CN110044700B - 透射电镜原位液体环境力学试验平台 - Google Patents

透射电镜原位液体环境力学试验平台 Download PDF

Info

Publication number
CN110044700B
CN110044700B CN201910347092.3A CN201910347092A CN110044700B CN 110044700 B CN110044700 B CN 110044700B CN 201910347092 A CN201910347092 A CN 201910347092A CN 110044700 B CN110044700 B CN 110044700B
Authority
CN
China
Prior art keywords
groove
chip
electron microscope
transmission electron
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910347092.3A
Other languages
English (en)
Other versions
CN110044700A (zh
Inventor
毛圣成
马东锋
韩晓东
栗晓辰
张剑飞
翟亚迪
李志鹏
李雪峤
张晴
马腾云
张泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910347092.3A priority Critical patent/CN110044700B/zh
Publication of CN110044700A publication Critical patent/CN110044700A/zh
Application granted granted Critical
Publication of CN110044700B publication Critical patent/CN110044700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0066Propagation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/024Corrosive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及材料原位微纳实验平台领域,提供一种透射电镜原位液体环境力学试验平台,包括样品杆和装载台,装载台包括下芯片、上芯片和加载器件。下芯片上表面设有第一凹槽,第一凹槽底面设有沟槽,沟槽的底面设有下薄膜窗口和两个第一通孔;上芯片的下表面设有第二凹槽和上薄膜窗口,第二凹槽和第一凹槽形成用于安装加载器件的容置空间,上芯片的上表面设有热电阻;上芯片下表面与下芯片上表面连接,加载器件下表面与第一凹槽底面连接,加载器件设有驱动梁,驱动梁设有样品搭载区;下薄膜窗口、样品搭载区和上薄膜窗口对中设置。本发明可实现对样品在液体腐蚀环境下力学测试,解决了目前透射电镜无法有效进行原位液体环境下力学测试的问题。

Description

透射电镜原位液体环境力学试验平台
技术领域
本发明涉及材料原位微纳实验平台领域,尤其涉及一种透射电镜原位液体环境力学试验平台。
背景技术
透射电子显微镜(Transmission Electron Microscope,TEM),简称透射电镜,是研究物质微观结构的现代化大型仪器设备,在物理、化学、材料科学及生命科学等领域都有着广泛的应用。传统的透射电镜表征技术通过明场像、暗场像、电子衍射、X射线能谱以及电子能量损失谱等手段实现对材料微观结构、化学成分、缺陷的表征与分析。
材料的宏观力学性能(如强度、硬度、塑性和韧性等)皆与其微观结构密切相关,即材料的宏观力学性能只是材料内无数晶粒变形的外在综合表现,材料在宏观上的连续变形并不能代表其微观变形的连续性,通常情况下,材料内各点处的形变程度并不相同甚至存在明显的差异。材料的应变是其力学性能的重要体现,尤其是材料微观晶粒的应变,因此,需要从微纳米尺度进行表征来揭示材料的基本性能和力学现象。由于材料的塑性变形方式通常是从晶粒内部或者晶界处开始的,因而研究材料微观组织晶粒应变有助于理解材料在塑性变形过程中的滑移和孪晶的形成过程。应用透射电镜进行材料微观结构上的变形机理研究,通常只能进行非实时的后位观测,通过外界加载前或加载后的样品信息进行变形机理推测。然而,多年的实验研究发现,这种后位的观察往往遗失很多与时间有关的变化过程中的关键信息。
研发具有高强度、高硬度、高韧性以及高的比强度的结构材料是材料领域科学家的永恒追求,但同时不可忽略的是,部分结构材料的实际服役条件常为液体环境中,例如在核反应堆、船舶工业、桥梁、石油工业中应用的结构材料,上述工业领域材料的实际服役性能明显不同于普通环境,在液体环境腐蚀及应力等条件共同作用下,失效行为时常发生。应用透射电镜进行液体介质中材料应力腐蚀断裂的机理研究,通常是将试样装载于可提供静应力的微型加载台上,然后将加载台整体浸泡于液体腐蚀环境下,试样发生应力腐蚀后再将加载台及试样转移至电子显微镜内进行观测。该研究方式可通过多次循环的液体腐蚀及观测实现“准原位”的研究,但工作耗时,且难以保证试样在转移过程中不发生变化。
应用透射电镜进行液体环境中材料的力学试验原位观测,实现对微纳米尺度样品在液体腐蚀环境下的力学测试和样品应力腐蚀状态下变形、裂纹扩展等机制的显微学研究意义重大。但是目前尚无应用于透射电镜的液体环境原位力学试验平台。
发明内容
本发明实施例提供一种透射电子显微镜原位液体环境力学试验平台,用以解决现有透射电子显微镜无法进行原位液体环境下力学测试的问题。
本发明实施例提供一种透射电子显微镜原位液体环境力学试验平台,包括样品杆和装载台,所述装载台安装于所述样品杆的观测端,所述装载台包括下芯片、上芯片和加载器件;
所述下芯片上表面设有第一凹槽,所述第一凹槽的底面设有沟槽,所述沟槽的底面设有下薄膜窗口和两个第一通孔;
所述上芯片的下表面设有第二凹槽和上薄膜窗口,所述第二凹槽和所述第一凹槽用于形成安装所述加载器件的容置空间,所述上芯片的上表面设有热电阻;
所述上芯片的下表面与所述下芯片的上表面相连接,所述加载器件的下表面与所述第一凹槽的底面相连接,所述加载器件设有第二通孔,所述第二通孔内设有驱动梁,所述驱动梁与所述第二通孔的孔壁连接;所述驱动梁上设有样品搭载区,所述下薄膜窗口、所述样品搭载区和所述上薄膜窗口对中设置。
本发明实施例提供的透射电镜原位液体环境力学试验平台,装载台包括上芯片、下芯片和加载器件,加载器件不但提供了用于放置样品的样品搭载区,而且能够通过驱动梁对样品施加形变应力,装载台安装于样品杆的观测端,上芯片和下芯片之间的空隙结构使样品处于能够流动的液体环境,通过设置于上芯片的上薄膜窗口和设置于下芯片的下薄膜窗口实现对样品的原位观测,从而提供一种可以在透射电镜内实现液体环境下力学测试及实时表征的原位平台,可以实现对微纳米尺度样品在液体腐蚀环境下的力学测试,同时实现对样品应力腐蚀状态下变形、裂纹扩展等机制的显微学研究,解决了目前透射电镜无法有效进行原位液体环境下力学测试的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的透射电镜原位液体环境力学试验平台结构示意图;
图2为本发明实施例的透射电镜原位液体环境力学试验平台分解结构示意图;
图3为本发明实施例的装载台结构示意图;
图4为本发明实施例的装载台剖面示意图;
图5为本发明实施例的装载台局部剖面示意图;
图6为本发明实施例的下芯片结构示意图;
图7为本发明实施例的上芯片下表面结构示意图;
图8为本发明实施例的上芯片上表面结构示意图;
图9为本发明实施例的加载器件结构示意图;
图10为本发明实施例的压板下表面结构示意图;
图11为本发明实施例的底座结构示意图;
图中:1、样品杆;11、供电引线;12、输液通道;2、装载台;3、下芯片;31、下薄膜窗口;32、第一凹槽;33、沟槽;34、第一通孔;4、加载器件;41、样品搭载区;42、驱动梁;43、第二通孔;44、定位通孔;5、上芯片;51、上薄膜窗口;52、第二凹槽;53、定位凸起;54、热电阻;55、第二导电片;6、底座;61、第三凹槽;62、第三通孔;63、输液孔;64、第一密封环槽;641、第一密封圈;65、第四凹槽;66、第二密封环槽;661、第二密封圈;67、第一导电片;68、定位凸出;7、压板;71、第四通孔;72、第三导电片;73、螺纹通孔;74、紧固螺钉。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-9所示,本发明实施例提供的透射电镜原位液体环境力学试验平台,包括样品杆1和装载台2。装载台2安装于样品杆1的观测端,装载台2包括下芯片3、上芯片5和加载器件4;下芯片3上表面设有第一凹槽32,第一凹槽32的底面设有沟槽33,沟槽33的底面设有下薄膜窗口31和两个第一通孔34;上芯片5的下表面设有第二凹槽52和上薄膜窗口51,第二凹槽52和第一凹槽32用于形成安装加载器件4的容置空间,上芯片5的上表面设有热电阻54;上芯片5的下表面与下芯片3的上表面相连接,加载器件4的下表面与第一凹槽32的底面相连接,加载器件4设有第二通孔43,第二通孔43内设有驱动梁42,驱动梁42与第二通孔43的孔壁连接;驱动梁42上设有样品搭载区41,下薄膜窗口31、样品搭载区41和上薄膜窗口51对中设置。
本发明实施例提供的透射电镜原位液体环境力学试验平台,下芯片3的上表面设有第一凹槽32,第一凹槽32的底面设有沟槽33,形成阶梯形的构造。上芯片5的下表面与下芯片3的上表面相贴合进而位于同一高度,上薄膜窗口51设于上芯片5的下表面,下薄膜窗口31设于下芯片3中沟槽33的底面进而下薄膜窗口31与沟槽33的底面位于同一高度,从而上薄膜窗口51与下薄膜窗口31之间具有高度差,此高度差可以用来放置待观测的样品,用于放置样品的样品搭载区41即位于此高度区间。加载器件4的下表面放置于第一凹槽32的底面,从而第一凹槽32底面设置的沟槽33可以形成为样品提供液体环境的液体流动通道;沟槽33底面设有两个第一通孔34,比如说两个第一通孔34可以分别位于沟槽33底面的两端,液体能够从一个第一通孔34流入,使下芯片3和上芯片5之间预设的间隙空间充满液体,为样品观测提供液体环境,液体从另一个第一通孔34流出形成可以持续流通的液体环境。芯片中液体可持续的流通,避免了实验室开发的利用树脂胶等材料密封芯片过程中微量液体容易挥发流失,以及液体性质可能发生改变的问题。上薄膜窗口51和下薄膜窗口31为电子束透过窗口,是基于超薄氮化硅薄膜窗口或石墨烯薄膜等技术,利用薄膜窗口对电子束的可透过性,将液体约束在带有电子束透过薄膜窗口的芯片内,从而实现透射电镜内的原位液体环境成像。上薄膜窗口51和下薄膜窗口31不但相互配合提供了透射电镜的观测窗口,而且起到了对液体环境的密闭作用。上芯片5的上表面设有热电阻54,在通电的情况下能够产生热量并传导给驱动梁42,驱动梁42能够在样品搭载区41对样品施加形变应力。
本发明实施例提供的透射电镜原位液体环境力学试验平台,装载台2包括上芯片5、下芯片3和加载器件4,加载器件4不但提供了用于放置样品的样品搭载区41,而且能够通过驱动梁42对样品施加形变应力,装载台2安装于样品杆1的观测端,上芯片5和下芯片3之间的空隙结构使样品处于能够流动的液体环境,通过设置于上芯片5的上薄膜窗口51和设置于下芯片3的下薄膜窗口31实现对样品的原位观测,从而提供一种可以在透射电镜内实现液体环境下力学测试及实时表征的原位平台,可以实现对微纳米尺度样品在液体腐蚀环境下的力学测试,同时实现对样品应力腐蚀状态下变形、裂纹扩展等机制的显微学研究,解决了目前透射电镜无法有效进行原位液体环境下力学测试的问题。
本发明实施例提供的透射电镜原位液体环境力学试验平台,第一凹槽32的槽深可以为100-980纳米,沟槽33的槽深可以为20-100纳米。下芯片3可以包括基底、位于基底上表面的氮化硅薄膜以及氮化硅薄膜上表面的隔层结构。基底对应下薄膜窗口31设置有锥型的通槽,此锥型的通槽槽底即为氮化硅薄膜,并形成下薄膜窗口31。隔层结构上设置第一凹槽32和沟槽33。氮化硅薄膜的厚度通常为10-50纳米,下芯片3上表面处隔层结构的厚度为200-1000纳米,第一凹槽32底面处隔层结构的厚度为20-100纳米,沟槽33的底面为氮化硅薄膜。
如图10、图11所示,本发明实施例提供的透射电镜原位液体环境力学试验平台,装载台2还可以包括底座6和压板7,以便于上芯片5、下芯片3和加载器件4在样品杆1的安装。底座6的上表面可以设有用于放置下芯片3的第三凹槽61,下芯片3卡放于第三凹槽61内,第三凹槽61的底面与下芯片3的下表面相连接。在第三凹槽61的底面设有第三通孔62和两个输液孔63,第三通孔62与下薄膜窗口31相对应设置,两个输液孔63与两个第一通孔34一一对应,从而将液体从一个输液孔63输入与其对应连通的第一通孔34,进入上芯片5和下芯片3之间预设的间隙中,并从另一个第一通孔34流出到其对应连通的另一个输液孔63。在第三凹槽61的底面还可以设有第一密封环槽64,第三通孔62位于第一密封环槽64内部区域,两个输液孔63位于第一密封环槽64外部区域,第一密封环槽64内容置有第一密封圈641,当下芯片3的下表面贴合于第三凹槽61的底面时,第一密封圈641可以在此贴合面形成环状密封,防止输液孔63与第一通孔34的连接接缝处渗漏液体至第三通孔62,破坏透射电镜真空状态。
压板7用于盖压上芯片5,压板7的下表面与上芯片5的上表面相连接,使包括上芯片5、下芯片3和加载器件4在内的整个装载台2上下紧密贴合。压板7上设有第四通孔71,第四通孔71与上薄膜窗口51相对应设置。
进一步地,本发明实施例提供的透射电镜原位液体环境力学试验平台,底座6的上表面还可以设有用于放置上芯片5的第四凹槽65,上芯片5卡放于第四凹槽65,上芯片5的下表面与第四凹槽65的底面相连接。在第四凹槽65的底面设有第二密封环槽66,第三凹槽61位于第二密封环槽66的内部区域,第二密封环槽66内容置有第二密封圈661,当上芯片5的下表面贴合于第四凹槽65的底面时,第二密封圈661可以在此贴合面形成环状密封,从而使上芯片5的下表面与第四凹槽65的底面相贴合连接更为紧密;通过第一密封圈641和第二密封圈661的密封,能够对输液孔63与第一通孔34连接接缝处可能渗漏的液体进行密封,防止渗漏出液体对观测造成不利影响,降低底座6与芯片相连接的面的加工精度要求。
本发明实施例提供的透射电镜原位液体环境力学试验平台,样品杆1设有供电引线11,底座6的上表面设有与供电引线11相连接的第一导电片67,上芯片5的上表面设有与热电阻54相连接的第二导电片55,压板7的下表面设有连接第一导电片67和第二导电片55的第三导电片72。当压板7盖压于上芯片5后,样品杆1的导电引线、底座6的第一导电片67、压板7的第三导电片72、上芯片5的第二导电片55、上芯片5的热电阻54实现电路连接,使透射电镜能够通过样品杆1为热电阻54供电。样品搭载区41及样品浸泡于液体环境中,当上芯片5上表面集成的热电阻54通入电流产生焦耳热后,温度升高,驱使加载器件4上的驱动梁42、使样品受力发生变形,实现在液体环境下的力学测试,需要进行透射电镜观测的样品区域上下由液体芯片上的氮化硅薄膜密封,高压电子束穿透两层氮化硅薄膜,实现对样品的原位观察。
本发明实施例提供的透射电镜原位液体环境力学试验平台,样品杆1还可以设有两个输液通道12,输液通道12有进液通道和出液通道,并分别与底座6进液的输液孔63和出液的输液孔63相连通,从而使透射电镜能够通过样品杆1为观测提供流动的液体环境。
本发明实施例提供的透射电镜原位液体环境力学试验平台,驱动梁42可以包括有斜面凹槽,斜面凹槽的侧面槽壁为倾斜设置,从槽口向槽底的截面宽度逐渐变小,槽底斜面凹槽的底面为样品搭载区41。在上芯片5的下表面设有环形凹槽,环形凹槽的深度大于驱动梁42的厚度;上薄膜窗口51设于环形凹槽内环区域。如图5所示,环形凹槽与斜面凹槽的配合设置,使上薄膜窗口51与下薄膜窗口31具有较小的间隙、足够薄,保证了透射电镜的原位观测效果。驱动梁42可以为双金属梁驱动器、记忆合金驱动器或V型梁等热驱动器中的一种。
本发明实施例提供的透射电镜原位液体环境力学试验平台,下芯片3可以为圆形,底座6上用于放置下芯片3的第三凹槽61也为圆形的凹槽,圆形的下芯片3边缘设有定位缺口,第三凹槽61的槽边设有与定位缺口相对应的定位凸出68,定位凸出68与定位缺口相配合以方便下芯片3在底座6上第三凹槽61的定位安装;上芯片5也可以为矩形,加载器件4为圆形,圆形的加载器件4上设有定位通孔44,第二凹槽52的底面设有与定位通孔44相对应的定位凸起53,定位凸起53与定位通孔44相配合以方便加载器件4相对于上芯片5的定位;同时,底座6上设置的用于放置上芯片5的第四凹槽65与上芯片5相对应地设置为矩形,使矩形的上芯片5能够方便地定位安装于底座6。
本发明实施例提供的透射电镜原位液体环境力学试验平台,上薄膜窗口51和下薄膜窗口31可以均设置为矩形,上薄膜窗口51在长度方向与下薄膜窗口31在长度方向呈十字型相垂直设置,使透射电镜透过上薄膜窗口51和下薄膜窗口31对样品的原位观测具有更好的效果。
为了使上芯片5、加载器件4和下芯片3的贴合更为紧密,如图2、图3所示,装载台2还可以包括有紧固螺钉74,在底座6和压板7上设置相对应的螺纹通孔73,底座6和压板7通过穿过螺纹通孔73的紧固螺钉74螺纹连接,使压板7具有更好的压紧作用。
本发明实施例提供的透射电镜原位液体环境力学试验平台,压板7、底座6、紧固螺钉74及样品杆1部分可以通过机械加工获得,上芯片5、下芯片3可以由微机电系统技术半导体加工得到,包含的主要工艺有:步骤一、基底准备;步骤二、氮化硅窗口薄膜沉积生长;步骤三、隔层或热电阻54薄膜生长;步骤四、隔层或热电阻54薄膜的图形化及薄膜电阻钝化层生长;步骤五、凹槽及凸起结构的刻蚀;步骤六、上薄膜窗口51级通道的湿法腐蚀;步骤七、下薄膜窗口31处凸台的湿法腐蚀等。加载器件4可通过半导体工艺光刻、沉积、刻蚀及样品搭载区41的聚焦离子束精细刻蚀得到。
本发明实施例提供的透射电镜原位液体环境力学试验平台,其装配及试验过程可以包括:
步骤S1:搭载块体或薄膜、纳米线样品至驱动梁42的样品搭载区41;
步骤S2:将第一密封圈641、第二密封圈661分别装配至第一密封环槽64、第二密封环槽66;
步骤S3:将下芯片3放入第三凹槽61,使矩形的下薄膜窗口31长度方向与样品杆1轴向方向垂直;
步骤S4:在光镜下将搭载有样品的加载器件4放置在下芯片3表面,加载器件4下表面与第一凹槽32底面接触,使样品位置与下薄膜窗口31对齐;
步骤S5:将上芯片5放入第四凹槽65内,使第二凹槽52底面的定位凸起53与加载器件4上的定位通孔44实现机械定位配合;
步骤S6:光镜下检查下薄膜窗口31、样品、上薄膜窗口51是否对齐,进行微调;
步骤S7:盖上压板7,并用紧固螺钉74固定;
步骤S8:进行电学连接测试;
步骤S9:通过样品杆1的输液通道12通入液体,光镜检查有无气泡及薄膜破裂等现象,进行真空检漏测试;
步骤S10:真空检漏确认液体密封良好后将样品杆1插入透射电镜;
步骤S11:确认透射电镜真空良好后打开电子束,找到样品,调至合适的放大倍数;
步骤S12:连接好电学控制系统后对上芯片5上的热电阻54逐级通电,从而加热下方的驱动梁42,实现样品的拉伸;
步骤S13:通过透射电子束成像实时记录样品变形及断裂行为。
本发明实施例提供的透射电镜原位液体环境力学试验平台,其装配及试验过程还可以包括:在试验开始前利用树脂胶密封下芯片3上的第一通孔34;在上述步骤S4后将微量液体滴到加载器件4上,并利用树脂胶密封下芯片3及上芯片5的接触区域;将上述步骤S9中液体的流动通入替换为前置的滴入。此试验过程降低了试验系统的复杂性。
另外,在上述步骤S12中,还可以在对样品力学加载至产生裂纹后保持恒定的电学载荷,从而实现静应力下的原位应力腐蚀测试,以观测样品裂纹扩展行为。
由以上实施例可以看出,本发明提供的透射电镜原位液体环境力学试验平台,装载台2包括上芯片5、下芯片3和加载器件4,加载器件4不但提供了用于放置样品的样品搭载区41,而且能够通过驱动梁42对样品施加形变应力,装载台2安装于样品杆1的观测端,上芯片5和下芯片3之间的空隙结构使样品处于能够流动的液体环境,通过设置于上芯片5的上薄膜窗口51和设置于下芯片3的下薄膜窗口31实现对样品的原位观测,从而提供一种可以在透射电镜内实现液体环境下力学测试及实时表征的原位平台,可以实现对微纳米尺度样品在液体腐蚀环境下的力学测试,同时实现对样品应力腐蚀状态下变形、裂纹扩展等机制的显微学研究,解决了目前透射电镜无法有效进行原位液体环境下力学测试的问题。本发明实施例提供的透射电镜原位液体环境力学试验平台,利用下芯片3、上芯片5及对应的第一密封圈641、第二密封圈661,实现透射电镜内液体环境的良好密封;下芯片3上第一凹槽32、沟槽33的设计,一方面保证了待测样品与液体芯片上下两层氮化硅薄膜之间存在可控的液体间隙,另一方面也在装配中避免了上下芯片结构对样品或氮化硅薄膜可能造成的机械伤害;并将集成有驱动梁42的加载器件4封装于上下两层液体芯片之间,采用外置即上芯片5上热电阻54实现对液体芯片及动梁的加热,可实现在微小的密封环境内对样品的力学加载,避免液体中多余引线或结构的引入;压板7下表面接触电极及引线的设计,避免了在样品搭载后完成整体装配时采用超声铝丝压焊或金丝球焊等方式进行电学引线连接时对样品及系统的额外干扰。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种透射电镜原位液体环境力学试验平台,包括样品杆和装载台,所述装载台安装于所述样品杆的观测端,其特征在于,所述装载台包括下芯片、上芯片和加载器件;
所述下芯片上表面设有第一凹槽,所述第一凹槽的底面设有沟槽,所述沟槽的底面设有下薄膜窗口和两个第一通孔;
所述上芯片的下表面设有第二凹槽和上薄膜窗口,所述第二凹槽和所述第一凹槽用于形成安装所述加载器件的容置空间,所述上芯片的上表面设有热电阻;
所述上芯片的下表面与所述下芯片的上表面相连接,所述加载器件的下表面与所述第一凹槽的底面相连接,所述加载器件设有第二通孔,所述第二通孔内设有驱动梁,所述驱动梁与所述第二通孔的孔壁连接;所述驱动梁上设有样品搭载区,所述下薄膜窗口、所述样品搭载区和所述上薄膜窗口对中设置。
2.根据权利要求1所述的透射电镜原位液体环境力学试验平台,其特征在于,所述装载台还包括底座和压板;
所述底座的上表面设有用于放置所述下芯片的第三凹槽,所述第三凹槽的底面与所述下芯片的下表面相连接;在所述第三凹槽的底面设有第三通孔和两个输液孔,所述第三通孔与所述下薄膜窗口相对应设置,两个所述输液孔与两个所述第一通孔一一对应设置;在所述第三凹槽的底面还设有第一密封环槽,所述第三通孔位于所述第一密封环槽内部区域,每一个所述输液孔位于所述第一密封环槽外部区域,所述第一密封环槽内容置有第一密封圈;
所述压板的下表面与所述上芯片的上表面相连接,用于盖压所述上芯片;所述压板上设有第四通孔,所述第四通孔与所述上薄膜窗口相对应设置。
3.根据权利要求2所述的透射电镜原位液体环境力学试验平台,其特征在于,所述底座的上表面还设有用于放置所述上芯片的第四凹槽,所述上芯片的下表面与所述第四凹槽的底面相连接;在所述第四凹槽的底面设有第二密封环槽,所述第三凹槽位于所述第二密封环槽的内部区域,所述第二密封环槽内容置有第二密封圈。
4.根据权利要求2所述的透射电镜原位液体环境力学试验平台,其特征在于,所述样品杆设有供电引线,所述底座的上表面设有与所述供电引线相连接的第一导电片,所述上芯片的上表面设有与所述热电阻相连接的第二导电片,所述压板的下表面设有连接所述第一导电片和所述第二导电片的第三导电片。
5.根据权利要求2所述的透射电镜原位液体环境力学试验平台,其特征在于,所述样品杆还设有两个输液通道,两个所述输液通道与两个所述输液孔一一对应连通。
6.根据权利要求1所述的透射电镜原位液体环境力学试验平台,其特征在于,所述第一凹槽的槽深为100-980纳米,所述沟槽的槽深为20-100纳米。
7.根据权利要求1所述的透射电镜原位液体环境力学试验平台,其特征在于,所述驱动梁包括斜面凹槽,所述斜面凹槽的底面为所述样品搭载区;在所述上芯片的下表面设有环形凹槽,所述环形凹槽的深度大于所述驱动梁的厚度;所述上薄膜窗口设于所述环形凹槽的内环区域。
8.根据权利要求2所述的透射电镜原位液体环境力学试验平台,其特征在于,所述下芯片为圆形,所述下芯片边缘设有定位缺口,所述第三凹槽的槽边设有与所述定位缺口相对应的定位凸出。
9.根据权利要求2所述的透射电镜原位液体环境力学试验平台,其特征在于,所述上芯片为矩形,所述加载器件为圆形,所述加载器件上设有定位通孔,所述第二凹槽的底面设有与所述定位通孔相对应的定位凸起。
10.根据权利要求2所述的透射电镜原位液体环境力学试验平台,其特征在于,所示装载台还包括紧固螺钉,所述底座和所述压板上设置有相对应的螺纹通孔,所述底座和所述压板通过穿过所述螺纹通孔的所述紧固螺钉螺纹连接。
CN201910347092.3A 2019-04-26 2019-04-26 透射电镜原位液体环境力学试验平台 Active CN110044700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910347092.3A CN110044700B (zh) 2019-04-26 2019-04-26 透射电镜原位液体环境力学试验平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910347092.3A CN110044700B (zh) 2019-04-26 2019-04-26 透射电镜原位液体环境力学试验平台

Publications (2)

Publication Number Publication Date
CN110044700A CN110044700A (zh) 2019-07-23
CN110044700B true CN110044700B (zh) 2024-04-12

Family

ID=67279802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910347092.3A Active CN110044700B (zh) 2019-04-26 2019-04-26 透射电镜原位液体环境力学试验平台

Country Status (1)

Country Link
CN (1) CN110044700B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272549B (zh) * 2020-01-31 2022-04-22 浙江大学 透射电镜原位压力试验的样品装载方法和样品夹具
CN111354615B (zh) * 2020-03-12 2021-05-18 厦门超新芯科技有限公司 一种透射电镜原位电热耦合芯片及其制备方法
CN112147164B (zh) * 2020-09-23 2023-07-25 绍兴励思仪仪器设备有限公司 一种电镜液体样品室及其组装方法和安装方法
CN112697818B (zh) * 2020-12-14 2023-07-25 兰州大学 适用于fib技术制样的透射电子显微镜磁电原位样品杆
CN112924283B (zh) * 2021-01-29 2023-09-08 中国石油大学(华东) 一种纳米薄膜拉伸实验仪及拉伸试验方法
CN113030062B (zh) * 2021-03-29 2023-06-09 国家纳米科学中心 一种电学-光谱信号检测装置、系统装置及检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136822A (zh) * 2015-08-06 2015-12-09 南京大学 一种纳米材料透射电镜原位测试芯片、芯片制备方法及其应用
CN105301027A (zh) * 2015-11-22 2016-02-03 北京工业大学 一种透射/扫描电镜力、热耦合场加载的原位实验平台
CN105679631A (zh) * 2016-01-29 2016-06-15 复旦大学 透射电子显微镜原位加电极样品台
CN206223570U (zh) * 2016-11-04 2017-06-06 西安交通大学 一种用于宏观样品的原位电镜力热耦合试验装置
CN108198740A (zh) * 2018-01-08 2018-06-22 中国科学院金属研究所 一种透射电子显微镜用原位电学样品杆系统
CN109270100A (zh) * 2018-11-30 2019-01-25 复旦大学 用于聚焦离子束制样工艺的透射电镜原位电学测试芯片
CN210108849U (zh) * 2019-04-26 2020-02-21 北京工业大学 透射电镜原位液体环境力学试验平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136822A (zh) * 2015-08-06 2015-12-09 南京大学 一种纳米材料透射电镜原位测试芯片、芯片制备方法及其应用
CN105301027A (zh) * 2015-11-22 2016-02-03 北京工业大学 一种透射/扫描电镜力、热耦合场加载的原位实验平台
CN105679631A (zh) * 2016-01-29 2016-06-15 复旦大学 透射电子显微镜原位加电极样品台
CN206223570U (zh) * 2016-11-04 2017-06-06 西安交通大学 一种用于宏观样品的原位电镜力热耦合试验装置
CN108198740A (zh) * 2018-01-08 2018-06-22 中国科学院金属研究所 一种透射电子显微镜用原位电学样品杆系统
CN109270100A (zh) * 2018-11-30 2019-01-25 复旦大学 用于聚焦离子束制样工艺的透射电镜原位电学测试芯片
CN210108849U (zh) * 2019-04-26 2020-02-21 北京工业大学 透射电镜原位液体环境力学试验平台

Also Published As

Publication number Publication date
CN110044700A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN110044700B (zh) 透射电镜原位液体环境力学试验平台
CN210108849U (zh) 透射电镜原位液体环境力学试验平台
US6490144B1 (en) Support for supporting a substrate in a process chamber
CN101458180B (zh) 预处理tem样品以及对样品进行tem测试的方法
US9625493B2 (en) Process control monitoring for biochips
JP7130273B2 (ja) ウェハおよびフォトマスクの組み合わせ検査のシステム、装置、および方法
TW200305723A (en) Electroconductive contact probe holder
Walraven Failure analysis issues in microelectromechanical systems (MEMS)
JP2011099847A (ja) 圧力センサ素子およびシート状圧力センサ
CN105910918A (zh) 测试绿色电子封装材料热-电-力耦合性能的原位测试系统
EP3194990A1 (en) A measurement instrument for testing charge storage devices
CN113070112B (zh) 微流控芯片介电层质量检测方法
JP7042071B2 (ja) eビーム操作用の局部的に排気された容積を用いる集積回路解析システムおよび方法
Roustaie et al. Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps
US8695403B2 (en) Support for a thin element, quartz microbalance including such a support and a sample holder including such a support
JP2006098064A (ja) プローブカード
Wunderle et al. Modelling and characterisation of a grease pump-out test stand and its use for accelerated stress testing of thermal greases
JP2003197582A (ja) 半導体チップの平面研磨治具、該治具を用いた研磨装置及び半導体チップの解析用試料作成方法
CN112147164B (zh) 一种电镜液体样品室及其组装方法和安装方法
Wunderle et al. Accelerated Stress Testing and Failure Analysis of Thermal Greases
Michel et al. Experimental and numerical investigations of thermo-mechanically stressed micro-components
Naumann et al. Thermo-mechanical stress and deformation behavior of joined semiconductor devices using different die attach technologies
Caselli et al. Experimental characterization of a multilayer silicone-based electroactive patch for gripper applications
KR100919850B1 (ko) 시편 제작방법
JPH0677296A (ja) 集積回路素子ウエハー用測定電極

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant