WO2020181673A1 - 一种柔性的无隔膜的线型燃料电池的制备方法 - Google Patents

一种柔性的无隔膜的线型燃料电池的制备方法 Download PDF

Info

Publication number
WO2020181673A1
WO2020181673A1 PCT/CN2019/091642 CN2019091642W WO2020181673A1 WO 2020181673 A1 WO2020181673 A1 WO 2020181673A1 CN 2019091642 W CN2019091642 W CN 2019091642W WO 2020181673 A1 WO2020181673 A1 WO 2020181673A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cnt
solution
flexible
carbon nanotube
Prior art date
Application number
PCT/CN2019/091642
Other languages
English (en)
French (fr)
Inventor
丁建宁
周小双
袁宁一
胡兴好
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2018073.3A priority Critical patent/GB2588308B/en
Priority to US17/055,610 priority patent/US11069904B1/en
Publication of WO2020181673A1 publication Critical patent/WO2020181673A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • H01M8/004Cylindrical, tubular or wound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of linear fuel cells, and specifically relates to a method for preparing a flexible linear fuel cell without a diaphragm.
  • linear energy storage system is an ideal energy storage system for wearable electronic products because the fibers and/or yarns are lightweight, flexible and woven. Therefore, great efforts have been made in the research of linear energy storage devices, including linear lithium-ion batteries, supercapacitors, and solar cells. However, due to difficulties in assembly, membranes, electrolytes, and catalysts in linear wearable fuel cells, few studies have been carried out at present.
  • Fuel cell is a kind of power device with high conversion efficiency and high energy. It converts chemical energy into electrical energy through reduction and oxidation reactions on the surface of the cathode and anode. Therefore, the realization of flexible linear fuel cells is of great significance in the field of flexible wearable electronics and textiles.
  • the flow fields and current collectors of traditional fuel cells are usually rigid, heavy, and inflexible, such as metal plates or graphite plates, and cannot be integrated or woven into flexible electronics or textiles.
  • the membrane structure of traditional fuel cells lacks reliability and difficulty in designing linear devices. For this reason, we hope to design and manufacture a linear flexible fuel cell from the following two aspects: one is to prepare a linear flexible collector with nano-catalytic particles; the other is to explore a membrane-free single-chamber fuel cell The reaction mechanism.
  • the technical problem to be solved by the present invention is to realize the linearization, miniaturization, portability and other technical problems of the fuel cell, thereby providing a flexible method for preparing a linear fuel cell without a diaphragm.
  • the technical solution adopted by the present invention to solve the technical problem is to load the catalyst on the carbon nanotube yarns, and use the characteristics of hydrogen peroxide to act as a reducing agent fuel and an oxidizer, so that the cathode and anode can be in the same chamber to avoid Use a diaphragm, and at the same time use the way of covering the spacer yarn to avoid the anode and cathode short circuit.
  • the method for preparing the above-mentioned flexible membrane-free linear fuel cell includes the following steps:
  • step (2) Pull the carbon nanotube film from the carbon nanotube forest, stack it with different layers, and roll it into a cylindrical shape.
  • the catalyst Fe 3 [Co(CN) 6 ] 2 described in step (1) Prepare a solution with a certain concentration with ethanol solution, and then evenly drop the catalyst solution onto the cylindrical carbon film, and then twist it into a uniform (CNT)@Fe 3 [Co( CN) 6 ] 2 cathode electrode yarn.
  • the concentrations of the FeSO 4 ⁇ 7H 2 O and K 3 [Co(CN) 6 ] aqueous solutions are 0.2 mol/l and 0.15 mol/l, respectively.
  • the mixing volume ratio is 1:1, and the magnetic stirring speed is 240 revolutions per minute.
  • the vacuum low-temperature drying time is 6-10 hours, and the vacuum low-temperature drying temperature is 40°C.
  • the length of the carbon nanotube film in step (2) is 15 cm, the width is 2.5 cm, and the number of layers is 10 layers.
  • the concentration of the catalyst is 5 mg/ml, and the amount of the catalyst solution added dropwise is 1 ml.
  • the rotation speed of the motor for twisting is 100 revolutions per minute, and the twisting time is 1 min.
  • the length of the carbon nanotube film in step (3) is 15 cm, the width is 2.5 cm, and the number of layers is 10 layers.
  • the concentration of the nano nickel powder is 20 mg/ml, and the dropped amount is 2 ml.
  • the rotation speed of the motor for twisting is 100 revolutions per minute, and the twisting time is 1 min.
  • the number of revolutions of the two synchronous motors in step (4) is 50 revolutions per minute, and the diameter of the PP monofilament is 100 microns.
  • the concentration of hydrogen peroxide in step (5) is 0.03 mol/l
  • the concentration of the perchloric acid solution is 0.15 mol/l
  • the sodium chloride solution is 0.1 mol/l
  • the mixing volume ratio of the three solutions is 1:1:1.
  • the inner diameter of the silicone tube described in step (6) is 0.1 mm and the length is 10-20 cm.
  • the beneficial effects of the invention are: the method is simple, the efficiency is high, and the stability is good, which is beneficial to realizing large-scale industrial production.
  • the packaging of the silicone tube ensures the battery's acid and alkali resistance and safety.
  • FIG. 1 SEM image of the anode electrode prepared by the present invention.
  • FIG. 1 SEM image of the cathode electrode prepared by the present invention.
  • Fig. 3 is a schematic diagram of a linear fuel cell prepared by the present invention.
  • Fig. 4 is a device diagram of the linear fuel cell prepared by the present invention.
  • FIG. 5 Performance diagram of the linear fuel cell prepared by the present invention.
  • the "one embodiment” or “embodiment” referred to herein refers to a specific feature, structure, or characteristic that can be included in at least one implementation of the present invention.
  • the appearances of "in one embodiment” in different places in this specification do not all refer to the same embodiment, nor are they separate or selectively mutually exclusive embodiments with other embodiments.
  • FeSO 4 ⁇ 7H 2 O, K 3 [Co(CN) 6 ] and NaCl the mass fraction purity is 99.99%wt
  • the concentration of perchloric acid and ethanol (analytical pure AR) hydrogen peroxide is 30% wt.
  • DMF stands for N-methylpyrrolidone (analytical grade AR).
  • step (2) Pull the carbon nanotube film out of the carbon nanotube forest with a length of 15 cm and a width of 3 cm. After 15 layers are stacked, the film is rolled into a cylindrical shape, and the catalyst described in step (1) is mixed with ethanol solution Prepare a certain 5mg/mL solution, and then measure 1ml of the catalyst solution and apply it evenly on the cylindrical carbon film, and then twist it for 2 minutes with the help of a motor at 100 revolutions per minute to make the twist evenly The (CNT)@Fe 3 [Co(CN) 6 ] 2 cathode electrode yarn.
  • step (2) Pull the carbon nanotube film out of the carbon nanotube forest with a length of 15 cm and a width of 4 cm. After 15 layers are stacked, the film is rolled into a cylindrical shape, and the catalyst described in step (1) is mixed with ethanol solution Make it into a certain 5mg/mL solution, then measure 1ml of the catalyst solution and evenly drop it on the cylindrical carbon film, and then twist it for 1.5min with the help of a motor at 100 revolutions per minute. Uniform (CNT)@Fe 3 [Co(CN) 6 ] 2 cathode electrode yarn.
  • Embodiment 1 is the best embodiment.
  • Figures 1 and 2 we can see that our supported catalysts are evenly coated on carbon nanotube yarns.
  • Figure 3 is a schematic diagram of the fuel cell we prepared. From the figure, we can see the structure of our device, Figure 4 This is the device diagram of the linear fuel cell we actually produced.
  • Figure 5 is the performance diagram of the final device. From Figure 5, we can see that our linear fuel cell can provide a stable 0.89V voltage with a power density of 6.2 mW cm -2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

本发明属于线型燃料电池技术领域,具体涉及一种柔性的无隔膜的线型燃料电池的制备方法。通过碳纳米管膜加捻负载催化剂得到(CNT)@Fe 3[Co(CN) 6] 2阴极电极,碳纳米管膜加捻包覆镍粉得到CNT@镍颗粒阳极电极,与H 2O 2的燃料电解液集成在硅胶管中制备成柔性线型燃料电池。本发明的柔性线型燃料电池,可产生0.88V的开路电压,同时具有非常好的柔性,可编织进衣物等纺织品中,在便携式供能领域具有非常好的应用前景。

Description

一种柔性的无隔膜的线型燃料电池的制备方法 技术领域
本发明属于线型燃料电池技术领域,具体涉及一种柔性的无隔膜的线型燃料电池的制备方法。
背景技术
可穿戴电子产品因其在健康监测、智能皮肤和传感器等领域的广阔前景而备受关注。为了给这些可穿戴电子设备提供动力,灵活的电源是必不可少的。线状储能系统是可穿戴电子产品的理想储能系统,因为纤维和/或纱线重量轻、柔韧和可编织。因此,线状储能器件的研究也付出了巨大的努力,包括线状锂离子电池、超级电容器、太阳能电池等。然而,由于线状可穿戴燃料电池在组装、膜、电解液、催化剂等方面的困难,目前开展的研究很少。
燃料电池是一类转换效率高、能量高的动力装置,它通过阴极和阳极表面的还原和氧化反应将化学能转化为电能。因此,实现柔性线形燃料电池在柔性可穿戴电子和纺织领域具有重要意义。然而,传统燃料电池的流场和集流器通常是刚性的、沉重的、不灵活的,如金属板或石墨板,不能集成或编织成柔性电子或纺织品。同时,传统燃料电池的膜结构对线形器件的设计也缺乏可靠性和难度。为此,我们希望从以下两个方面来设计和制造一种线状柔性燃料电池:一是制备一种负载纳米催化颗粒的线状柔性集电极;另一种是探索基于无膜单室燃料电池的反应机理。
发明内容
本发明要解决的技术问题是:实现燃料电池的线型化,微型化,可便携化等技术问题,从而提供一种柔性的无隔膜的线型燃料电池的制备方法。
本发明解决其技术问题所采用的技术方案是将催化剂负载在碳纳米管纱线上,利用双氧水既能充当还化剂燃料又能充当氧化剂的特性,使得阴阳极可以在同一个腔室内从而避免使用隔膜,同时使用包覆间隔纱线的方式来避免阴阳极短路。
上述柔性的无隔膜的线型燃料电池的制备方法包括如下步骤:
(1)称取FeSO 4·7H 2O和K 3[Co(CN) 6]试剂分别配制成水溶液,混合后在磁力搅拌下得到悬浮液,过滤留下沉淀,用去离子水洗涤沉淀,真空低温烘干得到催化剂Fe 3[Co(CN) 6] 2
(2)将碳纳米管膜从碳纳米管森林上拉出来,叠上不同的层数后,卷成圆柱状,将步骤(1)中所述的催化剂Fe 3[Co(CN) 6] 2与乙醇溶液配成一定浓度的溶液,然后将所述的催 化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在电机的辅助下,加捻成均匀的(CNT)@Fe 3[Co(CN) 6] 2阴极电极纱线。
(3)将所述的碳纳米管膜铺在玻璃片上,然后将纳米镍粉超声分散在DMF溶液中,然后将所得分散液均匀滴涂到纳米碳膜上,在电机的辅助下,加捻制成CNT@镍颗粒阳极电极纱线。
(4)等CNT@镍颗粒阳极电极纱线自然烘干后,在两个同步电机辅助下,在CNT@镍颗粒阳极电极纱线表面包覆一层聚丙烯(PP)单丝,得到CNT@镍@PP电极。
(5)称取双氧水溶液,高氯酸溶液,氯化钠盐,配制成燃料电解液。
(6)将所述的(CNT)@Fe 3[Co(CN) 6] 2阴极电极纱线和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
作为本发明的一个优选的实施例,步骤(1)中FeSO 4·7H 2O和K 3[Co(CN) 6]水溶液的浓度分别为0.2mol/l和0.15mol/l。所述的混合体积比1:1,所述的磁力搅拌转速为240转/分钟。所述的真空低温烘干的时间为6-10小时,所述的真空低温烘干的温度为40℃。
作为本发明的一个优选的实施例,步骤(2)中所述的碳纳米管膜的长度为15cm,宽度为2.5cm,层数为10层。所述的催化剂的浓度为5mg/ml,所述的滴加的催化剂溶液的量为1ml。所述的电机加捻的转速为100转/分钟,所述的加捻时间为1min。
作为本发明的一个优选的实施例,步骤(3)中所述的碳纳米管膜的长度为15cm,宽度为2.5cm,层数为10层。所述的分散液中,纳米镍粉的浓度为20mg/ml,所滴加的量为2ml。所述的电机加捻的转速为100转/分钟,所述的加捻时间为1min。
作为本发明的一个优选的实施例,步骤(4)中所述的两个同步电机的转数为50转/分钟,所述的PP单丝的直径为100微米。
作为本发明的一个优选的实施例,步骤(5)中所述的双氧水的浓度为0.03mol/l,所述的高氯酸溶液的浓度0.15mol/l,所述的氯化钠溶液为0.1mol/l,所述的3种溶液的混合体积比1:1:1。
作为本发明的一个优选的实施例,步骤(6)中所述的硅胶管的内径为0.1mm,长度为10-20cm。
本发明的有益效果是:方法简单,效率高,稳定性好,有利于实现工业化大生产。
具体表现为:
1.利用碳纳米管薄膜紧紧包覆着催化剂颗粒,加捻后的纱线,在弯折的过程中也会保持 非常好的柔性和稳定性。
2.绝缘的聚丙烯间隔纱的使用保证了线型燃料电池在弯折过程中不会出现阴阳极接触短路的现象。
3.线型燃料电池的可编织性,使得便携式燃料电池在纺织品应用成为可能。
4.硅胶管的封装保证了电池的抗酸碱能力和安全性。
附图说明
图1本发明所制备的阳极电极的SEM图。
图2本发明所制备的阴极电极的SEM图。
图3本发明所制备的线型燃料电池的示意图。
图4本发明所制备的线型燃料电池的器件图。
图5本发明所制备的线型燃料电池的性能图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。另外,需要说明的是,FeSO 4·7H 2O、K 3[Co(CN) 6]和NaCl,质量分数纯度为99.99%wt,高氯酸和乙醇(分析纯AR)双氧水的浓度为30%wt。DMF表示N甲基吡咯烷酮(分析纯AR)。
实施例1
(1)称取FeSO 4·7H 2O和K 3[Co(CN) 6]试剂分别配制成0.2mol/L和0.15mol/L的20ml水溶液,将FeSO 4·7H 2O水溶液缓慢加入到K 3[Co(CN) 6]水溶液中在240转/分钟的磁力搅拌下得到悬浮液,过滤留下沉淀,将沉淀用用去离子水离心洗涤3-5次后,在40℃的真空烘箱中烘干8h得到催化剂Fe 3[Co(CN) 6] 2。
(2)将碳纳米管膜从碳纳米管森林上拉出来,长度为15cm,宽度为2.5cm,叠上10层数后,卷成圆柱状,将步骤(1)中所述的催化剂与乙醇溶液配成一定5mg/mL的溶液,然后量取1ml所述的催化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在100转/分钟的电机的辅助下,加捻1min,加捻成均匀的(CNT)@Fe 3[Co(CN) 6] 2阴极电极纱线。
(3)将碳纳米管膜铺在玻璃片上,长度为15cm,宽度为2.5cm,叠上10层,然后将纳米镍粉超声分散在DMF溶液中,制备成20mg/ml的分散液,然后称取2ml所述分散液均 匀滴涂到纳米碳膜上,在100转/分钟电机的加捻下,加捻1min制成CNT@镍颗粒阳极电极纱线。
(4)等CNT@镍颗粒纱线自然烘干后,在两个转数为50转/分钟的同步电机辅助下,将一根直径100微米的聚丙烯(PP)单丝包覆在其表面。得到CNT@镍@PP电极。
(5)称取配制0.3mol/l双氧水,0.15mol/l高氯酸,0.1mol/l氯化钠混合水溶液,3种溶液的混合体积比1:1:1,配制成燃料电解液。
(6)将所述的(CNT)@Fe 3[Co(CN) 6] 2和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
实施例2
(1)称取FeSO 4·7H 2O和K 3[Co(CN) 6]试剂分别配制成0.20mol/L和0.15mol/L的20ml水溶液,将FeSO 4·7H 2O水溶液缓慢加入到K 3[Co(CN) 6]水溶液中在240转/分钟的磁力搅拌下得到悬浮液,过滤留下沉淀,将沉淀用用去离子水离心洗涤3-5次后,在25℃的真空烘箱中烘干8h得到催化剂Fe 3[Co(CN) 6] 2。
(2)将碳纳米管膜从碳纳米管森林上拉出来,长度为15cm,宽度为3cm,叠上15层数后,卷成圆柱状,将步骤(1)中所述的催化剂与乙醇溶液配成一定5mg/mL的溶液,然后量取1ml所述的催化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在100转/分钟的电机的辅助下,加捻2min,加捻成均匀的(CNT)@Fe 3[Co(CN) 6] 2阴极电极纱线。
(3)将碳纳米管膜铺在玻璃片上,长度为15cm,宽度为3cm,叠上10层,然后将纳米镍粉超声分散在DMF溶液中,制备成20mg/ml的分散液,然后称取2ml所述分散液均匀滴涂到纳米碳膜上,在100转/分钟电机的加捻下,加捻1min制成CNT@镍颗粒阳极电极纱线。
(4)等CNT@镍颗粒纱线自然烘干后,在两个转数为25转/分钟的同步电机辅助下,将一根直径100微米的聚丙烯(PP)单丝包覆在其表面。得到CNT@镍@PP电极。
(5)称取配制0.3mol/l双氧水,0.15mol/l高氯酸,0.1mol/l氯化钠混合水溶液,3种溶液的混合体积比1:1:1,配制成燃料电解液。
(6)将所述的(CNT)@Fe 3[Co(CN) 6] 2和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
实施例3
(1)称取FeSO 4·7H 2O和K 3[Co(CN) 6]试剂分别配制成0.20mol/L和0.15mol/L的20ml水溶液,将FeSO 4·7H 2O水溶液缓慢加入到K 3[Co(CN) 6]水溶液中在240转/分钟的磁力 搅拌下得到悬浮液,过滤留下沉淀,将沉淀用用去离子水离心洗涤3-5次后,在常温下烘干8h得到催化剂Fe 3[Co(CN) 6] 2。
(2)将碳纳米管膜从碳纳米管森林上拉出来,长度为15cm,宽度为4cm,叠上15层数后,卷成圆柱状,将步骤(1)中所述的催化剂与乙醇溶液配成一定5mg/mL的溶液,然后量取1ml所述的催化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在100转/分钟的电机的辅助下,加捻1.5min,加捻成均匀的(CNT)@Fe 3[Co(CN) 6] 2阴极电极纱线。
(3)将碳纳米管膜铺在玻璃片上,长度为15cm,宽度为4cm,叠上10层,然后将纳米镍粉超声分散在DMF溶液中,制备成20mg/ml的分散液,然后称取2ml所述分散液均匀滴涂到纳米碳膜上,在100转/分钟电机的加捻下,加捻1min制成CNT@镍颗粒阳极电极纱线。
(4)等CNT@镍颗粒纱线自然烘干后,在两个转数为50转/分钟的同步电机辅助下,将一根直径100微米的聚丙烯(PP)单丝包覆在其表面。得到CNT@镍@PP电极。
(5)称取配制0.3mol/l双氧水,0.15mol/l高氯酸,0.1mol/l氯化钠混合水溶液,3种溶液的混合体积比1:1:1,配制成燃料电解液。
(6)将所述的(CNT)@Fe 3[Co(CN) 6] 2和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
3个实施例的差异在于,不同的宽度和不同的层数保证了负载的分布不一样,负载的质量比不一样,实施例1为最佳实施例。
根据图1,2可知,我们负载的催化剂都均匀的包覆在碳纳米管纱线上,图3是我们制备的燃料电池的示意图,从图上可以看出我们的器件的结构部分,图4是我们实际制作出来的线型燃料电池的器件图,图5是最终得到的器件的性能图,由图5可知,我们的线型燃料电池可以提供一个稳定的0.89V电压,功率密度可达6.2mW cm -2

Claims (7)

  1. 一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,具体步骤如下:
    (1)称取FeSO 4·7H 2O和K 3[Co(CN) 6]试剂分别配制成水溶液,混合后在磁力搅拌下得到悬浮液,过滤留下沉淀,用去离子水洗涤沉淀,真空低温烘干得到催化剂Fe 3[Co(CN) 6] 2
    (2)将碳纳米管膜从碳纳米管森林上拉出来,叠上不同的层数后,卷成圆柱状,将步骤(1)中所述的催化剂Fe 3[Co(CN) 6] 2与乙醇溶液配成一定浓度的溶液,然后将所述的催化剂溶液均匀的滴涂到圆柱状的碳膜上,然后在电机的辅助下,加捻成均匀的(CNT)@Fe 3[Co(CN) 6] 2阴极电极纱线;
    (3)将所述的碳纳米管膜铺在玻璃片上,然后将纳米镍粉超声分散在DMF溶液中,然后将所得分散液均匀滴涂到纳米碳膜上,在电机的辅助下,加捻制成CNT@镍颗粒阳极电极纱线;
    (4)等CNT@镍颗粒阳极电极纱线自然烘干后,在两个同步电机辅助下,在CNT@镍颗粒阳极电极纱线表面包覆一层聚丙烯(PP)单丝,得到CNT@镍@PP电极;
    (5)称取双氧水溶液,高氯酸溶液,氯化钠盐,配制成燃料电解液;
    (6)将所述的(CNT)@Fe 3[Co(CN) 6] 2阴极电极纱线和CNT@镍@PP电极加捻在一起,装进硅胶管中注入电解液,从而制备成柔性的线型的双氧水燃料电池。
  2. 如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(1)中FeSO 4·7H 2O和K 3[Co(CN) 6]水溶液的浓度分别为0.2mol/l和0.15mol/l;所述的混合体积比1:1,所述的磁力搅拌转速为240转/分钟;所述的真空低温烘干的时间为6-10小时,所述的真空低温烘干的温度为40℃。
  3. 如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(2)中所述的碳纳米管膜的长度为15cm,宽度为2.5cm,层数为10层;所述的催化剂的浓度为5mg/ml,所述的滴加的催化剂溶液的量为1ml;所述的电机加捻的转速为100转/分钟,所述的加捻时间为1min。
  4. 如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(3)中所述的碳纳米管膜的长度为15cm,宽度为2.5cm,层数为10层;所述的分散液中,纳米镍粉的浓度为20mg/ml,所滴加的量为2ml;所述的电机加捻的转速为100转/分钟,所述的加捻时间为1min。
  5. 如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于, 步骤(4)中所述的两个同步电机的转数为50转/分钟,所述的PP单丝的直径为100微米。
  6. 如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(5)中所述的双氧水的浓度为0.03mol/l,所述的高氯酸溶液的浓度0.15mol/l,所述的氯化钠溶液为0.1mol/l,所述的3种溶液的混合体积比1:1:1。
  7. 如权利要求1所述的一种柔性的无隔膜的线型燃料电池的制备方法,其特征在于,步骤(6)中所述的硅胶管的内径为0.1mm,长度为10-20cm。
PCT/CN2019/091642 2019-03-11 2019-06-18 一种柔性的无隔膜的线型燃料电池的制备方法 WO2020181673A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2018073.3A GB2588308B (en) 2019-03-11 2019-06-18 Method for preparing flexible membrane-free and wire-shaped fuel cell
US17/055,610 US11069904B1 (en) 2019-03-11 2019-06-18 Method for preparing flexible membrane-free and wire-shaped fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910206815.8 2019-03-11
CN201910206815.8A CN110061244B (zh) 2019-03-11 2019-03-11 一种柔性的无隔膜的线型燃料电池的制备方法

Publications (1)

Publication Number Publication Date
WO2020181673A1 true WO2020181673A1 (zh) 2020-09-17

Family

ID=67317172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091642 WO2020181673A1 (zh) 2019-03-11 2019-06-18 一种柔性的无隔膜的线型燃料电池的制备方法

Country Status (4)

Country Link
US (1) US11069904B1 (zh)
CN (1) CN110061244B (zh)
GB (1) GB2588308B (zh)
WO (1) WO2020181673A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023924A (zh) * 2021-11-01 2022-02-08 湖南立方新能源科技有限责任公司 一种无集流体硅基负极的制备方法及纤维锂离子电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271300B (zh) * 2020-10-23 2022-09-23 重庆大学 一种基于编织纤维的全柔性直接微流体燃料电池
CN113960140B (zh) * 2021-09-24 2023-11-21 合肥天一生物技术研究所有限责任公司 一种用于血浆中维生素b1含量检测的丝网印刷电极

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044707A1 (en) * 2006-08-21 2008-02-21 National Tsing Hua University Flexible fuel cell
JP2011108525A (ja) * 2009-11-18 2011-06-02 Nitto Denko Corp 配線回路基板およびそれを備えた燃料電池
WO2017123289A2 (en) * 2015-10-06 2017-07-20 Board Of Regents, The University Of Texas System Membraneless direct liquid fuel cells

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100151342A1 (en) * 2007-02-20 2010-06-17 Castle Research Associates Inc Tubular fuel cell design with improved construction and operating efficiency
CA2685798C (en) * 2007-04-30 2016-08-02 National Research Council Of Canada Membraneless fuel cell and method of operating same
WO2014020915A1 (ja) * 2012-08-01 2014-02-06 東洋インキScホールディングス株式会社 電池触媒用組成物及びその製造方法、電極材料、並びに燃料電池
CN102916209B (zh) * 2012-11-02 2014-07-09 湖南科技大学 一种无膜的直接醇燃料电池及其制造方法
CN104600332B (zh) * 2013-11-04 2017-10-03 中国石油化工股份有限公司 无膜燃料电池催化剂浆料及制备催化剂浆料与电极方法
CN105244183B (zh) * 2015-10-23 2018-01-23 中南民族大学 一种碳纳米管纱线复合钴酸盐金属氧化物纳米线超级电容器的制备方法
CN107068412B (zh) * 2016-12-08 2018-10-16 常州大学 一种高功率的长线性超级电容器及其制备方法
CN107248456A (zh) * 2017-04-26 2017-10-13 东莞市鸿愃实业有限公司 碳纳米管纱线基柔性超级电容器复合电极材料的制备方法
CN108364797B (zh) * 2018-02-11 2020-01-14 哈尔滨工业大学 一种碳纳米管织物电极及纱线电极的制备方法及电极的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044707A1 (en) * 2006-08-21 2008-02-21 National Tsing Hua University Flexible fuel cell
JP2011108525A (ja) * 2009-11-18 2011-06-02 Nitto Denko Corp 配線回路基板およびそれを備えた燃料電池
WO2017123289A2 (en) * 2015-10-06 2017-07-20 Board Of Regents, The University Of Texas System Membraneless direct liquid fuel cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AHN, S. H. ET AL.: ""Wiring" Fe-N-x-Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media", ADVANCED MATERIALS, vol. 29, no. 26, 12 July 2017 (2017-07-12), XP055732816 *
ZHOU, XIAOSHUANG ET AL.: "Wire-Shaped and Membrane-Free Fuel Cell Based on Biscrolled Carbon Nanotube Yarn", ENERGY TECHNOLOGY, vol. 7, no. 9, 12 March 2019 (2019-03-12), XP055732812 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023924A (zh) * 2021-11-01 2022-02-08 湖南立方新能源科技有限责任公司 一种无集流体硅基负极的制备方法及纤维锂离子电池
CN114023924B (zh) * 2021-11-01 2023-07-11 湖南立方新能源科技有限责任公司 一种无集流体硅基负极的制备方法及纤维锂离子电池

Also Published As

Publication number Publication date
GB202018073D0 (en) 2020-12-30
GB2588308B (en) 2021-11-17
GB2588308A (en) 2021-04-21
US20210226226A1 (en) 2021-07-22
US11069904B1 (en) 2021-07-20
CN110061244B (zh) 2021-10-12
CN110061244A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
Dai et al. MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors
CN112941669B (zh) 一种金属-氮共掺杂的碳纳米纤维材料及其制备方法和应用
WO2020181673A1 (zh) 一种柔性的无隔膜的线型燃料电池的制备方法
He et al. All binder-free electrodes for high-performance wearable aqueous rechargeable sodium-ion batteries
US10483595B2 (en) Tungsten-based material super battery and supercapacitor
CN104466134B (zh) 自支撑石墨烯/碳纳米管杂化物泡沫负载氨基蒽醌类聚合物的制备方法
Jyoti et al. Recent advancement in three dimensional graphene-carbon nanotubes hybrid materials for energy storage and conversion applications
Liu et al. Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for high‐performance flexible energy storage
Pu et al. Vanadium metal‐organic framework‐derived multifunctional fibers for asymmetric supercapacitor, piezoresistive sensor, and electrochemical water splitting
Cui et al. Electrospun carbon nanofibers functionalized with NiCo2S4 nanoparticles as lightweight, flexible and binder-free cathode for aqueous Ni-Zn batteries
CN106876673B (zh) 一步法制备二氧化钛和石墨烯双层共包覆的核壳结构锂硫电池正极材料的方法
Li et al. Preparation of carbon nanofibers supported MoO2 composites electrode materials for application in dye-sensitized solar cells
Wang et al. Flexible reduced graphene oxide/V2O5 composite battery-type cathode and MXene capacitor-type anode for aqueous zinc ion hybrid supercapacitors with high energy density
CN108963235A (zh) 石墨烯增强碳包覆磷酸钛锰钠微米球电极材料及其制备方法和应用
CN104319409A (zh) 一种全钒液流电池用高活性不对称电极及其制备方法
CN112582610A (zh) 一种基于导电MOFs基纳米材料的柔性锌离子电池
Gao et al. In situ synthesis of cobalt triphosphate on carbon paper for efficient electrocatalyst in dye-sensitized solar cell
Chen et al. High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower
Xia et al. Flexible one-dimensional yarn-like Ni-Zn battery: micron-nano hierarchical-structure array, high energy density and excellent capacity retention
Shi et al. Reduced graphene oxide coated manganese dioxide electrode prepared by polyvinylpyrrolidone assisted electrodeposition
Li et al. T3C2Tx boost SnSbS composited carbon fibers achieved fast and stable free-standing quasi-solid sodium full-battery
CN106024403A (zh) 一种超级电容器碳管/碳化钼复合电极材料及其制备方法
CN105161689A (zh) 一种聚吡咯/多壁纳米碳管/硫复合材料的制备方法及应用
CN110474023B (zh) 一种纤维状镍铋电池及其制备方法
CN110323464B (zh) 一种包括聚苯胺-碳纳米管-二氧化锡-聚丙烯腈复合纳米纤维隔膜的钾空气电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202018073

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190618

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919138

Country of ref document: EP

Kind code of ref document: A1