体增强原子层沉积制备紫外减反膜流程图,具体步骤如下:
1)设定原子层沉积系统的温度、脉冲时间、脉冲序列和等离子体功率参数;
2)采用超声方法清洗基片,基片烘干后装入镀膜机;
3)控制镀膜机将基底加热至150℃,并恒温60分钟;
4)采用等离子体增强原子层沉积(功率为2500W)HfO2膜层,具体步骤如下:
①向原子层沉积反应腔体中通入1.6秒铪前驱体源脉冲后,用纯度为99.9999%的氮气清洗19秒,冲掉反应副产物和残留的前驱体源;
②向原子层沉积反应腔体中通入11秒氧等离子体和氩气混合脉冲后,用纯度为99.9999%的氮气清洗8秒,冲掉反应副产物和残留的氧等离子体以及氩气;
③重复230次步骤①②,使得HfO2膜层光学厚度达到1/4参考波长厚度(参考波长为188.6nm)。
5)采用等离子体增强原子层沉积(功率为2500W)SiO2膜层,具体步骤如下:
④向原子层沉积反应腔体中通入0.4秒硅前驱体源脉冲后,用纯度为99.9999%的氮气清洗19秒,冲掉反应副产物和残留的前驱体源;
⑤向原子层沉积反应腔体中通入11秒氧等离子体和氩气混合脉冲后,用纯度为99.9999%的氮气清洗8秒,冲掉反应副产物和残留的氧等离子体以及氩气;
⑥重复698次步骤④⑤,使得SiO2膜层光学厚度达到5/8参考波长厚度(参考波长为188.6nm)。
6)镀制过程中所使用的基底为熔石英基底;所得的样品为低反射薄膜,其膜系结构为:S丨H2.5L丨Air,其中S代表基底,H代表HfO2,L代表SiO2,Air代表空气,参考波长为188.6nm;铪前驱体源为(N(CH3)(C2H5))4Hf,硅前驱体源为(N(CH3)2)3Si。
如图2所示为本发明镀制的减反膜与传统电子束方法镀制的减反膜的损伤阈值测试结果对比。圆形数据点代表的是传统电子束方法镀制的减反膜,其零几率损伤阈值为5.34J/cm2;方形数据点代表的是本发明镀制的减反膜,零几率损伤阈值20.48J/cm2,阈值提高了283%。并且从损伤阈值曲线上来看,本发明镀制的减反膜曲线斜率明显大于传统电子束方法镀制的减反膜阈值曲线,显示出更强的抗激光损伤能力。
实施例2:
本实施例提供了三种等离子体增强原子层沉积制备的单层SiO2薄膜,主要通过以下方法制备:
向原子层沉积反应腔体中通入硅前驱体源脉冲后,用纯度为99.9999%的氮气清洗19秒,冲掉反应副产物和残留的前驱体源,再向原子层沉积反应腔体中通入11秒氧等离子体和氩气混合脉冲后,用纯度为99.9999%的氮气清洗8秒。其中通入硅前驱体源脉冲分别为0.1秒、0.4秒、0.7秒。
选取以上三种单层SiO2薄膜以及传统电子束制备的单层SiO2薄膜进行损伤阈值测试,测试结果如表1所示:
表1
由表1可知,不同工艺参数下通过等离子体增强原子层沉积制备的单层SiO2薄膜的零几率损伤阈值均高于传统电子束方法制备的。在更高零几率损伤阈值单层膜的基础上制备得到的多层膜损伤阈值更高,说明本发明的制备方法较为科学合理,可以得到更强抗激光损伤能力的紫外减反射薄膜。

Claims (3)

1.一种基于等离子体增强原子层沉积的紫外减反射薄膜的镀制方法,其特征在于,具体步骤如下:
1)设定原子层沉积系统的温度、脉冲时间、脉冲序列和等离子体功率参数;
2)采用超声方法清洗基片,将基片烘干后装入镀膜机;
3)抽取真空至600Pa,控制镀膜机将基片加热至50℃~250℃,恒温30分钟~60分钟;
4)采用等离子体增强原子层沉积HfO2膜层,具体步骤如下:
①向原子层沉积反应腔体中通入1.5秒~2秒铪前驱体源脉冲后,用纯度为99.9999%的氮气清洗10秒~19秒,冲掉反应副产物和残留的前驱体源;
②向原子层沉积反应腔体中通入10秒~13秒等离子体氧化源脉冲后,用纯度为99.9999%的氮气清洗8秒~10秒,冲掉反应副产物和残留的氧化源;
③重复步骤①②,直至HfO2膜层光学厚度达到设定厚度;
5)采用等离子体增强原子层沉积SiO2膜层,具体步骤如下:
④向原子层沉积反应腔体中通入0.1秒~0.7秒硅前驱体源脉冲后,用纯度为99.9999%的氮气清洗10秒~19秒,冲掉反应副产物和残留的前驱体源;
⑤向原子层沉积反应腔体中通入10秒~13秒等离子体氧化源脉冲后,用纯度为99.9999%的氮气清洗8秒~10秒,冲掉反应副产物和残留的氧化源;
⑥重复步骤④⑤,直至SiO2膜层光学厚度达到设定厚度。
2.如权利要求1所述的镀制方法,其特征在于,所述的铪前驱体源为(N(CH3)(C2H5))4Hf或HfCl4,硅前驱体源为(N(CH3)2)3Si、H2N(CH2)3Si(OC2H5)3或SiCl4
3.如权利要求1所述的镀制方法,其特征在于,所述的等离子体氧化源为氧气与氩气的混合等离子体,等离子体功率为2000W~2800W。
CN201910366232.1A 2019-05-05 2019-05-05 一种基于peald的紫外减反射薄膜的镀制方法 Pending CN110079788A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910366232.1A CN110079788A (zh) 2019-05-05 2019-05-05 一种基于peald的紫外减反射薄膜的镀制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910366232.1A CN110079788A (zh) 2019-05-05 2019-05-05 一种基于peald的紫外减反射薄膜的镀制方法

Publications (1)

Publication Number Publication Date
CN110079788A true CN110079788A (zh) 2019-08-02

Family

ID=67418503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910366232.1A Pending CN110079788A (zh) 2019-05-05 2019-05-05 一种基于peald的紫外减反射薄膜的镀制方法

Country Status (1)

Country Link
CN (1) CN110079788A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526663A (zh) * 2020-11-04 2021-03-19 浙江大学 一种基于原子层沉积的吸收膜及其制作方法
CN112928164A (zh) * 2019-12-05 2021-06-08 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379807A (zh) * 2012-04-05 2015-02-25 戴森技术有限公司 原子层沉积

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379807A (zh) * 2012-04-05 2015-02-25 戴森技术有限公司 原子层沉积

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONGJUN WANG 等: "Enhanced laser induced damage threshold of dielectric antireflection coatings by the introduction of one interfacial layer", 《CHINESE OPTICS LETTERS》 *
卫耀伟 等: "原子层沉积HfO2薄膜的激光损伤特性分析", 《强激光与粒子束》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928164A (zh) * 2019-12-05 2021-06-08 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN112928164B (zh) * 2019-12-05 2023-10-17 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN112526663A (zh) * 2020-11-04 2021-03-19 浙江大学 一种基于原子层沉积的吸收膜及其制作方法

Similar Documents

Publication Publication Date Title
CN106757361A (zh) 基于CVD法生长MoS2二维晶体的方法
TW201618189A (zh) 矽氧化物之沉積方法
JP2007027723A (ja) 層を堆積させるための原子層成長法
CN104379807A (zh) 原子层沉积
CN104561937A (zh) 原子层沉积制备具有固体润滑作用的ws2薄膜方法
CN110079788A (zh) 一种基于peald的紫外减反射薄膜的镀制方法
CN106044855B (zh) 一种制备单层MoS2的方法
CN107988586A (zh) 原子层沉积制备氧化锌纳米管的方法
CN106159000A (zh) 一种制备厘米尺度下均匀单层硫化钼的方法
CN108493105B (zh) 二氧化硅薄膜及其制备方法
CN113481487A (zh) 一种太阳能电池片及其背面pecvd法和应用
US8222153B2 (en) Textured single crystal
WO2012116477A1 (zh) 一种高密度氧化锌纳米颗粒的制备方法
Genevée et al. Blistering during the atomic layer deposition of iridium
CN109055916A (zh) 一种peald低温制备铁电薄膜的方法及铁电薄膜
JP4214250B2 (ja) シリコンナノ結晶構造体の作製方法及び作製装置
JP5888674B2 (ja) エッチング装置およびエッチング方法およびクリーニング装置
US20150179604A1 (en) Method for bonding substrates
JP2000265275A (ja) クリーニング方法
CN103451612A (zh) 高k二氧化铪非晶薄膜的制备方法
CN105448705B (zh) 一种消除晶圆氧化膜上微粒的方法及其氧化膜
US20110175207A1 (en) Method for producing metal oxide layers
Zhi-Jun et al. Induced growth of high quality ZnO thin films by crystallized amorphous ZnO
CN112919822A (zh) 基于刻蚀辅助机制的石墨烯玻璃制备方法
Lv et al. Porous silicon with double band photoluminescence fabricated by chemical-assisted picosecond laser irradiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190802

RJ01 Rejection of invention patent application after publication