CN110038637B - 一种三元纳米复合材料的制备方法和应用 - Google Patents

一种三元纳米复合材料的制备方法和应用 Download PDF

Info

Publication number
CN110038637B
CN110038637B CN201910366070.1A CN201910366070A CN110038637B CN 110038637 B CN110038637 B CN 110038637B CN 201910366070 A CN201910366070 A CN 201910366070A CN 110038637 B CN110038637 B CN 110038637B
Authority
CN
China
Prior art keywords
mof
composite material
cof
electrode
ternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910366070.1A
Other languages
English (en)
Other versions
CN110038637A (zh
Inventor
王英姿
王志玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201910366070.1A priority Critical patent/CN110038637B/zh
Publication of CN110038637A publication Critical patent/CN110038637A/zh
Application granted granted Critical
Publication of CN110038637B publication Critical patent/CN110038637B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种三元纳米复合材料复合材料的制备和应用,属于纳米材料和催化技术领域。具体是利用异氰尿酸配体在N,N‑二甲基甲酰胺溶剂中电沉积制备Co‑MOF纳米棒阵列负载在钴箔的复合材料,将Co‑MOF/Co浸渍在尿素的水溶液中,制得生长了Co(OH)2纳米片的Co‑MOF纳米棒阵列负载在钴箔上的复合材料。该复合材料制备所用原料成本低,工艺简单,反应能耗低,具有工业应用前景。用于催化氮气还原为氨气,具有良好的固氮电催化活性与电化学稳定性。

Description

一种三元纳米复合材料的制备方法和应用
技术领域
本发明涉及一种三元纳米复合材料的制备方法和应用,具体涉及一种生长了Co(OH)3纳米片的Co-MOF纳米棒阵列负载在钴箔上的复合材料的制备方法并应用于催化室温氮气还原成的应用,属于纳米材料和催化技术领域。
背景技术
众做周知,化石燃料资源有限,使用可再生能源驱动严重依赖化石燃料消耗的化学过程具有非常重要的意义。目前工业合成NH3,是由N2和H2为原料、高温(350-550 ℃)和高压(150-350 atm)条件下使用铁基催化剂,经能量密集型Haber-Bosch化学过程实现。由于NH3广泛用于农业化肥、制药和许多其他工业过程,NH3是当前世界上需求量和产量最高的无机化学品之一。例如,2015年,通过Haber-Bosch工艺生产了大约1.46亿吨NH3,占全球年产天然气产量的3-5%,约占全球年度能源供应量的2%。这一工业过程排放的二氧化碳也占全球二氧化碳排放量的1-2%。
Haber-Bosch工艺的一种替代方法是使用电催化室温驱动NH3合成,该工艺一方面可减少对高温和高压的需求,降低能量需求;另一方面,由来自太阳和风能等可再生能源的电力供給合成,其原料是H2O和价廉N2,替代了清洁可储存的H2能源。然而,电催化室温合成NH3需断裂稳定的N2分子中的三个共价键,必须使用N2还原反应(NRR)的电催化剂,因此,电催化剂的制备技术成为电化学固氮技术的核心。尽管包括Ru、Pt、Au催化剂等已证明了电化学合成NH3的可行性,但它们高昂的成本和有限的资源限制了其大规模应用,因此,开发价廉NRR催化剂是一个巨大的挑战。
金属-有机框架物(MOFs)是指过渡金属离子与有机配体通过自组装方式形成的具有周期性的网络结构的晶体多孔材料。与传统多孔材料相比,MOFs材料具有其得天独厚的优势,其独特性能包括孔道可调控、比表面积大、空隙率高、活性位点暴露充分等特征。
另一方面超薄2D过渡金属氢氧化物作为催化剂正受到越来越多的关注,与尺寸较厚的纳米片相比,该催化剂活性位点多,反应物/产物的扩散长度较短。这些优点使得这些材料具有优异的电化学催化活性,甚至超过了昂贵而稀缺的贵金属氧化物催化剂。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种三元纳米复合材料的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供该复合材料的用途,即将该材料用于室温催化氮气还原为氨气,该催化剂具有良好的电催化活性与电化学稳定性。
本发明的技术方案如下:
1. 一种三元纳米复合材料的制备方法,步骤如下:
将4.0-5.0 mmol 异氰尿酸H3CA 配体溶解在10-13 mL的N,N-二甲基甲酰胺中,将此溶液作为电解液,采用经典三电极体系,1 cm × 1cm × 0.3 mm的钴箔作为工作电极,铂丝和甘汞电极作为对电极和参比电极,室温施加1.3-1.5 V的恒电压进行氧化并电沉积,5-10 min后,将得到的钴箔复合材料用乙醇清洗3次,除去过量的H3CA配体,得到的二元纳米复合材料Co-MOF/CoF;
将Co-MOF/Co浸渍在5 mL、温度为35-40 ℃、质量分数为5%的尿素的水溶液中,静置过夜,取出后105 ℃活化3h,制得三元纳米复合材料Co(OH)3/Co-MOF/CoF。
所述二元纳米复合材料Co-MOF/CoF,是直径为30-40 nm的Co-MOF纳米棒阵列负载在钴箔的复合材料;其中Co-MOF的化学式为Co(H2CA)2(H2O)2,其一个结构单元是由1个Co2+、2个H2CA¯、2个主体水分子组成;H2CA¯结构如下:
Figure DEST_PATH_IMAGE001
所述三元纳米复合材料Co(OH)2/Co-MOF/CoF,是生长了Co(OH)2纳米片的Co-MOF纳米棒阵列负载在钴箔上的复合材料。
2. 如上所述的三元纳米复合材料用于催化室温氮气还原成的应用
使用三电极电化学工作站,将三元纳米复合材料直接作为工作电极,Pt 片 (5 mm×5 mm×0.1 mm)为对电极,甘汞电极为参比电极,在电解液为 0.5 M Na2SO4的水溶液中电催化固氮;
当外加电压为 -0.3 V(vs RHE)时,氨气产生速率大于或等于101μg h-1 mg cat -1,且法拉第效率大于或等于21 %,说明该材料高效的固氮催化活性;循环 500次测试发现,氨气产生速率和法拉第效率没有发现明显的变化,表明催化剂具有良好的稳定性。
本发明有益的技术效果如下:
1)本发明三元纳米复合材料的制备过程,工艺简单,条件温和,易操作,易于工业化;
2)MOFs是由金属节点和有机配体连接组成,具有丰富的原子分散金属位点。然而,用于电催化,其导电性差是公认的事实。当前普遍采用将MOF热解以增强其生成物的导电策略,是以牺牲MOFs的分子活性位点为代价。本发明利用MOFs框架中金属位点均匀分散、孔隙丰富,通过原位金属位点与溶液中与OH¯ 结合,部分蚀刻去除连接物,实现了在MOFs纳米棒阵列上超薄2D过渡金属氢氧化物的生成。
3)本发明制得的三元纳米复合材料,是生长了Co(OH)2超薄纳米片的Co-MOF纳米棒阵列负载在钴箔上的多级结构。其大孔、介孔和MOF特有的微孔均存在,这些导致其比表面积增加,活性位点增多;集合钴箔优异的导电性,有利于电荷的传递,增强了复合材料固氮的催化效率。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1 一种三元纳米复合材料的制备方法
将4.0 mmol 异氰尿酸H3CA 配体溶解在10 mL的N,N-二甲基甲酰胺中, 将此溶液作为电解液,采用经典三电极体系,1 cm × 1cm × 0.3 mm的钴箔作为工作电极,铂丝和甘汞电极作为对电极和参比电极,室温施加1.3 V的恒电压进行氧化并电沉积,6 min后,将得到的钴箔复合材料用乙醇清洗3次,除去过量的H3CA配体,得到的二元纳米复合材料Co-MOF/CoF;将Co-MOF/Co浸渍在5 mL、温度为35 ℃、质量分数为5%的尿素的水溶液中,静置过夜,取出后105 ℃活化3h,制得三元纳米复合材料Co(OH)3/Co-MOF/CoF;所述二元纳米复合材料Co-MOF/CoF,是直径为31 nm的Co-MOF纳米棒阵列负载在钴箔的复合材料;其中Co-MOF的化学式为Co(H2CA)2(H2O)2,其一个结构单元是由1个Co2+、2个H2CA¯、2个主体水分子组成;H2CA¯结构如下:
Figure 122845DEST_PATH_IMAGE001
;所述三元纳米复合材料Co(OH)2/Co-MOF/CoF,是生长了Co(OH)2纳米片的Co-MOF纳米棒阵列负载在钴箔上的复合材料。
实施例2 一种三元纳米复合材料的制备方法
将5.0 mmol 异氰尿酸H3CA 配体溶解在13mL的N,N-二甲基甲酰胺中, 将此溶液作为电解液,采用经典三电极体系,1 cm × 1cm × 0.3 mm的钴箔作为工作电极,铂丝和甘汞电极作为对电极和参比电极,室温施加1.5 V的恒电压进行氧化并电沉积,10 min后,将得到的钴箔复合材料用乙醇清洗3次,除去过量的H3CA配体,得到的二元纳米复合材料Co-MOF/CoF;将Co-MOF/Co浸渍在5 mL、温度为40 ℃、质量分数为5%的尿素的水溶液中,静置过夜,取出后105 ℃活化3h,制得三元纳米复合材料Co(OH)3/Co-MOF/CoF;
所述二元纳米复合材料Co-MOF/CoF,是直径为40 nm的Co-MOF纳米棒阵列负载在钴箔的复合材料;其中Co-MOF的化学式为Co(H2CA)2(H2O)2,其一个结构单元是由1个Co2+、2个H2CA¯、2个主体水分子组成;H2CA¯结构如下:
Figure 102302DEST_PATH_IMAGE001
;所述三元纳米复合材料Co(OH)2/Co-MOF/CoF,是生长了Co(OH)2纳米片的Co-MOF纳米棒阵列负载在钴箔上的复合材料。
实施例3 一种三元纳米复合材料的制备方法
将4.3 mmol 异氰尿酸H3CA 配体溶解在12 mL的N,N-二甲基甲酰胺中, 将此溶液作为电解液,采用经典三电极体系,1 cm × 1cm × 0.3 mm的钴箔作为工作电极,铂丝和甘汞电极作为对电极和参比电极,室温施加1.4 V的恒电压进行氧化并电沉积,7 min后,将得到的钴箔复合材料用乙醇清洗3次,除去过量的H3CA配体,得到的二元纳米复合材料Co-MOF/CoF;将Co-MOF/Co浸渍在5 mL、温度为37 ℃、质量分数为5%的尿素的水溶液中,静置过夜,取出后105 ℃活化3h,制得三元纳米复合材料Co(OH)3/Co-MOF/CoF;所述二元纳米复合材料Co-MOF/CoF,是直径为35 nm的Co-MOF纳米棒阵列负载在钴箔的复合材料;其中Co-MOF的化学式为Co(H2CA)2(H2O)2,其一个结构单元是由1个Co2+、2个H2CA¯、2个主体水分子组成;H2CA¯结构如下:
Figure 944356DEST_PATH_IMAGE001
;所述三元纳米复合材料Co(OH)2/Co-MOF/CoF,是生长了Co(OH)2纳米片的Co-MOF纳米棒阵列负载在钴箔上的复合材料。
实施例4. 一种三元纳米复合材料的应用
使用三电极电化学工作站,将实施例1制得的三元纳米复合材料直接作为工作电极,Pt 片 (5 mm×5 mm×0.1 mm)为对电极,甘汞电极为参比电极,在电解液为 0.5 MNa2SO4的水溶液中电催化固氮;当外加电压为 -0.3 V(vs RHE)时,氨气产生速率等于103μgh-1 mg cat -1,且法拉第效率等于23 %,说明该材料高效的固氮催化活性;循环 500次测试发现,氨气产生速率和法拉第效率没有发现明显的变化,表明催化剂具有良好的稳定性。
实施例5.一种三元纳米复合材料的应用
使用三电极电化学工作站,将实施例2制得的三元纳米复合材料直接作为工作电极,Pt 片 (5 mm×5 mm×0.1 mm)为对电极,甘汞电极为参比电极,在电解液为 0.5 MNa2SO4的水溶液中电催化固氮;当外加电压为 -0.3 V(vs RHE)时,氨气产生速率等于101μgh-1 mg cat-1,且法拉第效率等于21 %,说明该材料高效的固氮催化活性;循环 500次测试发现,氨气产生速率和法拉第效率没有发现明显的变化,表明催化剂具有良好的稳定性。
实施例6.一种三元纳米复合材料的应用
使用三电极电化学工作站,将实施例3制得的三元纳米复合材料直接作为工作电极,Pt 片 (5 mm×5 mm×0.1 mm)为对电极,甘汞电极为参比电极,在电解液为 0.5 MNa2SO4的水溶液中电催化固氮;当外加电压为 -0.3 V(vs RHE)时,氨气产生速率等于105μgh-1 mg cat-1,且法拉第效率等于23 %,说明该材料高效的固氮催化活性;循环 500次测试发现,氨气产生速率和法拉第效率没有发现明显的变化,表明催化剂具有良好的稳定性。

Claims (4)

1.一种三元纳米复合材料的制备方法,其特征在于,步骤如下:
将4.0-5.0 mmol 异氰尿酸H3CA 配体溶解在10-13 mL的N,N-二甲基甲酰胺中, 将此溶液作为电解液,采用经典三电极体系,1 cm × 1cm × 0.3 mm的钴箔作为工作电极,铂丝和甘汞电极作为对电极和参比电极,室温施加1.3-1.5 V的恒电压进行氧化并电沉积,5-10min后,将得到的钴箔复合材料用乙醇清洗3次,除去过量的H3CA配体,得到的二元纳米复合材料Co-MOF/CoF;
将Co-MOF/Co浸渍在5 mL、温度为35-40 ℃、质量分数为5%的尿素的水溶液中,静置过夜,取出后105 ℃活化3h,制得三元纳米复合材料Co(OH)3/Co-MOF/CoF。
2.如权利要求1所述的三元纳米复合材料的制备方法,其特征在于,所述二元纳米复合材料Co-MOF/CoF,是直径为30-40 nm的Co-MOF纳米棒阵列负载在钴箔的复合材料;其中Co-MOF的化学式为Co(H2CA)2(H2O)2,其一个结构单元是由1个Co2+、2个H2CA¯、2个主体水分子组成;H2CA¯结构如下:
Figure 964398DEST_PATH_IMAGE001
3.如权利要求1所述的三元纳米复合材料的制备方法,其特征在于,所述三元纳米复合材料Co(OH)3/Co-MOF/CoF,是生长了Co(OH)3纳米片的Co-MOF纳米棒阵列负载在钴箔上的复合材料。
4.如权利要求1所述的制备方法制备的三元纳米复合材料用于催化室温氮气还原成氨气的应用。
CN201910366070.1A 2019-05-05 2019-05-05 一种三元纳米复合材料的制备方法和应用 Expired - Fee Related CN110038637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910366070.1A CN110038637B (zh) 2019-05-05 2019-05-05 一种三元纳米复合材料的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910366070.1A CN110038637B (zh) 2019-05-05 2019-05-05 一种三元纳米复合材料的制备方法和应用

Publications (2)

Publication Number Publication Date
CN110038637A CN110038637A (zh) 2019-07-23
CN110038637B true CN110038637B (zh) 2022-05-13

Family

ID=67280757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910366070.1A Expired - Fee Related CN110038637B (zh) 2019-05-05 2019-05-05 一种三元纳米复合材料的制备方法和应用

Country Status (1)

Country Link
CN (1) CN110038637B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433861B (zh) * 2019-08-30 2022-01-04 济南大学 一种自支撑mof纳米阵列复合催化剂的制备方法和应用
CN110479277B (zh) * 2019-08-30 2022-03-11 济南大学 一种促进纳米羟基氧化钴催化固氮反应的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107570211A (zh) * 2017-09-05 2018-01-12 济南大学 一种均三嗪基金属有机框架物/Ni复合材料的制备方法和应用
CN109647408A (zh) * 2019-02-12 2019-04-19 济南大学 一种基于Co-MOF的多孔复合自支撑催化剂的制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084220B2 (ja) * 2012-07-10 2017-02-22 日本曹達株式会社 有機無機複合体及びその形成用組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107570211A (zh) * 2017-09-05 2018-01-12 济南大学 一种均三嗪基金属有机框架物/Ni复合材料的制备方法和应用
CN109647408A (zh) * 2019-02-12 2019-04-19 济南大学 一种基于Co-MOF的多孔复合自支撑催化剂的制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Metal organic framework nanofibers derived Co3O4-doped carbonnitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution;Xuan Kuang等;《carbon》;20180528;第137卷;433-441 *
三聚氰酸钴配合物的合成、晶体结构及荧光性质;李红芳等;《无机化学学报》;20130210(第02期);355-359 *

Also Published As

Publication number Publication date
CN110038637A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN108080034B (zh) 一种基于镍基三维金属有机框架物催化剂制备方法和应用
Chen et al. Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
CN110743603B (zh) 一种钴铁双金属氮化物复合电催化剂及其制备方法与应用
CN107020075B (zh) 二氧化碳电化学还原单质铋催化剂及其制备和应用
Lv et al. Recent advances in high-efficiency electrocatalytic water splitting systems
CN113718278A (zh) 一种基于过渡金属磷/氮化物异质结催化剂的制备方法及高效电解水析氢研究
CN112663087A (zh) 一种铁、氮掺杂硒化钴电催化剂的制备方法及其应用
CN110354890A (zh) 一种基于RuCl3/Cu-MOF复合催化剂的制备方法和应用
CN113637996B (zh) 一种用于电催化还原二氧化碳的铜基纳米材料及其制备方法
CN110965076A (zh) 一种双功能三维分层核壳结构电解水电极的制备方法
CN110038637B (zh) 一种三元纳米复合材料的制备方法和应用
CN111636074A (zh) 一种二氧化碳电化学还原用铜电极的制备及其应用
Li et al. Preparation of a Pb loaded gas diffusion electrode and its application to CO 2 electroreduction
CN107570166B (zh) 一种复合碳和过渡元素氧化物纳米催化剂制备方法和应用
CN111041508A (zh) 四氧化三钴阵列/钛网分解水制氧电极及其制备方法
CN108048860A (zh) 一种NiO/NiS纳米粒子共掺杂碳氮杂化材料制备方法和应用
CN113699549A (zh) 一种钌&锡双金属氧化物电催化材料及其制备方法和应用
CN114289043A (zh) 一种自支撑多孔纳米板钴镍磷化物催化剂制备方法及应用
CN109107609B (zh) 一种葡萄糖酸增强催化活性的mof催化剂的制备方法和应用
CN114855210B (zh) 一种熔融盐法原位合成碳基单原子纳米片及其制备方法和应用
CN111229195A (zh) 一种电还原二氧化碳催化材料及其制备和应用
CN113684499A (zh) 一种高金属负载效率的镍氮共掺杂炭基催化剂的制备方法及其应用
CN110867590A (zh) 一种连续制备高氮摻杂纳米多孔石墨颗粒的方法
CN113078329B (zh) 一种具有中空蛋黄-蛋壳结构的Ni2P/C纳米复合材料制备方法及应用
CN114150344B (zh) 用于分解水的氮化钴/磷化铁自支撑电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220513