CN110061244A - 一种柔性的无隔膜的线型燃料电池的制备方法 - Google Patents

一种柔性的无隔膜的线型燃料电池的制备方法 Download PDF

Info

Publication number
CN110061244A
CN110061244A CN201910206815.8A CN201910206815A CN110061244A CN 110061244 A CN110061244 A CN 110061244A CN 201910206815 A CN201910206815 A CN 201910206815A CN 110061244 A CN110061244 A CN 110061244A
Authority
CN
China
Prior art keywords
fuel cell
line style
cnt
solution
aseptate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910206815.8A
Other languages
English (en)
Other versions
CN110061244B (zh
Inventor
丁建宁
周小双
袁宁一
胡兴好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910206815.8A priority Critical patent/CN110061244B/zh
Priority to US17/055,610 priority patent/US11069904B1/en
Priority to PCT/CN2019/091642 priority patent/WO2020181673A1/zh
Priority to GB2018073.3A priority patent/GB2588308B/en
Publication of CN110061244A publication Critical patent/CN110061244A/zh
Application granted granted Critical
Publication of CN110061244B publication Critical patent/CN110061244B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • H01M8/004Cylindrical, tubular or wound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

本发明属于线型燃料电池技术领域,具体涉及一种柔性的无隔膜的线型燃料电池的制备方法。通过碳纳米管膜加捻负载催化剂得到(CNT)@Fe3[Co(CN)6]2阴极电极,碳纳米管膜加捻包覆镍粉得到CNT@镍颗粒阳极电极,与H2O2的燃料电解液集成在硅胶管中制备成柔性线型燃料电池。本发明的柔性线型燃料电池,可产生0.88V的开路电压,同时具有非常好的柔性,可编织进衣物等纺织品中,在便携式供能领域具有非常好的应用前景。

Description

一种柔性的无隔膜的线型燃料电池的制备方法
技术领域
本发明属于线型燃料电池技术领域,具体涉及一种柔性的无隔膜的线型燃料电池的制备方法。
背景技术
可穿戴电子产品因其在健康监测、智能皮肤和传感器等领域的广阔前景而备受关注。为了给这些可穿戴电子设备提供动力,灵活的电源是必不可少的。线状储能系统是可穿戴电子产品的理想储能系统,因为纤维和/或纱线重量轻、柔韧和可编织。因此,线状储能器件的研究也付出了巨大的努力,包括线状锂离子电池、超级电容器、太阳能电池等。然而,由于线状可穿戴燃料电池在组装、膜、电解液、催化剂等方面的困难,目前开展的研究很少。
燃料电池是一类转换效率高、能量高的动力装置,它通过阴极和阳极表面的还原和氧化反应将化学能转化为电能。因此,实现柔性线形燃料电池在柔性可穿戴电子和纺织领域具有重要意义。然而,传统燃料电池的流场和集流器通常是刚性的、沉重的、不灵活的,如金属板或石墨板,不能集成或编织成柔性电子或纺织品。同时,传统燃料电池的膜结构对线形器件的设计也缺乏可靠性和难度。为此,我们希望从以下两个方面来设计和制造一种线状柔性燃料电池:一是制备一种负载纳米催化颗粒的线状柔性集电极;另一种是探索基于无膜单室燃料电池的反应机理。
发明内容
本发明要解决的技术问题是:实现燃料电池的线型化,微型化,可便携化等技术问题,从而提供一种柔性的无隔膜的线型燃料电池的制备方法。
本发明解决其技术问题所采用的技术方案是将催化剂负载在碳纳米管纱线上,利用双氧水既能充当还化剂燃料又能充当氧化剂的特性,使得阴阳极可以在同一个腔室内从而避免使用隔膜,同时使用包覆间隔纱线的方式来避免阴阳极短路。
上述柔性的无隔膜的线型燃料电池的制备方法包括如下步骤:
(1)称取FeSO4·7H2O和K3[Co(CN)6]试剂分别配制成水溶液,混合后在磁力搅拌下得到悬浮液,过滤留下沉淀,用去离子水洗涤沉淀,真空低温烘干得到催化剂Fe3[Co(CN)6]2
(2)将碳纳米管膜从碳纳米管森林上拉出来,叠上不同的层数后,卷成圆柱状,将步骤(1)中所述的催化剂Fe3[Co(CN)6]2与乙醇溶液配成一定浓度的溶液,然后将所述的催化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在电机的辅助下,加捻成均匀的(CNT)@Fe3[Co(CN)6]2阴极电极纱线。
(3)将所述的碳纳米管膜铺在玻璃片上,然后将纳米镍粉超声分散在DMF溶液中,然后将所得分散液均匀滴涂到纳米碳膜上,在电机的辅助下,加捻制成CNT@镍颗粒阳极电极纱线。
(4)等CNT@镍颗粒阳极电极纱线自然烘干后,在两个同步电机辅助下,在CNT@镍颗粒阳极电极纱线表面包覆一层聚丙烯(PP)单丝,得到CNT@镍@PP电极。
(5)称取双氧水溶液,高氯酸溶液,氯化钠盐,配制成燃料电解液。
(6)将所述的(CNT)@Fe3[Co(CN)6]2阴极电极纱线和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
作为本发明的一个优选的实施例,步骤(1)中FeSO4·7H2O和K3[Co(CN)6]水溶液的浓度分别为0.2mol/l和0.15mol/l。所述的混合体积比1:1,所述的磁力搅拌转速为240转/分钟。所述的真空低温烘干的时间为6-10小时,所述的真空低温烘干的温度为40℃。
作为本发明的一个优选的实施例,步骤(2)中所述的碳纳米管膜的长度为15cm,宽度为2.5cm,层数为10层。所述的催化剂的浓度为5mg/ml,所述的滴加的催化剂溶液的量为1ml。所述的电机加捻的转速为100转/分钟,所述的加捻时间为1min。
作为本发明的一个优选的实施例,步骤(3)中所述的碳纳米管膜的长度为15cm,宽度为2.5cm,层数为10层。所述的分散液中,纳米镍粉的浓度为20mg/ml,所滴加的量为2ml。所述的电机加捻的转速为100转/分钟,所述的加捻时间为1min。
作为本发明的一个优选的实施例,步骤(4)中所述的两个同步电机的转数为50转/分钟,所述的PP单丝的直径为100微米。
作为本发明的一个优选的实施例,步骤(5)中所述的双氧水的浓度为0.03mol/l,所述的高氯酸溶液的浓度0.15mol/l,所述的氯化钠溶液为0.1mol/l,所述的3种溶液的混合体积比1:1:1。
作为本发明的一个优选的实施例,步骤(6)中所述的硅胶管的内径为0.1mm,长度为10-20cm。
本发明的有益效果是:方法简单,效率高,稳定性好,有利于实现工业化大生产。
具体表现为:
1.利用碳纳米管薄膜紧紧包覆着催化剂颗粒,加捻后的纱线,在弯折的过程中也会保持非常好的柔性和稳定性。
2.绝缘的聚丙烯间隔纱的使用保证了线型燃料电池在弯折过程中不会出现阴阳极接触短路的现象。
3.线型燃料电池的可编织性,使得便携式燃料电池在纺织品应用成为可能。
4.硅胶管的封装保证了电池的抗酸碱能力和安全性。
附图说明
图1本发明所制备的阳极电极的SEM图。
图2本发明所制备的阴极电极的SEM图。
图3本发明所制备的线型燃料电池的示意图。
图4本发明所制备的线型燃料电池的器件图。
图5本发明所制备的线型燃料电池的性能图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。另外,需要说明的是,FeSO4·7H2O、K3[Co(CN)6]和NaCl,质量分数纯度为99.99%wt,高氯酸和乙醇(分析纯AR)双氧水的浓度为30%wt。DMF表示N甲基吡咯烷酮(分析纯AR)。
实施例1
(1)称取FeSO4·7H2O和K3[Co(CN)6]试剂分别配制成0.2mol/L和0.15mol/L的20ml水溶液,将FeSO4·7H2O水溶液缓慢加入到K3[Co(CN)6]水溶液中在240转/分钟的磁力搅拌下得到悬浮液,过滤留下沉淀,将沉淀用用去离子水离心洗涤3-5次后,在40℃的真空烘箱中烘干8h得到催化剂Fe3[Co(CN)6]2
(2)将碳纳米管膜从碳纳米管森林上拉出来,长度为15cm,宽度为2.5cm,叠上10层数后,卷成圆柱状,将步骤(1)中所述的催化剂与乙醇溶液配成一定5mg/mL的溶液,然后量取1ml所述的催化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在100转/分钟的电机的辅助下,加捻1min,加捻成均匀的(CNT)@Fe3[Co(CN)6]2阴极电极纱线。
(3)将碳纳米管膜铺在玻璃片上,长度为15cm,宽度为2.5cm,叠上10层,然后将纳米镍粉超声分散在DMF溶液中,制备成20mg/ml的分散液,然后称取2ml所述分散液均匀滴涂到纳米碳膜上,在100转/分钟电机的加捻下,加捻1min制成CNT@镍颗粒阳极电极纱线。
(4)等CNT@镍颗粒纱线自然烘干后,在两个转数为50转/分钟的同步电机辅助下,将一根直径100微米的聚丙烯(PP)单丝包覆在其表面。得到CNT@镍@PP电极。
(5)称取配制0.3mol/l双氧水,0.15mol/l高氯酸,0.1mol/l氯化钠混合水溶液,3种溶液的混合体积比1:1:1,配制成燃料电解液。
(6)将所述的(CNT)@Fe3[Co(CN)6]2和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
实施例2
(1)称取FeSO4·7H2O和K3[Co(CN)6]试剂分别配制成0.20mol/L和0.15mol/L的20ml水溶液,将FeSO4·7H2O水溶液缓慢加入到K3[Co(CN)6]水溶液中在240转/分钟的磁力搅拌下得到悬浮液,过滤留下沉淀,将沉淀用用去离子水离心洗涤3-5次后,在25℃的真空烘箱中烘干8h得到催化剂Fe3[Co(CN)6]2
(2)将碳纳米管膜从碳纳米管森林上拉出来,长度为15cm,宽度为3cm,叠上15层数后,卷成圆柱状,将步骤(1)中所述的催化剂与乙醇溶液配成一定5mg/mL的溶液,然后量取1ml所述的催化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在100转/分钟的电机的辅助下,加捻2min,加捻成均匀的(CNT)@Fe3[Co(CN)6]2阴极电极纱线。
(3)将碳纳米管膜铺在玻璃片上,长度为15cm,宽度为3cm,叠上10层,然后将纳米镍粉超声分散在DMF溶液中,制备成20mg/ml的分散液,然后称取2ml所述分散液均匀滴涂到纳米碳膜上,在100转/分钟电机的加捻下,加捻1min制成CNT@镍颗粒阳极电极纱线。
(4)等CNT@镍颗粒纱线自然烘干后,在两个转数为25转/分钟的同步电机辅助下,将一根直径100微米的聚丙烯(PP)单丝包覆在其表面。得到CNT@镍@PP电极。
(5)称取配制0.3mol/l双氧水,0.15mol/l高氯酸,0.1mol/l氯化钠混合水溶液,3种溶液的混合体积比1:1:1,配制成燃料电解液。
(6)将所述的(CNT)@Fe3[Co(CN)6]2和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
实施例3
(1)称取FeSO4·7H2O和K3[Co(CN)6]试剂分别配制成0.20mol/L和0.15mol/L的20ml水溶液,将FeSO4·7H2O水溶液缓慢加入到K3[Co(CN)6]水溶液中在240转/分钟的磁力搅拌下得到悬浮液,过滤留下沉淀,将沉淀用用去离子水离心洗涤3-5次后,在常温下烘干8h得到催化剂Fe3[Co(CN)6]2
(2)将碳纳米管膜从碳纳米管森林上拉出来,长度为15cm,宽度为4cm,叠上15层数后,卷成圆柱状,将步骤(1)中所述的催化剂与乙醇溶液配成一定5mg/mL的溶液,然后量取1ml所述的催化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在100转/分钟的电机的辅助下,加捻1.5min,加捻成均匀的(CNT)@Fe3[Co(CN)6]2阴极电极纱线。
(3)将碳纳米管膜铺在玻璃片上,长度为15cm,宽度为4cm,叠上10层,然后将纳米镍粉超声分散在DMF溶液中,制备成20mg/ml的分散液,然后称取2ml所述分散液均匀滴涂到纳米碳膜上,在100转/分钟电机的加捻下,加捻1min制成CNT@镍颗粒阳极电极纱线。
(4)等CNT@镍颗粒纱线自然烘干后,在两个转数为50转/分钟的同步电机辅助下,将一根直径100微米的聚丙烯(PP)单丝包覆在其表面。得到CNT@镍@PP电极。
(5)称取配制0.3mol/l双氧水,0.15mol/l高氯酸,0.1mol/l氯化钠混合水溶液,3种溶液的混合体积比1:1:1,配制成燃料电解液。
(6)将所述的(CNT)@Fe3[Co(CN)6]2和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
3个实施例的差异在于,不同的宽度和不同的层数保证了负载的分布不一样,负载的质量比不一样,实施例1为最佳实施例。
根据图1,2可知,我们负载的催化剂都均匀的包覆在碳纳米管纱线上,图3是我们制备的燃料电池的示意图,从图上可以看出我们的器件的结构部分,图4是我们实际制作出来的线型燃料电池的器件图,图5是最终得到的器件的性能图,由图5可知,我们的线型燃料电池可以提供一个稳定的0.89V电压,功率密度可达6.2mW cm-2

Claims (7)

1.一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,具体步骤如下:
(1)称取FeSO4·7H2O和K3[Co(CN)6]试剂分别配制成水溶液,混合后在磁力搅拌下得到悬浮液,过滤留下沉淀,用去离子水洗涤沉淀,真空低温烘干得到催化剂Fe3[Co(CN)6]2
(2)将碳纳米管膜从碳纳米管森林上拉出来,叠上不同的层数后,卷成圆柱状,将步骤(1)中所述的催化剂Fe3[Co(CN)6]2与乙醇溶液配成一定浓度的溶液,然后将所述的催化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在电机的辅助下,加捻成均匀的(CNT)@Fe3[Co(CN)6]2阴极电极纱线;
(3)将所述的碳纳米管膜铺在玻璃片上,然后将纳米镍粉超声分散在DMF溶液中,然后将所得分散液均匀滴涂到纳米碳膜上,在电机的辅助下,加捻制成CNT@镍颗粒阳极电极纱线;
(4)等CNT@镍颗粒阳极电极纱线自然烘干后,在两个同步电机辅助下,在CNT@镍颗粒阳极电极纱线表面包覆一层聚丙烯(PP)单丝,得到CNT@镍@PP电极;
(5)称取双氧水溶液,高氯酸溶液,氯化钠盐,配制成燃料电解液;
(6)将所述的(CNT)@Fe3[Co(CN)6]2阴极电极纱线和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
2.如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(1)中FeSO4·7H2O和K3[Co(CN)6]水溶液的浓度分别为0.2mol/l和0.15mol/l;所述的混合体积比1:1,所述的磁力搅拌转速为240转/分钟;所述的真空低温烘干的时间为6-10小时,所述的真空低温烘干的温度为40℃。
3.如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(2)中所述的碳纳米管膜的长度为15cm,宽度为2.5cm,层数为10层;所述的催化剂的浓度为5mg/ml,所述的滴加的催化剂溶液的量为1ml;所述的电机加捻的转速为100转/分钟,所述的加捻时间为1min。
4.如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(3)中所述的碳纳米管膜的长度为15cm,宽度为2.5cm,层数为10层;所述的分散液中,纳米镍粉的浓度为20mg/ml,所滴加的量为2ml;所述的电机加捻的转速为100转/分钟,所述的加捻时间为1min。
5.如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(4)中所述的两个同步电机的转数为50转/分钟,所述的PP单丝的直径为100微米。
6.如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(5)中所述的双氧水的浓度为0.03mol/l,所述的高氯酸溶液的浓度0.15mol/l,所述的氯化钠溶液为0.1mol/l,所述的3种溶液的混合体积比1:1:1。
7.如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(6)中所述的硅胶管的内径为0.1mm,长度为10-20cm。
CN201910206815.8A 2019-03-11 2019-03-11 一种柔性的无隔膜的线型燃料电池的制备方法 Active CN110061244B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910206815.8A CN110061244B (zh) 2019-03-11 2019-03-11 一种柔性的无隔膜的线型燃料电池的制备方法
US17/055,610 US11069904B1 (en) 2019-03-11 2019-06-18 Method for preparing flexible membrane-free and wire-shaped fuel cell
PCT/CN2019/091642 WO2020181673A1 (zh) 2019-03-11 2019-06-18 一种柔性的无隔膜的线型燃料电池的制备方法
GB2018073.3A GB2588308B (en) 2019-03-11 2019-06-18 Method for preparing flexible membrane-free and wire-shaped fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910206815.8A CN110061244B (zh) 2019-03-11 2019-03-11 一种柔性的无隔膜的线型燃料电池的制备方法

Publications (2)

Publication Number Publication Date
CN110061244A true CN110061244A (zh) 2019-07-26
CN110061244B CN110061244B (zh) 2021-10-12

Family

ID=67317172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910206815.8A Active CN110061244B (zh) 2019-03-11 2019-03-11 一种柔性的无隔膜的线型燃料电池的制备方法

Country Status (4)

Country Link
US (1) US11069904B1 (zh)
CN (1) CN110061244B (zh)
GB (1) GB2588308B (zh)
WO (1) WO2020181673A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271300A (zh) * 2020-10-23 2021-01-26 重庆大学 一种基于编织纤维的全柔性直接微流体燃料电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960140B (zh) * 2021-09-24 2023-11-21 合肥天一生物技术研究所有限责任公司 一种用于血浆中维生素b1含量检测的丝网印刷电极
CN114023924B (zh) * 2021-11-01 2023-07-11 湖南立方新能源科技有限责任公司 一种无集流体硅基负极的制备方法及纤维锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916209A (zh) * 2012-11-02 2013-02-06 湖南科技大学 一种无膜的直接醇燃料电池及其制造方法
CN104600332A (zh) * 2013-11-04 2015-05-06 中国石油化工股份有限公司 无膜燃料电池催化剂浆料及制备催化剂浆料与电极方法
CN105244183A (zh) * 2015-10-23 2016-01-13 中南民族大学 一种碳纳米管纱线复合钴酸盐金属氧化物纳米线超级电容器的制备方法
CN107068412A (zh) * 2016-12-08 2017-08-18 常州大学 一种高功率的长线性超级电容器及其制备方法
CN107248456A (zh) * 2017-04-26 2017-10-13 东莞市鸿愃实业有限公司 碳纳米管纱线基柔性超级电容器复合电极材料的制备方法
CN108364797A (zh) * 2018-02-11 2018-08-03 哈尔滨工业大学 一种碳纳米管织物电极及纱线电极的制备方法及电极的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044707A1 (en) * 2006-08-21 2008-02-21 National Tsing Hua University Flexible fuel cell
US20100151342A1 (en) * 2007-02-20 2010-06-17 Castle Research Associates Inc Tubular fuel cell design with improved construction and operating efficiency
CA2685798C (en) * 2007-04-30 2016-08-02 National Research Council Of Canada Membraneless fuel cell and method of operating same
JP2011108525A (ja) * 2009-11-18 2011-06-02 Nitto Denko Corp 配線回路基板およびそれを備えた燃料電池
EP2882016A4 (en) * 2012-08-01 2016-03-30 Toyo Ink Sc Holdings Co Ltd BATTERY CATALYST COMPOSITION, PROCESS FOR PRODUCING THE SAME, ELECTRODE MATERIAL, AND FUEL CELL
WO2017123289A2 (en) * 2015-10-06 2017-07-20 Board Of Regents, The University Of Texas System Membraneless direct liquid fuel cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916209A (zh) * 2012-11-02 2013-02-06 湖南科技大学 一种无膜的直接醇燃料电池及其制造方法
CN104600332A (zh) * 2013-11-04 2015-05-06 中国石油化工股份有限公司 无膜燃料电池催化剂浆料及制备催化剂浆料与电极方法
CN105244183A (zh) * 2015-10-23 2016-01-13 中南民族大学 一种碳纳米管纱线复合钴酸盐金属氧化物纳米线超级电容器的制备方法
CN107068412A (zh) * 2016-12-08 2017-08-18 常州大学 一种高功率的长线性超级电容器及其制备方法
CN107248456A (zh) * 2017-04-26 2017-10-13 东莞市鸿愃实业有限公司 碳纳米管纱线基柔性超级电容器复合电极材料的制备方法
CN108364797A (zh) * 2018-02-11 2018-08-03 哈尔滨工业大学 一种碳纳米管织物电极及纱线电极的制备方法及电极的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEONG HOON KWON ET AL.: "Mediator-free carbon nanotube yarn biofuel cell", 《RSC ADVANCES》 *
JIAO DENG ET AL.: "Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls", 《J. MATER. CHEM. A》 *
SUNG HOON AHN ET AL.: ""Wiring" Fe-Nx-Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media", 《ADV. MATER.》 *
XIAOHUI YAN ET AL.: "A Paper-Based Microfluidic Fuel Cell with Hydrogen Peroxide as Fuel and Oxidant", 《ENERGY TECHNOLOGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271300A (zh) * 2020-10-23 2021-01-26 重庆大学 一种基于编织纤维的全柔性直接微流体燃料电池
CN112271300B (zh) * 2020-10-23 2022-09-23 重庆大学 一种基于编织纤维的全柔性直接微流体燃料电池

Also Published As

Publication number Publication date
GB2588308B (en) 2021-11-17
GB2588308A (en) 2021-04-21
CN110061244B (zh) 2021-10-12
US20210226226A1 (en) 2021-07-22
GB202018073D0 (en) 2020-12-30
WO2020181673A1 (zh) 2020-09-17
US11069904B1 (en) 2021-07-20

Similar Documents

Publication Publication Date Title
CN112941669B (zh) 一种金属-氮共掺杂的碳纳米纤维材料及其制备方法和应用
CN106025200B (zh) 一种氮掺杂MXene电池负极材料的制备方法及其应用
CN110061244A (zh) 一种柔性的无隔膜的线型燃料电池的制备方法
CN104466134B (zh) 自支撑石墨烯/碳纳米管杂化物泡沫负载氨基蒽醌类聚合物的制备方法
CN106876673B (zh) 一步法制备二氧化钛和石墨烯双层共包覆的核壳结构锂硫电池正极材料的方法
EP3062372A1 (en) Tungsten-based material super battery and supercapacitor
Hou et al. In situ TiO2 decorated carbon paper as negative electrode for vanadium redox battery
CN110085440A (zh) 一种氢氧化镍/还原氧化石墨烯电极材料制备方法
CN108598414A (zh) 无定形氧化锌/碳复合锂离子电池负极材料及其制备方法
CN104538201A (zh) 一种纺织纤维和聚吡咯纳米线复合超级电容器的制备方法
CN106340633A (zh) 一种高性能锂离子电池用复合纳米材料及其制备方法
CN104319409A (zh) 一种全钒液流电池用高活性不对称电极及其制备方法
CN109768260A (zh) 一种磷化二钴/碳复合材料及其制备方法和用途
CN105702958A (zh) 一种二氧化锡(SnO2)量子点溶液及其复合材料的制备方法与应用
CN109524247A (zh) 3d-石墨烯/泡沫镍及其制备方法和应用
Ge et al. Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction
CN107195470A (zh) 镍钴铁三元金属氧化物纳米管状复合材料及其制备方法
CN114497590A (zh) 一种氮磷共掺杂碳纤维负载CoP复合材料及其制备方法和应用、铝空气电池
Jing et al. A feasible strategy to enhance mass transfer property of carbon nanofibers electrode in vanadium redox flow battery
Xia et al. Flexible one-dimensional yarn-like Ni-Zn battery: micron-nano hierarchical-structure array, high energy density and excellent capacity retention
Zhang et al. Applications of nanocarbons in redox flow batteries
Wei et al. Nano TiC electrocatalysts embedded graphite felt for high rate and stable vanadium redox flow batteries
CN107217482B (zh) 一种具有界面共价键链接的氮磷共掺杂多孔炭膜@聚苯胺杂化电极材料及其制备方法
CN106024403A (zh) 一种超级电容器碳管/碳化钼复合电极材料及其制备方法
Li et al. Preparation and characterization of a novel carbon/PAN/PPy@ Zn yarn electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant