CN109999897A - 一种在无钠体系下一步合成Cu-SSZ-13的方法 - Google Patents

一种在无钠体系下一步合成Cu-SSZ-13的方法 Download PDF

Info

Publication number
CN109999897A
CN109999897A CN201910218619.2A CN201910218619A CN109999897A CN 109999897 A CN109999897 A CN 109999897A CN 201910218619 A CN201910218619 A CN 201910218619A CN 109999897 A CN109999897 A CN 109999897A
Authority
CN
China
Prior art keywords
ssz
copper
free system
next step
copper ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910218619.2A
Other languages
English (en)
Inventor
凌丽霞
韩敏
冯阳
闵令飞
李宁
李锦源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910218619.2A priority Critical patent/CN109999897A/zh
Publication of CN109999897A publication Critical patent/CN109999897A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及分子筛合成技术领域,公开了一种在无钠体系下一步合成Cu‑SSZ‑13的方法;通过用铝源、硅源、铜氨络合物、铜离子负载量调节剂制成初始凝胶;再将初始凝胶晶化后经过滤、洗涤、干燥、焙烧后得到Cu‑SSZ‑13分子筛;本发明中未使用常规氢氧化钠作为碱源且其他原料钠含量极低,保证了在无钠体系下合成Cu‑SSZ‑13分子筛,有利于铜离子负载及提高目标产物中铜离子的稳定性;铜离子负载量调节剂的加入,在一定范围内自由调节铜离子的负载量,满足不同反应工艺条件要求;本发明操作简单,避免了多次离子交换及煅烧工艺,使传统工艺流程大大简化,节能环保,有效降低了生产成本,具有巨大的工业应用前景。

Description

一种在无钠体系下一步合成Cu-SSZ-13的方法
技术领域
本发明涉及分子筛合成技术领域,具体为一种在无钠体系下一步合成Cu-SSZ-13的方法。
背景技术
1985年,美国雪弗龙(Cheron)石油公司的Zones在专利USP4544538中首次报道合成了具有CHA构型的SSZ-13分子筛,按照沸石孔道大小划分,属于微孔沸石。研究发现,SSZ-13分子筛孔道结构有序,比表面积高,具有离子交换性、酸性可调性,目前工业应用比较成熟的是作为汽车尾气净化催化剂(Cu-SSZ-13)载体用于NH3-SCR技术领域。
目前制备Cu-SSZ-13分子筛包含两种技术路线:一种是离子交换法,即先将制备的Na-SSZ-13分子筛铵交换制备H-SSZ-13分子筛,再通过Cu离子交换后制备Cu-SSZ-13分子筛;一种是采用新型的有机铜胺络合物设计合成Cu-SSZ-13 分子筛(CN101973652A)。从两种技术路线来看:前者引入大量碱金属离子,而碱金属含量过高会导致催化剂中Cu物种稳定性下降,从而降低催化剂水热稳定性,为了降低碱金属含量及提高铜离子的负载量,不得不进行多次的焙烧及铵交换工艺,步骤繁琐,无形当中使催化剂成本过高;后者简化了制备工艺,在合成成本上具有显著优势,但在合成过程中引入了大量的有机铜胺络合物,造成催化剂中活性组分铜含量过高,加剧了副反应(氨气氧化反应),而且加剧了铝酸铜的形成,进一步造成了分子筛骨架坍塌。尽管如此,鉴于新型有机铜胺络合物可以一步合成Cu-SSZ-13分子筛催化剂的显著简化工艺优势,研究者对其的改进在持续进行。
专利CN105251528公开了一种以四乙基氢氧化铵和铜胺络合物作为混合模板一步合成Cu-SSZ-13分子筛催化剂,陈佳炜等,原位合成的Cu-SSZ-13催化剂:结晶时间对NH3-SCR性能的影响,文章(《无机化学学报》2018,34(12):2135-2142)对原位合成Cu-SSZ-13催化剂的晶化时间因素进行了详细考察,这些专利和文章无一例外地采用了氢氧化钠作为碱源,不可避免地导致最终Cu-SSZ-13催化剂碱金属含量过高,催化剂中Cu物种稳定性下降,同时为了降低最终催化剂的碱金属含量,不得不进行离子交换,致使催化剂制备工艺繁琐。
专利号:CN 109174171 A公开了一种快速制备Cu-SSZ-13整体式催化剂的浸渍-涂覆法及该催化剂的应用,是利用浸渍法将SSZ-13分子筛与Cu盐前驱体混合,随后配置成浆料,涂覆到蜂窝载体或壁流式过滤器上,在含氧气氛下焙烧,焙烧过程中同时实现催化剂的活化和催化剂涂层的附着。该篇专利是将已有的SSZ-13分子筛粉体作为原料,与铜盐混合、涂覆、焙烧,该技术属催化剂后改性制剂技术,仍然难以解决前面所述的SSZ-13分子筛原粉的制备过程中离子交换、焙烧等工艺繁杂的问题。
专利号CN 109179447 A公开了一种高铜含量的介孔Cu-ZSM-5分子筛的制备方法,该专利是制备一种骨架含有铜的介孔Cu-ZSM-5分子筛,合成中所使用的铝源可为偏铝酸钠,碱源可为氢氧化钠,均为含Na化合物原料,同样难以解决最终催化剂制备中存在的离子交换、焙烧等工艺繁杂难题。专利利用硝酸铜、四乙烯五胺(TEPA)有机胺所形成的有机铜胺络合物,最终在产物中引入铜物种。
发明内容
本发明克服现有技术存在的不足,提供了一种在无钠体系下一步合成Cu-SSZ-13分子筛的方法,该方法首次提出铜离子和氨水形成的无机铜氨络合物可以一步合成Cu-SSZ-13分子筛,大大简化了合成工艺,同时采用铜离子负载量调节剂,实现了在一定范围内对最终Cu-SSZ-13分子筛中铜负载量的自由调变。
本发明是通过如下技术方案实现的。
一种在无钠体系下一步合成Cu-SSZ-13的方法,其特征在于,包括以下步骤:
a)制备初始凝胶:依次将去离子水、铝源和模板剂混合均匀,再依次加入铜氨络合物、铜离子负载量调节剂,搅拌均匀后,最后加入硅源,再次搅拌均匀后得初始凝胶;其中,铝源以Al2O3计、模板剂以R计、铜氨络合物以Cu-NH3计、铜离子负载量调节剂以A计、硅源以SiO2计,原料中摩尔比n(SiO2):n(Al2O3):n(Cu-NH3):n(A):n(R):n(H2O)=1:0.05~0.10:0.02~0.12:0.001~0.01:0. 1~0.4:30~50。
b)晶化焙烧:将所述初始凝胶转入不锈钢高压晶化釜中,于150℃~200℃下晶化1d~4d,晶化结束后,固体与母液分离,经去离子水洗涤至中性,干燥后于550℃~650℃下焙烧3~8h,得Cu-SSZ-13分子筛。
优选的,所述铝源为异丙醇铝、三乙基铝、三异丁基铝中的一种或任意组合。
优选的,所述模板剂为N,N,N-三甲基-1-金刚烷基氢氧化铵。
优选的,所述铜离子负载量调节剂为乙醇。铜离子负载量调节剂乙醇的加入,可以改变本发明中铜氨络合物的溶解度,通过调节乙醇的加入量,进而调控铜氨盐晶体的析出量,最终实现在一定范围内自由调变SSZ-13分子筛中铜离子的负载量。
优选的,所述硅源为正硅酸乙酯、铵稳定型硅溶胶中的一种或两种的混合物。
优选的,所述的铜氨络合物的制备方法为向铜盐溶液中逐渐加入氨水,搅拌形成蓝色沉淀,继续加入氨水,搅拌直至沉淀完全溶解为蓝色透明溶液,得铜氨络合物,最终铜盐和氨水的摩尔比为Cu2+:NH3•H2O=1.0:4.0~6.0。
向铜盐溶液中滴加氨水,刚开始形成蓝色沉淀物Cu(OH)2,随着氨水量的增加,蓝色沉淀物溶解为深蓝色铜氨络合物[Cu(NH3)4]2+的盐溶液,该铜氨络合物较为稳定,在提供铜源的基础上,引入的氨水为无钠无机碱源,本发明首次证实采用该铜氨络合物可以一步合成Cu-SSZ-13分子筛,简化了合成工艺,拓宽了其合成路径。
更进一步,所述铜盐为硫酸铜、硝酸铜、氯化铜、乙酸铜和氢氧化铜中的一种或任意组合。
本发明全部采用无钠的原料,且采用无机氨水与铜盐形成无机铜氨络合物而将铜稳定地引入Cu-SSZ-13分子筛骨架中。负载量调节剂乙醇的加入,可以改变本发明中铜氨络合物的溶解度,通过调节乙醇的加入量,进而调控铜氨盐晶体的析出量,最终实现在一定范围内自由调变SSZ-13分子筛中铜离子的负载量。
本发明相对于现有技术所产生的有益效果为。
本发明中未使用常规氢氧化钠作为碱源且其他原料钠含量极低,保证了在无钠体系下合成Cu-SSZ-13分子筛,同时无钠体系有利于铜离子的负载及提高Cu-SSZ-13分子筛中铜离子的稳定性;铜离子负载量调节剂的加入,可以在一定范围内自由调节铜离子的负载量,以满足不同反应工艺条件要求;本发明可一步合成Cu-SSZ-13分子筛,操作简单,避免了多次离子交换及煅烧工艺,使得传统工艺流程大大简化,节能环保,有效降低了SSZ-13分子筛的生产成本,具有巨大的工业应用前景。
(1)首次提出铜离子和氨水形成的铜氨络合物可以一步合成Cu-SSZ-13分子筛,简化了合成工艺,拓宽了其合成路径。
(2)在无钠体系下,有利于铜离子的负载及提高了Cu-SSZ-13分子筛中铜离子的稳定性。
(3)铜离子负载量调节剂的加入,可以在一定范围内自由调变铜离子的负载量。
附图说明
图1为实施例1-4样品的XRD谱图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,结合实施例和附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。下面结合实施例及附图详细说明本发明的技术方案,但保护范围不被此限制。
实施例1
铜氨络合物的配置:首先将五水硫酸铜加入10倍计量的去离子水中,搅拌至全部溶解,得硫酸铜水溶液,之后按摩尔比1.0Cu2+:4.0NH3·H2O将氨水(25wt%)逐渐加入到硫酸铜水溶液中,搅拌均匀,得铜氨络合物。
Cu-SSZ-13分子筛的制备:按照合成摩尔配比1.0SiO2:0.05Al2O3:0.05Cu-NH3:0.004C2H5OH:0.2R:30H2O,首先将计量异丙醇铝(Al2O3 24.0wt%)加入到计量去离子水中,快速搅拌10min;加入计量N,N,N-三甲基金刚烷氢氧化铵(TMADaOH 25wt%)中,搅拌至全部溶解,加入计量上述铜氨络合物,快速搅拌10min;最后加入计量铵型硅溶胶(SiO2 25wt%)充分搅拌得初始凝胶。将其密封于200ml带聚四氟乙烯内衬的不锈钢高压晶化釜中,于150℃下晶化4d,晶化釜取出后迅速降温,抽滤得固体产物,并用其离子水洗至中性,干燥后后于550℃下焙烧8h,得Cu-SSZ-13分子筛,样品XRD谱图见图1,经检测,铜的负载量为分子筛催化剂总质量的2.0%。
实施例2
铜氨络合物的配置:首先将三水硝酸铜加入10倍计量的去离子水中,搅拌至全部溶解,得硝酸铜水溶液,之后按摩尔比1.0Cu2+:5.0NH3·H2O将氨水(25wt%)逐渐加入到硝酸铜水溶液中,搅拌均匀,得铜氨络合物。
Cu-SSZ-13分子筛的制备:按照合成摩尔配比1.0SiO2:0.1Al2O3:0.02Cu-NH3:0.001C2H5OH:0.1R:50H2O,首先将计量三异丁基铝(1.0mol/L)加入到计量去离子水中,快速搅拌10min;加入计量N,N,N-三甲基金刚烷氢氧化铵(TMADaOH 25wt%)中,搅拌至全部溶解,加入计量上述铜氨络合物,快速搅拌10min;最后加入计量正硅酸乙酯(SiO2 28.80wt%)充分搅拌得初始凝胶。将其密封于200ml带聚四氟乙烯内衬的不锈钢高压晶化釜中,于200℃下晶化1d,晶化釜取出后迅速降温,抽滤得固体产物,并用其离子水洗至中性,干燥得Cu-SSZ-13分子筛样品,样品XRD谱图见图1。该Cu-SSZ-13在空气气氛中650℃下焙烧3h,经检测,铜的负载量为分子筛催化剂总质量的1.5%。
实施例3
铜氨络合物的配置:首先将一水乙酸铜加入10倍计量的去离子水中,搅拌至全部溶解,得乙酸铜水溶液,之后按摩尔比1.0Cu2+:6.0NH3·H2O将氨水(25wt%)逐渐加入到乙酸铜水溶液中,搅拌均匀,得铜氨络合物。
Cu-SSZ-13分子筛的制备:按照合成摩尔配比1.0SiO2:0.07Al2O3:0.12Cu-NH3:0.01C2H5OH:0.4R:40H2O,首先将计量三乙基铝(1.0mol/L)加入到计量去离子水中,快速搅拌10min;加入计量N,N,N-三甲基金刚烷氢氧化铵(TMADaOH 25wt%)中,搅拌至全部溶解,加入计量上述铜氨络合物,快速搅拌10min;最后加入计量正硅酸乙酯(SiO2 28.80wt%)和铵型硅溶胶(SiO2 25wt%)的混合物,质量比为1:1,充分搅拌得初始凝胶。将其密封于200ml带聚四氟乙烯内衬的不锈钢高压晶化釜中,于170℃下晶化3d,晶化釜取出后迅速降温,抽滤得固体产物,并用其离子水洗至中性,干燥得Cu-SSZ-13分子筛样品,样品XRD谱图见图1。该Cu-SSZ-13在空气气氛中600℃下焙烧6h,经检测,铜的负载量为分子筛催化剂总质量的5.0%。
实施例4
铜氨络合物的配置:首先将二水氯化铜加入10倍计量的去离子水中,搅拌至全部溶解,得乙酸铜水溶液,之后按摩尔比1.0Cu2+:5.0NH3·H2O将氨水(25wt%)逐渐加入到乙酸铜水溶液中,搅拌均匀,得铜氨络合物。
Cu-SSZ-13分子筛的制备:按照合成摩尔配比1.0SiO2:0.08Al2O3:0.07Cu-NH3:0.006C2H5OH:0.3R:45H2O,首先将计量三乙基铝(1.0mol/L)和三异丁基铝(1.0mol/L)按体积比1:1混合均匀,加入到计量去离子水中,快速搅拌10min;加入计量N,N,N-三甲基金刚烷氢氧化铵(TMADaOH 25wt%)中,搅拌至全部溶解,加入计量上述铜氨络合物,快速搅拌10min;最后加入计量正硅酸乙酯(SiO2 28.80wt%)充分搅拌得初始凝胶。将其密封于200ml带聚四氟乙烯内衬的不锈钢高压晶化釜中,于180℃下晶化2.5d,晶化釜取出后迅速降温,抽滤得固体产物,并用其离子水洗至中性,干燥得Cu-SSZ-13分子筛样品,样品XRD谱图见图1。该Cu-SSZ-13在空气气氛中620℃下焙烧5h,经检测,铜的负载量为分子筛催化剂总质量的3.0%。
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。

Claims (7)

1.一种在无钠体系下一步合成Cu-SSZ-13的方法,其特征在于,包括以下步骤:
a)制备初始凝胶:依次将去离子水、铝源和模板剂混合均匀,再依次加入铜氨络合物、铜离子负载量调节剂,搅拌均匀后,最后加入硅源,再次搅拌均匀后得初始凝胶;其中,铝源以Al2O3计、模板剂以R计、铜氨络合物以Cu-NH3计、铜离子负载量调节剂以A计、硅源以SiO2计,原料中摩尔比n(SiO2):n(Al2O3):n(Cu-NH3):n(A):n(R):n(H2O)=1:0.05~0.10:0.02~0.12:0.001~0.01:0. 1~0.4:30~50;
b)晶化焙烧:将所述初始凝胶转入不锈钢高压晶化釜中,于150℃~200℃下晶化1d~4d,晶化结束后,固体与母液分离,经去离子水洗涤至中性,干燥后于550℃~650℃下焙烧3~8h,得Cu-SSZ-13分子筛。
2.根据权利要求1所述的一种在无钠体系下一步合成Cu-SSZ-13的方法,其特征在于,所述铝源为异丙醇铝、三乙基铝、三异丁基铝中的一种或任意组合。
3.根据权利要求1所述的一种在无钠体系下一步合成Cu-SSZ-13的方法,其特征在于,所述模板剂为N,N,N-三甲基-1-金刚烷基氢氧化铵。
4.根据权利要求1所述的一种在无钠体系下一步合成Cu-SSZ-13的方法,其特征在于,所述铜离子负载量调节剂为乙醇。
5.根据权利要求1所述的一种在无钠体系下一步合成Cu-SSZ-13的方法,其特征在于,所述硅源为正硅酸乙酯、铵稳定型硅溶胶中的一种或两种的混合物。
6.根据权利要求1所述的一种在无钠体系下一步合成Cu-SSZ-13的方法,其特征在于,所述的铜氨络合物的制备方法为向铜盐溶液中逐渐加入氨水,搅拌形成蓝色沉淀,继续加入氨水,搅拌直至沉淀完全溶解为蓝色透明溶液,得铜氨络合物,最终铜盐和氨水的摩尔比为Cu2+:NH3•H2O=1.0:4.0~6.0。
7.根据权利要求6所述的一种在无钠体系下一步合成Cu-SSZ-13的方法,其特征在于,所述铜盐为硫酸铜、硝酸铜、氯化铜、乙酸铜和氢氧化铜中的一种或任意组合。
CN201910218619.2A 2019-03-21 2019-03-21 一种在无钠体系下一步合成Cu-SSZ-13的方法 Pending CN109999897A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910218619.2A CN109999897A (zh) 2019-03-21 2019-03-21 一种在无钠体系下一步合成Cu-SSZ-13的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910218619.2A CN109999897A (zh) 2019-03-21 2019-03-21 一种在无钠体系下一步合成Cu-SSZ-13的方法

Publications (1)

Publication Number Publication Date
CN109999897A true CN109999897A (zh) 2019-07-12

Family

ID=67167616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910218619.2A Pending CN109999897A (zh) 2019-03-21 2019-03-21 一种在无钠体系下一步合成Cu-SSZ-13的方法

Country Status (1)

Country Link
CN (1) CN109999897A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759354A (zh) * 2019-11-20 2020-02-07 徐小燕 一种用于吸附脱硫的CuY分子筛的绿色制备方法
CN111099630A (zh) * 2019-12-13 2020-05-05 浙江浙能技术研究院有限公司 一种无钠体系低成本合成ssz-13分子筛的方法
CN113896221A (zh) * 2021-10-28 2022-01-07 中建材蚌埠玻璃工业设计研究院有限公司 一种cigs薄膜电池尾气处理用复合材料及其制备方法
CN114669322A (zh) * 2022-04-01 2022-06-28 淮安六元环新材料有限公司 一种无钠法合成Cu-SSZ-13分子筛催化剂的方法
CN115041224A (zh) * 2022-05-20 2022-09-13 大连理工大学 Cu-ZSM-35分子筛的合成和生物油脂一步法制生物航煤催化剂的制备方法及应用
CN115196651A (zh) * 2021-04-12 2022-10-18 中国科学院大连化学物理研究所 一种无钠Cu-SSZ-13沸石的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099293A (zh) * 2008-05-21 2011-06-15 巴斯夫欧洲公司 直接合成具有CHA结构的含Cu沸石的方法
CN103818927A (zh) * 2014-02-20 2014-05-28 无锡威孚环保催化剂有限公司 一步法合成高水热稳定性含铜cha型分子筛的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099293A (zh) * 2008-05-21 2011-06-15 巴斯夫欧洲公司 直接合成具有CHA结构的含Cu沸石的方法
CN103818927A (zh) * 2014-02-20 2014-05-28 无锡威孚环保催化剂有限公司 一步法合成高水热稳定性含铜cha型分子筛的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘岩峰等编: "《普通化学实验》", 30 September 2014 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759354A (zh) * 2019-11-20 2020-02-07 徐小燕 一种用于吸附脱硫的CuY分子筛的绿色制备方法
CN111099630A (zh) * 2019-12-13 2020-05-05 浙江浙能技术研究院有限公司 一种无钠体系低成本合成ssz-13分子筛的方法
CN115196651A (zh) * 2021-04-12 2022-10-18 中国科学院大连化学物理研究所 一种无钠Cu-SSZ-13沸石的制备方法及其应用
CN115196651B (zh) * 2021-04-12 2024-03-19 中国科学院大连化学物理研究所 一种无钠Cu-SSZ-13沸石的制备方法及其应用
CN113896221A (zh) * 2021-10-28 2022-01-07 中建材蚌埠玻璃工业设计研究院有限公司 一种cigs薄膜电池尾气处理用复合材料及其制备方法
CN113896221B (zh) * 2021-10-28 2023-12-01 中建材玻璃新材料研究院集团有限公司 一种cigs薄膜电池尾气处理用复合材料及其制备方法
CN114669322A (zh) * 2022-04-01 2022-06-28 淮安六元环新材料有限公司 一种无钠法合成Cu-SSZ-13分子筛催化剂的方法
CN115041224A (zh) * 2022-05-20 2022-09-13 大连理工大学 Cu-ZSM-35分子筛的合成和生物油脂一步法制生物航煤催化剂的制备方法及应用
CN115041224B (zh) * 2022-05-20 2023-07-14 大连理工大学 Cu-ZSM-35分子筛的合成和生物油脂一步法制生物航煤催化剂的制备方法及应用

Similar Documents

Publication Publication Date Title
CN109999897A (zh) 一种在无钠体系下一步合成Cu-SSZ-13的方法
CN107029781B (zh) 铁和铈改性β分子筛选择性还原催化剂及制备方法与应用
CN106179472A (zh) 一种Cu-SSZ-13分子筛催化剂的制备方法及其用途
CN108602056A (zh) Cha型沸石材料和使用环烷基-和乙基三甲基铵化合物的组合制备它们的方法
CN107285334A (zh) 一种固相合成aei型分子筛的方法及催化剂
CN104591221B (zh) 一种sapo-34和eu-1复合分子筛及其合成方法
CN109437226A (zh) 一种Cu-SSZ-13分子筛及其制备方法
CN107512728A (zh) 插卡结构多级孔fau型沸石分子筛的制备方法
CN103447069B (zh) 一种包含y型分子筛的催化裂化催化剂及其制备方法
CN102861618A (zh) 一种氧化铝载体的制备方法
CN110407223A (zh) Ssz-13分子筛及制备、scr催化剂及制备
CN102674387B (zh) 一种多级纳米晶堆积结构mfi型分子筛的合成方法
CN105621449B (zh) 一种NaY型分子筛及其制备方法
CN108128784A (zh) Cu-Ce-La-SSZ-13分子筛催化剂的制备方法
CN107344721A (zh) 一种改性y型分子筛及其制备方法和应用
CN106423162A (zh) 作为光催化剂的锡银共掺杂纳米氧化锌及其制备方法
CN104591217B (zh) 一种Beta和ZSM-12复合分子筛及其合成方法
CN104355318A (zh) 一种纳米zsm-5分子筛的合成方法
CN108906035A (zh) 一种具有高稳定性的贵金属介孔二氧化硅催化剂及其合成方法
CN107089668A (zh) 一种含稀土y型分子筛的制备方法
CN104891524B (zh) 一种含稀土杂原子高稳定性介孔分子筛的制备方法
CN104549459A (zh) 一种复合分子筛及其合成方法和应用
CN104591218B (zh) 一种y和zsm-35复合分子筛及其合成方法
WO2024055461A1 (zh) 一种含活性金属的m-cha/m-mor复合分子筛及制备方法
CN107399743B (zh) 一种NaY分子筛的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190712