CN110036144A - 氮化物半导体基板及其制造方法以及半导体器件 - Google Patents

氮化物半导体基板及其制造方法以及半导体器件 Download PDF

Info

Publication number
CN110036144A
CN110036144A CN201780072551.0A CN201780072551A CN110036144A CN 110036144 A CN110036144 A CN 110036144A CN 201780072551 A CN201780072551 A CN 201780072551A CN 110036144 A CN110036144 A CN 110036144A
Authority
CN
China
Prior art keywords
nitride semiconductor
nitride
base plate
layer
semiconductor base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780072551.0A
Other languages
English (en)
Inventor
藤原康文
朱婉新
小泉淳
布兰登·米切尔
汤姆·格雷戈尔凯维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Publication of CN110036144A publication Critical patent/CN110036144A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/157Doping structures, e.g. doping superlattices, nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10323Aluminium nitride [AlN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10334Indium nitride [InN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供一种氮化物半导体基板的制造技术,其即使在蓝宝石等廉价基材上也能够大面积制造位错密度充分降低的氮化物半导体基板。一种氮化物半导体基板,其中,在基材上形成的氮化物半导体层通过非掺杂氮化物层与添加有稀土元素作为掺杂材料的稀土元素添加氮化物层进行层叠而形成,位错密度为106cm‑2数量级以下。一种氮化物半导体基板的制造方法,其使用有机金属气相外延法,在900~1200℃的温度条件下,不从反应容器取出而通过一连串的形成工序来进行下述工序:使GaN、InN、AlN或这些之中的任意两种以上的混晶在基材上生长而形成非掺杂氮化物层的工序;以及形成添加有稀土元素从而置换Ga、In或Al的稀土元素添加氮化物层的工序。

Description

氮化物半导体基板及其制造方法以及半导体器件
技术领域
本发明涉及表面的位错密度得以降低的氮化物半导体基板及其制造方法、以及使用上述氮化物半导体基板制作的半导体器件。
背景技术
近年来,逐渐开始广泛使用发光二极管(LED:Light Emitting Diode)、激光二极管(LD:Laser Diode)等发光器件。例如,LED以各种显示器件、手机为代表被用于液晶显示器的背光、白色照明等,另一方面,LD作为蓝光光盘用光源而被用于高清影像的录像播放、光通信、CD、DVD等。
此外,最近手机用MMIC(monolithic microwave integrated circuit:单片微波集成电路)、HEMT(High Electron Mobility Transistor:高电子迁移率晶体管)等高频器件、汽车相关领域的变流器用功率晶体管、肖特基势垒二极管(SBD)等高输出器件的用途正在扩大。
构成这些器件的半导体元件使用形成有氮化镓(GaN)等的氮化物半导体层的氮化物半导体基板来制作。作为这种氮化物半导体基板,有从块状单晶氮化物切出并直接制作的氮化物半导体块状基板;使单晶氮化物在蓝宝石等基材上生长后通过去除基材而制作的(模拟)氮化物半导体块状基板;使单晶氮化物在基材上生长并在残留有基材的状态下作为模板而用于制造半导体器件的氮化物半导体基板。
并且可知:对于这种氮化物半导体基板而言,LED的内部量子效率、LD的振荡性能等特性、寿命与氮化物半导体基板的表面的位错密度(TDD:Threading dislocationdensity,螺位错密度)有关,在高品质、长寿命的半导体器件、尤其是上述高频器件、高输出器件中,需要位错密度为106cm-2数量级以下的氮化物半导体基板(非专利文献1)。
像这样,位错密度低的氮化物半导体基板可通过直接制作上述氮化物半导体块状基板的方法来获得,但该工序复杂且耗费巨大的成本,因此,与使用蓝宝石基材制作氮化物半导体基板的情况相比,价格高50~60倍。因此,强烈寻求可使用廉价的蓝宝石基材等廉价地提供低位错密度的氮化物半导体基板的氮化物半导体基板制造技术。
但是已知:通过使用有机金属气相生长法(MOCVD:Metal-organic chemicalvapor deposition)等在蓝宝石等基材上形成氮化物半导体薄膜来制作氮化物半导体基板时,所得氮化物半导体基板的位错密度达到108~1010cm-2数量级,所得氮化物半导体基板得不到所设计的特性和寿命。
作为降低位错密度的方法,可以考虑加厚GaN等氮化物半导体层的厚度,但蓝宝石等基材与GaN等氮化物的热膨胀系数存在差异,因此,在加厚氮化物半导体层的厚度的情况下,存在其与基材的界面发生翘曲的问题。
因而,作为使用蓝宝石等基材来形成位错密度得以降低的氮化物半导体层的方法,提出了:在蓝宝石基材上形成氮化物的缓冲层后,使用非晶质的氧化硅(a-SiO2)形成选择生长(SAG:selective area growth)掩膜,并利用横向外延方法(ELOG:epitaxiallateral overgrowth:外延横向覆盖生长法)在选择生长掩膜上利用外延层将氮化物半导体层的位错密度降低至106~107cm-2数量级(专利文献1、2)。
但是,该方法在形成选择生长掩膜时需要将基材从生长装置取出再进行,工序复杂化而生产效率降低。此外,低位错密度的区域是利用选择生长掩膜的图案而形成的区域,因此,低位错密度的区域散布在基材上而无法实现大面积化,难以实现氮化物半导体基板的大型化。
现有技术文献
非专利文献
非专利文献1:Kazuhito Ban及其他8人、“Internal Quantum Efficiency ofWhole-Composition-Range AlGaN Multiquantum Wells”、Appl.Phys.Express 4(2011)052101
专利文献
专利文献1:日本特开2010-199620号公报
专利文献2:日本特开2015-095585号公报
发明内容
发明要解决的课题
本发明的课题在于,提供即使在蓝宝石等廉价基材上也能够以大面积制造位错密度充分降低的氮化物半导体基板的氮化物半导体基板的制造技术。
用于解决课题的手段
如上所述,为了使用蓝宝石基材制作高性能、长寿命的半导体器件,需要制造表面的位错密度被控制得低的氮化物半导体基板,但凭借ELOG法无法实现大面积化,难以实现氮化物半导体基板的大型化。
本发明人世界率先成功制作出以添加有Eu的GaN(Eu添加GaN层)作为发光层的红色发光二极管,发现:在其过程中,在蓝宝石基材上依次层叠未添加掺杂材料的非掺杂GaN层(ud-GaN层)、作为掺杂材料而添加有Eu的GaN层(Eu添加GaN层)并多层化而得到的氮化物半导体层的位错密度降低。
基于该见解,本发明人考虑如果能够将这种层叠结构应用于氮化物半导体基板,从而能够使位错密度充分降低而制作高性能、长寿命的半导体器件,并进行了各种实验和研究。
其结果获得如下令人惊讶的结果:在采用这种层叠结构的情况下,即使Eu添加GaN层中的Eu添加量为1原子%左右、具体为0.01~2原子%这一也可以说是杂质水平的少量,位错密度也会急剧降低,能够获得适合于制作位错密度为106cm-2数量级以下的高性能、长寿命的半导体器件的低位错密度的氮化物半导体基板。
具体发现:通过制成层叠结构,自蓝宝石基材起的贯穿位错在通过Eu添加GaN层时其方向发生弯曲而不会到达表面,即使是在蓝宝石基材上制作的氮化物半导体基板,但位错密度仍然急剧降低。
并且,针对ud-GaN层与Eu添加GaN层的优选层叠方法,进一步进行实验和研究时,得到以下的见解。
即发现:将层叠次数设为1次时,位错密度与层叠在ud-GaN层上的Eu添加GaN层的厚度的增加成比例地降低,即使总厚薄至3μm以下,也能够提供位错密度充分降低的氮化物半导体基板。
另一方面发现:在将层叠次数设为多次且将氮化物半导体层制成超晶格结构的氮化物半导体层时,即使Eu添加GaN层的厚度为ud-GaN层厚度的1/10左右,位错密度仍然与层叠次数的增加成比例地降低。并且可知:通过制成这种超晶格结构,即使总厚薄至3μm以下,也能够提供位错密度充分降低的氮化物半导体基板。
并且,ud-GaN层与Eu添加GaN层的层叠不同于ELOG法,其可以在蓝宝石基材上的整面进行,因此能够实现氮化物半导体层的大面积化,能够实现氮化物半导体基板的大型化。
需要说明的是,作为自蓝宝石基材起的贯穿位错通过形成这种层叠结构在Eu添加GaN层中发生弯曲而不会到达表面,从而位错密度降低的理由,可如下推测。
即,在Eu添加GaN层中,以置换Ga的形式导入Eu,Eu的原子半径比Ga大约1.5倍,因此,在置换了Ga的Eu的周围产生形变,形成非晶质部分。其结果可推测:贯穿位错等位错不会在Eu添加GaN层中直线地传播,表面的位错密度降低。
在上述记载中,作为氮化物以GaN为例、作为添加元素以Eu为例进行了说明,作为氮化物,即使是GaN之外的AlN、InN等所谓GaN系的氮化物(包含InGaN、AlGaN等混晶),也可同样地处理。并且,作为添加元素,不限定于Eu,只要是统称为Sc、Y和La~Lu的镧系元素的稀土元素,就能够同样地提供位错密度充分降低的氮化物半导体基板。
此外,作为基材,除了蓝宝石之外,也可以使用SiC、Si,此外,还可以将厚度较薄的GaN用作基材。SiC廉价且导热性高、散热性优异,因此,能够廉价地提供适合于制造高功率半导体器件的氮化物半导体基板。并且,Si能够容易地获取大尺寸的基材,因此能够提供大型化的氮化物半导体基板。此外,通过将厚度较薄的GaN用作基材,能够廉价地提供GaN块状基板。
如上那样,根据本技术,在基材上形成有氮化物半导体层的氮化物半导体基板中,通过将氮化物半导体层形成为使用局部形变不同的2个以上氮化物层相互层叠而成的结构,能够使自基材侧起的位错的至少一部分发生弯曲并在到达表面之前消失。其结果,能够提供氮化物半导体层的表面的位错密度降低至适合于制作高性能、长寿命的半导体器件的106cm-2数量级以下的氮化物半导体基板。
此外,通过将基材上形成的氮化物半导体层从基材取下,可以将取下的氮化物半导体层用作氮化物半导体块状基板。
技术方案1~14所述的发明基于上述见解,技术方案1所述的发明是一种氮化物半导体基板,其特征在于,
其是在基材上形成有氮化物半导体层的氮化物半导体基板,
上述氮化物半导体层通过未添加掺杂材料的非掺杂氮化物层与添加有稀土元素作为掺杂材料的稀土元素添加氮化物层进行层叠而形成,
上述氮化物半导体层的表面的位错密度为106cm-2数量级以下。
并且,技术方案2所述的发明是根据技术方案1所述的氮化物半导体基板,其特征在于,
上述氮化物半导体层中的氮化物为GaN、InN、AlN、或者这些之中的任意两种以上的混晶。
此外,技术方案3所述的发明是根据技术方案1或2所述的氮化物半导体基板,其特征在于,上述稀土元素为Eu。
此外,技术方案4所述的发明是根据技术方案3所述的氮化物半导体基板,其特征在于,上述Eu的添加量为0.01~2原子%。
此外,技术方案5所述的发明是根据技术方案1~4中任一项所述的氮化物半导体基板,其特征在于,
上述非掺杂氮化物层与上述稀土元素添加氮化物层的层叠次数为1次,
上述非掺杂氮化物层的厚度为0.1~50nm,
上述稀土元素添加氮化物层的厚度为0.1~2000nm。
此外,技术方案6所述的发明是根据技术方案1~4中任一项所述的氮化物半导体基板,其特征在于,
上述非掺杂氮化物层与上述稀土元素添加氮化物层进行多次层叠,利用超晶格结构而形成有上述氮化物半导体层,
上述非掺杂氮化物层的厚度为0.1~50nm,
上述稀土元素添加氮化物层的厚度为0.1~200nm。
此外,技术方案7所述的发明是根据技术方案6所述的氮化物半导体基板,其特征在于,层叠次数为2~300次。
此外,技术方案8所述的发明是根据技术方案1~7中任一项所述的氮化物半导体基板,其特征在于,总厚为3μm以下。
此外,技术方案9所述的发明是根据技术方案1~8中任一项所述的氮化物半导体基板,其特征在于,上述基材为蓝宝石、SiC、Si、GaN中的任一者。
此外,技术方案10所述的发明是一种氮化物半导体基板,其特征在于,
其为在基材上形成有氮化物半导体层的氮化物半导体基板,
上述氮化物半导体层具有局部形变不同的两个以上氮化物层相互层叠而成的结构,
上述氮化物半导体层的表面的位错密度为106cm-2数量级以下。
此外,技术方案11所述的发明是根据技术方案10所述的氮化物半导体基板,其特征在于,
自基材侧起的位错的至少一部分在上述氮化物半导体层的上述相互层叠而成的结构中发生弯曲,并在到达表面之前消失。
此外,技术方案12所述的发明是根据技术方案10或11所述的氮化物半导体基板,其特征在于,
上述氮化物半导体层从上述基材被取下,并形成为氮化物半导体块状基板。
并且,上述本发明所述的氮化物半导体基板是位错密度充分降低的氮化物半导体基板,因此,不仅可适用于发光器件,还可适用于高频器件、高输出器件。
即,技术方案13所述的发明是一种半导体器件,其特征在于,其使用技术方案1~12中任一项所述的氮化物半导体基板而制作。
此外,技术方案14所述的发明是根据技术方案13所述的半导体器件,其特征在于,其为发光器件、高频器件、高输出器件中的任一者。
上述本发明所述的氮化物半导体基板可通过使用有机金属气相外延法(OMVPE法),在900~1200℃的温度条件下,在过程中不从反应容器中取出而通过一连串的工序使未添加掺杂材料的非掺杂氮化物层与添加有Eu等稀土元素作为掺杂材料的稀土元素添加氮化物层层叠在蓝宝石等基材上来制造。
在氮化物层的生长时,若提高其生长温度,则由贯穿至表面的位错导致的凹坑(孔)变大,无法充分降低位错密度。与此相对,若降低温度,则凹坑变小,能够充分降低位错密度。
因此,在本发明中,将氮化物层的生长温度设定为900~1100℃。通过设为这样的温度条件,能够减小穿过稀土元素添加氮化物层而到达表面的位错所致的凹坑,进而,能够使Eu等稀土元素可靠地置换构成氮化物的Ga、Al、In来进行添加,因此,能够制造使位错密度充分降低的氮化物半导体基板。
并且,非掺杂氮化物层与稀土元素添加氮化物层的形成可以通过在GaN结晶生长时是否添加Eu等来进行,因此,无需从反应容器中取出而能够通过一连串的工序来进行,能够以高生产效率廉价地制造大型化的氮化物半导体基板。
即,技术方案15所述的发明是一种氮化物半导体基板的制造方法,其特征在于,
其为在基材上形成有氮化物半导体层的氮化物半导体基板的制造方法,其具备:
使GaN、InN、AlN或这些之中的任意两种以上的混晶在基材上生长,形成未添加掺杂材料的非掺杂氮化物层的工序;以及
在上述非掺杂氮化物层上将GaN、InN、AlN或这些之中的任意两种以上的混晶作为母体材料,且作为掺杂材料添加稀土元素,从而置换Ga、In或Al,由此形成稀土元素添加氮化物层的工序,
使用有机金属气相外延法,在900~1200℃的温度条件下,不从反应容器取出而通过一连串的形成工序来进行上述两个工序。
并且,技术方案16所述的发明是根据技术方案15所述的氮化物半导体基板的制造方法,其特征在于,
将形成上述非掺杂氮化物层的工序与形成上述稀土元素添加氮化物层的工序相互地反复进行多次。
如上所述,通过反复层叠而制成超晶格结构的氮化物半导体层,即使总厚薄至3μm以下,也能够制造位错密度充分降低的氮化物半导体基板。
此外,技术方案17所述的发明是根据技术方案15或16所述的氮化物半导体基板的制造方法,其特征在于,作为上述稀土元素而使用Eu。
Eu在镧系稀土元素之中也具有适于置换Ga时使周围产生形变而抑制位错传播的原子半径,因此能够有效地降低表面的位错密度。
此外,对于Eu而言,容易获取Eu化合物,因此优选作为掺杂材料。
此外,技术方案18所述的发明是根据技术方案17所述的氮化物半导体基板的制造方法,其特征在于,
利用Eu{N[Si(CH3)3]2}3、Eu(C11H19O2)3、Eu[C5(CH3)4(C3H7)]2中的任一者来供给Eu。
作为具体的Eu源,可列举出例如Eu[C5(CH3)5]2、Eu[C5(CH3)4H]2、Eu{N[Si(CH3)3]2}3、Eu(C5H7O2)3、Eu(C11H19O2)3、Eu[C5(CH3)4(C3H7)]2等,这些之中,Eu{N[Si(CH3)3]2}3、Eu(C11H19O2)3、Eu[C5(CH3)4(C3H7)]2在反应装置内的蒸气压高,因此能够进行有效的添加。
此外,技术方案19所述的发明是根据技术方案15~18中任一项所述的氮化物半导体基板的制造方法,其特征在于,
作为上述基材,使用蓝宝石、SiC、Si、GaN中的任一者。
此外,技术方案20所述的发明是根据技术方案15~19中任一项所述的氮化物半导体基板的制造方法,其特征在于,其还具备:
将形成在基材上的氮化物半导体层从上述基材取下而制成氮化物半导体块状基板的工序。
通过将形成在基材上的氮化物半导体层从基材取下,能够将氮化物半导体层用作氮化物半导体块状基板。
发明的效果
根据本发明,可提供即使在蓝宝石等廉价基材上也能够以大面积制造位错密度充分降低的氮化物半导体基板的氮化物半导体基板的制造技术。
附图说明
图1是示出本发明的一个实施方式所述的氮化物半导体基板的构成的示意图。
图2是本发明的一个实施方式所述的氮化物半导体基板的TEM图像。
图3是本发明的一个实施方式所述的氮化物半导体基板的表面的AFM图像。
图4是本发明的一个实施方式所述的氮化物半导体基板中的Eu添加GaN层的表面的AFM图像。
图5是从特定方向观察本发明的一个实施方式所述的氮化物半导体基板的截面时的TEM图像。
图6是示出本发明的其它实施方式所述的氮化物半导体基板的构成的示意图。
图7是本发明的其它实施方式所述的氮化物半导体基板的表面的AFM图像。
图8是示出本发明的其它实施方式所述的氮化物半导体基板中的层叠次数与位错密度的关系的图。
图9是本发明的其它实施方式所述的氮化物半导体基板的TEM像。
具体实施方式
以下,基于实施方式说明本发明。需要说明的是,在以下记载中,作为基材以蓝宝石为例、作为氮化物半导体层以GaN层为例、作为添加的稀土元素以Eu为例进行说明,但如上所述,并非限定于此。
[1]第一实施方式
在本实施方式中,针对在蓝宝石基材上非掺杂氮化物层(ud-GaN层)和作为稀土元素而添加有Eu的稀土元素添加氮化物层(Eu添加GaN层)各层叠1层而形成了氮化物半导体层的氮化物半导体基板进行说明。
1.氮化物半导体基板的基本构成
首先,针对本实施方式所述的氮化物半导体基板的基本构成进行说明。图1是示出本实施方式所述的氮化物半导体基板的构成的示意图。在图1中,1为氮化物半导体基板、10为蓝宝石基材、20为将ud-GaN层21和Eu添加GaN层22配对而层叠1次的氮化物半导体层。
需要说明的是,本实施方式所述的氮化物半导体基板有时也保持在蓝宝石基材上形成有氮化物半导体层的状态作为模板而用于制造半导体器件,此时,氮化物半导体层作为缓冲(buffer)层而发挥功能,因此,有时也将该氮化物半导体层示作缓冲(buffer)层。
并且,本实施方式中,如图1所示,在蓝宝石基材10与氮化物半导体层20之间预先形成有为了防止由蓝宝石基材10与GaN的晶格常数之差(晶格失配)导致的裂纹发生而以475℃左右进行了低温生长的LT-GaN层30、以及为了增大蓝宝石基材10与氮化物半导体层(缓冲层)20之间的距离而抑制位错影响的ud-GaN层40。
2.氮化物半导体基板的制造方法
接着,针对本实施方式所述的氮化物半导体基板的制造方法,以层叠厚度10nm的ud-GaN层21和厚度300nm的Eu添加GaN层22来制造氮化物半导体基板1为例,进行具体说明。
首先,使用有机金属气相生长法(OMVPE法),在生长温度为475℃、压力为100kPa的条件下,以1.3μm/h的生长速度在蓝宝石基材10上形成厚度约30nm的LT-GaN层30,其后,在生长温度为1150℃、压力为100kPa的条件下,以0.8μm/h的生长速度在LT-GaN层30上形成厚度约2μm的ud-GaN层40。
接着,同样使用OMVPE法,在生长温度为960℃、压力为100kPa的条件下,以0.8μm/h的生长速度在ud-GaN层40上形成厚度300nm的Eu添加GaN层22。
接着,同样地使用OMVPE法,在生长温度为960℃、压力为100kPa的条件下,以0.8μm/h的生长速度在Eu添加GaN层22上形成厚度10nm的ud-GaN层21。像这样,通过将Eu添加GaN层22和ud-GaN层21各层叠1层,从而形成氮化物半导体层20,完成氮化物半导体基板1的制造。
需要说明的是,在上述记载中,作为Ga原料而使用三甲基镓(TMGa),将供给量设为0.55sccm。并且,作为N原料而使用氨(NH3),将供给量设为4.0slm。此外,作为Eu有机原料而使用通过载气(氢气:H2)进行了鼓泡的Eu[C5(CH3)4(C3H7)]2,将供给量设为1.5slm(供给温度:115℃)。
此时,通过将OMVPE装置的配管阀门等由通常规格的阀门(耐热温度为80~100℃)变更为高温特殊规格的阀门,能够将Eu原料的供给温度保持为115~135℃的充分高温,并将充分量的Eu供给至反应管。
并且,在本实施方式中,对于各层的形成而言,在过程中不将试样从反应管取出而按照生长不中断的方式以一连串的工序来进行。
3.位错密度的评价
(1)基于TEM图像的评价
针对如上得到的氮化物半导体基板的表面的位错密度,首先使用透射型电子显微镜(TEM)观察截面,并针对位错密度的降低效果进行评价。
图2是氮化物半导体基板的TEM图像。由图2可知:在该氮化物半导体基板中,在最下层的蓝宝石基材上形成的ud-GaN层中产生的位错朝向表面传播。但是,在这些位错之中,对于右侧的被深色单点划线包围成圆形的部分而言位错到达表面,但对于左侧的被浅色单点划线包围成圆形的部分而言位错在到达表面之前在层叠有ud-GaN层和Eu添加GaN层的氮化物半导体层(缓冲层)内消失。由该结果可以确认:根据本实施方式,在氮化物半导体基板中能够降低位错密度。
(2)基于AFM图像的评价
接着,利用原子力显微镜(AFM)观察在氮化物半导体层(缓冲层)的形成前后出现于表面的位错状况,并针对位错密度的降低效果进行评价。需要说明的是,观察在1μm见方的相同部位进行。
图3为氮化物半导体基板的表面的AFM图像,(a)表示形成氮化物半导体层(缓冲层)前的ud-GaN层的表面,(b)表示形成氮化物半导体层(缓冲层)后的氮化物半导体层(缓冲层)的表面。
如图3(a)所示,在ud-GaN层的表面处,被圆包围的多个部位存在起因于位错的凹坑,其直径也大。与此相对,在氮化物半导体层(缓冲层)的表面处,如图3(b)所示,被单点划线的圆包围的广大部位仅存在少量的凹坑,其直径也变小。
由该结果可以确认:与上述同样地,根据本实施方式,在氮化物半导体基板中能够降低位错密度。需要说明的是,作为凹坑的直径变小的理由,可认为这是因为GaN层中形成的凹坑的直径与其生长温度有关,通过以960℃的低温进行成为上层的Eu添加GaN层的生长,从而使凹坑的直径变小。并且,若凹坑的直径变小而填满凹坑,则位错密度进一步降低。
具体测定位错密度时,图3(a)中为108~109数量级,与此相对,图3(b)中降低至106数量级。
(3)Eu添加GaN层的厚度与位错密度的关系
本发明人为了进一步针对Eu添加GaN层的厚度与位错密度的关系进行评价,与上述同样地,使Eu添加GaN层在厚度10nm的ud-GaN层上上生长至厚度900nm为止,并评价厚度对位错密度造成何种影响。
具体而言,在Eu添加GaN层的厚度达到100nm、300nm、900nm的时刻,与上述同样地利用AFM观察出现于表面的位错的状况。
图4是各种厚度的Eu添加GaN层的表面的AFM图像,(a)为厚度100nm时的结果、(b)为厚度300nm时的结果、(c)为厚度900nm时的结果。
由图4可知:随着Eu添加GaN层的厚度增加,如被单点划线的圆包围所示那样,凹坑减少,在厚度900nm时基本消失。
具体经测定位错密度可以确认:图4(a)为108数量级、图4(b)为107数量级、图4(c)为106数量级,随着厚度的增加,位错密度急剧降低。
(4)本实施方式中的位错密度的传播
此处,针对本实施方式中的位错密度的传播,使用图5进行说明。需要说明的是,图5是针对如上制作的氮化物半导体基板的截面,从特定的方向、具体为朝上g=[002]和g=[110]方向进行观察的TEM图像,分别上下配置并示出。
图5中,g=[002]方向是决定螺位错(Screw dislocation的方向,g=[110]方向是决定刃位错(edge dislocation)的方向。但是,由图5可知:除了这些位错之外,在g=[002]方向和g=[110]方向两者之中,若干的位错以混合位错(Mix dislocation)的形式显现,这些混合位错的生长、消失受到氮化物半导体层(缓冲层)的支配。
具体而言,图5中,混合位错向氮化物半导体层(缓冲层)的Eu添加GaN层传播时,首先,螺位错收敛而消失,其后,刃位错的矢量(edge vector)收敛,在被单点划线的中空椭圆包围的部位,两个混合位错未到达表面而消失。
4.本实施方式的效果
如上所述,在本实施方式中,通过在廉价的蓝宝石基材上以适当的厚度将ud-GaN层和Eu添加GaN层进行1次层叠这一简便的方法,能够获得106cm-2数量级以下这一位错密度充分低的氮化物半导体基板,因此,可适宜地满足廉价提供高性能、长寿命的半导体器件这一近年来的需求。
[2]第二实施方式
在上述第一实施方式中,能够配合着在ud-GaN层上层叠的Eu添加GaN层的厚度的增加而降低位错密度,但Eu添加GaN层变得过厚时,作为基材的蓝宝石与氮化物半导体层的GaN的热膨胀系数存在差异,因此,在蓝宝石与氮化物半导体层的界面有可能产生翘曲而无法用作氮化物半导体基板。
因而,本实施方式中,在蓝宝石基材上将相互层叠ud-GaN层和Eu添加GaN层这一操作反复多次,层叠多对ud-GaN层和Eu添加GaN层而形成超晶格结构的氮化物半导体层,由此制造即使薄也可充分降低位错密度的氮化物半导体基板。
1.氮化物半导体基板的基本构成
首先,针对本实施方式所述的氮化物半导体基板的基本构成进行说明。图6是示出本实施方式所述的氮化物半导体基板的构成的示意图。需要说明的是,图6中的符号除了氮化物半导体基板为2之外,与图1相同。由图6可知:在本实施方式中,氮化物半导体层20多次相互层叠Eu添加GaN层22和ud-GaN层21,此外,从抑制Eu添加GaN层22的氧化的观点出发,除了在最表层形成有ud-GaN层21这一点之外,呈现与第一实施方式所述的氮化物半导体基板相同的构成。
2.氮化物半导体基板的制造方法
并且,针对本实施方式所述的氮化物半导体基板2的制造方法,一边反复进行ud-GaN层21和Eu添加GaN层22的形成,一边层叠多对ud-GaN层21和Eu添加GaN层22,除此之外,与第一实施方式所述的氮化物半导体基板的制造方法相同。需要说明的是,在本实施方式中,对于各层的形成而言,在过程中不将试样从反应管取出而按照生长不中断的方式以一连串的工序来进行。
3.位错密度的评价
(1)基于AFM图像的评价
针对使用上述氮化物半导体基板的制造方法将厚度10nm的ud-GaN层21和厚度1nm的Eu添加GaN层22相互地层叠40次(40对)而制作的氮化物半导体基板2的位错密度,与第一实施方式同样地基于AFM图像来评价位错密度的降低效果。
图7是氮化物半导体基板的表面的AFM图像。将该图7与使厚度900nm的Eu添加GaN层层叠1次而得的氮化物半导体基板的表面的AFM图像、即图4(c)进行比较时可知:即使总厚480nm(包含最表层的ud-GaN层)与图4(c)相比为约一半的厚度,但位错密度进一步降低。
由该结果可以确认:根据本实施方式,通过层叠多次而制成超晶格结构的氮化物半导体层,在各个Eu添加GaN层中,位错发生弯曲,即使总厚较薄也可急剧降低位错密度。
(2)对数(层叠次数)对位错密度降低造成的影响
接着,为了调查对数(层叠次数)对位错密度降低造成的影响,针对使用上述氮化物半导体基板的制造方法,将厚度10nm的ud-GaN层21和厚度3nm的Eu添加GaN层22相互层叠,并将对数(层叠次数)变更为13(实验A)、40(实验B)、70(实验C)的三种形成有氮化物半导体层的氮化物半导体基板2,分别测定位错密度。
将测定结果示于表1且示于图8。需要说明的是,图8中,横轴为对数,纵轴为位错密度(×106cm-2)。此外,在实验B中层叠40对而制作的氮化物半导体基板的截面TEM像示于图9。
[表1]
由表1和图7可知:在对数最少的13对时,位错密度也为106cm-2数量级,随着对数变多,位错密度降低。
并且,图9中存在位错1和位错2这两个位错,但位错1在进入氮化物半导体层(缓冲层)内之后收敛并消失。另一方面,位错2虽未消失,但随着通过配对而使位错的尺寸变小。由该结果观察也可理解为:在表1和图7中,在对数进一步增加至70对的实验C中,位错密度进一步降低。
并且,上述结果满足基于蓝色激光的拾波器、使用Si或SiC等制作立式功率晶体管时所需的位错密度(106cm-2数量级),因此可知:本实施方式所述的氮化物半导体基板即使形成在蓝宝石基材上,仍然能够用于制造用于Blu-Ray的拾波器用蓝色激光器和立式功率晶体管。
此外,由于位错密度随着对数变多而降低,因此,可期待通过进一步增加对数而进一步降低位错密度,能够实现用于Blu-Ray的写入用蓝色激光器所需的104cm-2数量级。
以上,根据本发明,如第一实施方式和第二实施方式所示那样,可提供能够使用廉价的蓝宝石基材等来制造高品质的氮化物半导体的氮化物半导体基板。此外,由于能够在基材整面形成氮化物层,因此能够实现大面积化且实用性优异。
并且,通过从上述氮化物半导体基板去除基材,也能够制成氮化物半导体块状基板,因此,作为半导体器件用的氮化物半导体基板,存在利用进一步扩展的可能性。
以上,基于实施方式对本发明进行了说明,但本发明不限定于上述实施方式。可以在与本发明相同和等同的范围内对上述实施方式施加各种变更。
附图标记说明
1、2 氮化物半导体基板
10 蓝宝石基材
20 氮化物半导体层(缓冲层)
21 ud-GaN层
22 Eu添加GaN层
30 LT-GaN层
40 ud-GaN层

Claims (20)

1.一种氮化物半导体基板,其特征在于,其是在基材上形成有氮化物半导体层的氮化物半导体基板,
所述氮化物半导体层通过未添加掺杂材料的非掺杂氮化物层与添加有稀土元素作为掺杂材料的稀土元素添加氮化物层进行层叠而形成,
所述氮化物半导体层的表面的位错密度为106cm-2数量级以下。
2.根据权利要求1所述的氮化物半导体基板,其特征在于,所述氮化物半导体层中的氮化物为GaN、InN、AlN、或者这些之中的任意两种以上的混晶。
3.根据权利要求1或2所述的氮化物半导体基板,其特征在于,所述稀土元素为Eu。
4.根据权利要求3所述的氮化物半导体基板,其特征在于,所述Eu的添加量为0.01原子%~2原子%。
5.根据权利要求1~4中任一项所述的氮化物半导体基板,其特征在于,所述非掺杂氮化物层与所述稀土元素添加氮化物层的层叠次数为1次,
所述非掺杂氮化物层的厚度为0.1nm~50nm,
所述稀土元素添加氮化物层的厚度为0.1nm~2000nm。
6.根据权利要求1~4中任一项所述的氮化物半导体基板,其特征在于,所述非掺杂氮化物层与所述稀土元素添加氮化物层进行多次层叠,利用超晶格结构而形成有所述氮化物半导体层,
所述非掺杂氮化物层的厚度为0.1nm~50nm,
所述稀土元素添加氮化物层的厚度为0.1nm~200nm。
7.根据权利要求6所述的氮化物半导体基板,其特征在于,层叠次数为2次~300次。
8.根据权利要求1~7中任一项所述的氮化物半导体基板,其特征在于,总厚为3μm以下。
9.根据权利要求1~8中任一项所述的氮化物半导体基板,其特征在于,所述基材为蓝宝石、SiC、Si、GaN中的任一者。
10.一种氮化物半导体基板,其特征在于,其为在基材上形成有氮化物半导体层的氮化物半导体基板,
所述氮化物半导体层具有局部形变不同的两个以上氮化物层相互层叠而成的结构,
所述氮化物半导体层的表面的位错密度为106cm-2数量级以下。
11.根据权利要求10所述的氮化物半导体基板,其特征在于,自基材侧起的位错的至少一部分在所述氮化物半导体层的所述相互层叠而成的结构中发生弯曲,并在到达表面之前消失。
12.根据权利要求10或11所述的氮化物半导体基板,其特征在于,所述氮化物半导体层从所述基材被取下,并形成为氮化物半导体块状基板。
13.一种半导体器件,其特征在于,其使用权利要求1~12中任一项所述的氮化物半导体基板而制作。
14.根据权利要求13所述的半导体器件,其特征在于,其为发光器件、高频器件、高输出器件中的任一者。
15.一种氮化物半导体基板的制造方法,其特征在于,其为在基材上形成有氮化物半导体层的氮化物半导体基板的制造方法,其具备:
使GaN、InN、AlN或这些之中的任意两种以上的混晶在基材上生长,形成未添加掺杂材料的非掺杂氮化物层的工序;以及
在所述非掺杂氮化物层上将GaN、InN、AlN或这些之中的任意两种以上的混晶作为母体材料,且作为掺杂材料添加稀土元素,从而置换Ga、In或Al,由此形成稀土元素添加氮化物层的工序,
使用有机金属气相外延法,在900~1200℃的温度条件下,不从反应容器取出而通过一连串的形成工序来进行所述两个工序。
16.根据权利要求15所述的氮化物半导体基板的制造方法,其特征在于,将形成所述非掺杂氮化物层的工序和形成所述稀土元素添加氮化物层的工序相互地反复进行多次。
17.根据权利要求15或16所述的氮化物半导体基板的制造方法,其特征在于,作为所述稀土元素使用Eu。
18.根据权利要求17所述的氮化物半导体基板的制造方法,其特征在于,利用Eu{N[Si(CH3)3]2}3、Eu(C11H19O2)3、Eu[C5(CH3)4(C3H7)]2中的任一者来供给Eu。
19.根据权利要求15~18中任一项所述的氮化物半导体基板的制造方法,其特征在于,作为所述基材,使用蓝宝石、SiC、Si、GaN中的任一者。
20.根据权利要求15~19中任一项所述的氮化物半导体基板的制造方法,其特征在于,其还具备:将形成在基材上的氮化物半导体层从所述基材取下而制成氮化物半导体块状基板的工序。
CN201780072551.0A 2016-11-25 2017-11-20 氮化物半导体基板及其制造方法以及半导体器件 Pending CN110036144A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016229410 2016-11-25
JP2016-229410 2016-11-25
PCT/JP2017/041686 WO2018097102A1 (ja) 2016-11-25 2017-11-20 窒化物半導体基板とその製造方法および半導体デバイス

Publications (1)

Publication Number Publication Date
CN110036144A true CN110036144A (zh) 2019-07-19

Family

ID=62195138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780072551.0A Pending CN110036144A (zh) 2016-11-25 2017-11-20 氮化物半导体基板及其制造方法以及半导体器件

Country Status (6)

Country Link
US (1) US11133435B2 (zh)
EP (1) EP3546622A4 (zh)
JP (1) JP6876337B2 (zh)
KR (1) KR20190078654A (zh)
CN (1) CN110036144A (zh)
WO (1) WO2018097102A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651092A (zh) * 2019-11-21 2022-06-21 日本碍子株式会社 13族元素氮化物结晶层、自立基板及功能元件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716986B (zh) * 2018-09-03 2021-01-21 國立大學法人大阪大學 氮化物半導體裝置與其基板及添加稀土類元素之氮化物層的形成方法,以及紅色發光裝置
JPWO2021044824A1 (zh) * 2019-09-03 2021-03-11
EP4112788A4 (en) * 2020-02-27 2024-04-17 Mie University NITRIDE SEMICONDUCTOR SUBSTRATE, SEMICONDUCTOR ELEMENT AND METHOD FOR PRODUCING A NITRIDE SEMICONDUCTOR SUBSTRATE
CN114242851A (zh) * 2021-12-09 2022-03-25 广东省科学院半导体研究所 一种半导体器件及其制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1623220A (zh) * 2002-02-27 2005-06-01 株式会社日矿材料 晶体的制造方法
CN1962932A (zh) * 2006-11-30 2007-05-16 武汉大学 一种用于制备稀土掺杂氮化镓发光薄膜的方法和装置
CN101035933A (zh) * 2004-08-06 2007-09-12 三菱化学株式会社 含有Ga的氮化物半导体单晶、其制造方法以及使用该结晶的基片和器件
CN101101947A (zh) * 2007-07-05 2008-01-09 武汉大学 一种电致发光二极管的制备方法
CN101336314A (zh) * 2005-12-15 2008-12-31 卢米洛格股份有限公司 低位错密度GaN的生长工艺
JP2009212308A (ja) * 2008-03-04 2009-09-17 Sumitomo Electric Ind Ltd 発光ダイオード
CN101775658A (zh) * 2009-12-30 2010-07-14 苏州纳维科技有限公司 一种掺杂稀土元素的化合物半导体材料及其生长方法
CN102154704A (zh) * 2010-02-12 2011-08-17 日立电线株式会社 氮化物半导体晶体、氮化物半导体自支撑衬底的制造方法以及氮化物半导体器件
CN102244171A (zh) * 2011-06-20 2011-11-16 复旦大学 一种无荧光粉高显色性能白光led芯片

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560296B2 (en) 2000-07-07 2009-07-14 Lumilog Process for producing an epitalixal layer of galium nitride
JP2005298291A (ja) * 2004-04-14 2005-10-27 Toyoda Gosei Co Ltd 半導体バルク結晶の製造方法
EP2221855A4 (en) * 2007-11-21 2013-08-07 Mitsubishi Chem Corp NITRIDE SEMICONDUCTOR AND METHOD FOR GROWING NITRIDE SEMICONDUCTOR CRYSTAL
WO2010128643A1 (ja) * 2009-05-07 2010-11-11 国立大学法人大阪大学 赤色発光半導体素子および赤色発光半導体素子の製造方法
JP5367637B2 (ja) 2010-05-24 2013-12-11 株式会社東芝 半導体素子
JP2012232884A (ja) * 2011-04-19 2012-11-29 Hitachi Cable Ltd 窒化物半導体基板及びその製造方法並びにそれを用いた素子
JP2015095585A (ja) 2013-11-13 2015-05-18 古河機械金属株式会社 半導体デバイスの製造方法
JP2015151291A (ja) * 2014-02-13 2015-08-24 日立金属株式会社 窒化物半導体自立基板及びその製造方法並びに半導体デバイス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1623220A (zh) * 2002-02-27 2005-06-01 株式会社日矿材料 晶体的制造方法
CN101035933A (zh) * 2004-08-06 2007-09-12 三菱化学株式会社 含有Ga的氮化物半导体单晶、其制造方法以及使用该结晶的基片和器件
CN101336314A (zh) * 2005-12-15 2008-12-31 卢米洛格股份有限公司 低位错密度GaN的生长工艺
CN1962932A (zh) * 2006-11-30 2007-05-16 武汉大学 一种用于制备稀土掺杂氮化镓发光薄膜的方法和装置
CN101101947A (zh) * 2007-07-05 2008-01-09 武汉大学 一种电致发光二极管的制备方法
JP2009212308A (ja) * 2008-03-04 2009-09-17 Sumitomo Electric Ind Ltd 発光ダイオード
CN101775658A (zh) * 2009-12-30 2010-07-14 苏州纳维科技有限公司 一种掺杂稀土元素的化合物半导体材料及其生长方法
CN102154704A (zh) * 2010-02-12 2011-08-17 日立电线株式会社 氮化物半导体晶体、氮化物半导体自支撑衬底的制造方法以及氮化物半导体器件
CN102244171A (zh) * 2011-06-20 2011-11-16 复旦大学 一种无荧光粉高显色性能白光led芯片

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. MITCHELL,ET AL.: "Utilization of native oxygen in Eu(RE)-doped GaN for enabling device compatibility in optoelectronic applications", 《SCIENTIFIC REPORTS》 *
SITI NOORAYA MOHD TAWI,ET AL.: "Synthesis and Characterization of Gd-doped InGaN Thin Films and Superlattice Structure", 《NANOELECTRONICS CONFERENCE(INEC)》 *
ZHIQIANG LI,ET AL.: "Substrate roughness dependence of structural and optical properties of Eu-doped GaN grown by gas source molecular beam epitaxy", 《JOURNAL OF CRYSTAL GROWTH》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651092A (zh) * 2019-11-21 2022-06-21 日本碍子株式会社 13族元素氮化物结晶层、自立基板及功能元件

Also Published As

Publication number Publication date
US20190280156A1 (en) 2019-09-12
KR20190078654A (ko) 2019-07-04
EP3546622A1 (en) 2019-10-02
WO2018097102A1 (ja) 2018-05-31
JPWO2018097102A1 (ja) 2019-10-17
US11133435B2 (en) 2021-09-28
JP6876337B2 (ja) 2021-05-26
EP3546622A4 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
CN110036144A (zh) 氮化物半导体基板及其制造方法以及半导体器件
JP3786544B2 (ja) 窒化物半導体素子の製造方法及びかかる方法により製造された素子
EP2538434B1 (en) Epitaxial substrate and method for producing same
US8410552B2 (en) Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
TW201732871A (zh) 生長在矽基板上的具有增強壓應力的ⅲ族氮化物結構
JP2014099623A (ja) 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の製造方法
US8378386B2 (en) Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
US9673284B2 (en) Nitride semiconductor device, nitride semiconductor wafer, and method for forming nitride semiconductor layer
CN102859653A (zh) 外延基板以及外延基板的制造方法
US12074254B2 (en) Nitride semiconductor device and substrate thereof, method for forming rare earth element-added nitride layer, and red-light emitting device and method for manufacturing the same
KR20130112868A (ko) 반도체 소자용 에피택셜 기판, 반도체 소자용 에피택셜 기판의 제조방법, 및 반도체 소자
CN100501951C (zh) 场效应晶体管、半导体器件、其制造方法和半导体晶体生长方法
JP2006324512A (ja) 窒化物半導体薄膜およびその製造方法
US6706620B2 (en) Method for fabricating a nitride film
KR102091516B1 (ko) 질화물 반도체 소자 및 그 제조 방법
JP2014192246A (ja) 半導体基板およびそれを用いた半導体素子
CN112447841B (zh) 一种高电子迁移率晶体管及其制备方法
Li Challenge of III-V Materials Integration with Si Microelectronics
JP2005045153A (ja) 窒化物半導体の製造方法及び半導体ウエハ並びに半導体デバイス
KR20070076829A (ko) 질화물계 화합물 반도체의 성장방법
CN113539786A (zh) 硅基氮化镓外延结构及其制备方法
KR101660735B1 (ko) 질화물 반도체 박막 성장 방법
Wan Heteroepitaxy of wide band gap semiconductors on silicon substrates
Zhang MOCVD growth of GaN on 200mm Si and addressing foundry compatibility issues
LI MOCVD GROWTH OF GAN ON 200MM SI AND ADDRESSING FOUNDRY COMPATIBILITY ISSUES

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190719

WD01 Invention patent application deemed withdrawn after publication