CN109987607A - 介孔硅/二硅化钴复合微球材料及其制备方法和应用 - Google Patents

介孔硅/二硅化钴复合微球材料及其制备方法和应用 Download PDF

Info

Publication number
CN109987607A
CN109987607A CN201910293821.1A CN201910293821A CN109987607A CN 109987607 A CN109987607 A CN 109987607A CN 201910293821 A CN201910293821 A CN 201910293821A CN 109987607 A CN109987607 A CN 109987607A
Authority
CN
China
Prior art keywords
mesoporous silicon
cobalt disilicide
cobalt
mol
composite microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910293821.1A
Other languages
English (en)
Other versions
CN109987607B (zh
Inventor
黄小华
吴建波
钟文武
申士杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN201910293821.1A priority Critical patent/CN109987607B/zh
Publication of CN109987607A publication Critical patent/CN109987607A/zh
Application granted granted Critical
Publication of CN109987607B publication Critical patent/CN109987607B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种介孔硅/二硅化钴复合微球材料及其制备方法和应用,该方法为:在搅拌条件下,向硝酸钴的乙醇溶液中依次加入氨水和正硅酸乙酯的乙醇溶液制备前驱体,然后采用镁热法还原所得前驱体,最后用盐酸清洗还原产物。所述介孔硅/二硅化钴复合微球用于锂离子电池负极材料时,其二硅化钴组分与介孔结构有利于抑制材料粉化、改善电极反应动力学,有效提高材料的实际容量、循环性能和高倍率性能。

Description

介孔硅/二硅化钴复合微球材料及其制备方法和应用
技术领域
本发明涉及锂离子电池电极材料领域,具体涉及一种介孔硅/二硅化钴复合微球材料及其制备方法和应用。
背景技术
锂离子电池因能量密度高、功率密度大及循环寿命长等优势,已在二次电池领域占据了主导地位,成功应用于便携式电子产品、电动汽车以及电池储能电站等领域。然而,传统的锂离子电池所用的石墨碳负极材料的性能已经达到一个难以突破的瓶颈,严重制约着新能源的发展。研发高比容量、高安全性的替代性负极材料并推动其实际应用已经成为当前研究的重点。
新型的硅基负极材料因其极高的理论容量和低廉的价格而表现出良好的应用前景。但是,硅基负极材料目前还存在实际容量低、循环性能差以及高倍率性能差等缺点。硅是一种导电性较差的半导体材料,它不具备石墨的层状结构,其储锂机理是基于硅与锂之间可逆的合金化/去合金化反应,伴随着300%以上的体积改变,一方面导致电极材料粉化与脱落,造成活性物质的减少,另一方面也导致SEI膜的破裂与再形成,造成锂离子和电解液的持续性消耗,同时也增大电极阻抗。因此,要实现硅基负极材料的实际应用,就必须克服这些缺点,增强电极反应的动力学,提高材料在充放电循环过程中的结构稳定性。
发明内容
本发明提出了一种介孔硅/二硅化钴复合微球材料及其制备方法和应用,所述材料具有比容量高、循环寿命好以及高倍率性能好等优点,所述制备方法简单,成本低廉。
所述介孔硅/二硅化钴复合微球材料的制备方法,其步骤如下:
(1) 在搅拌条件下,往0.05~0.2 mol/L的硝酸钴的乙醇溶液中依次加入4 mol/L的氨水和0.5 mol/L的正硅酸乙酯的乙醇溶液,硝酸钴溶液、氨水和正硅酸乙酯溶液的体积比为1:2:3,在25 oC下反应24~72 h后,离心分离所得沉淀物并用去离子水清洗,烘干后得到前驱体粉末;
(2) 将前驱体粉末与镁粉按1:1的质量比混合均匀,置于氩气气氛中,加热到700 oC使其反应并保温2~6 h,冷却后,将产物用2 mol/L的盐酸清洗,再用去离子水反复清洗,烘干后制得介孔硅/二硅化钴复合微球材料。
所述介孔硅/二硅化钴复合微球材料中,所含硅的质量分数为80%~95%,所含二硅化钴的质量分数为5%~20%,复合微球的直径为0.5~1.0 μm,由宽为40~60 nm的条状纳米颗粒组装而成,其中介孔的尺寸为20~50 nm。
本发明的有益效果在于:
(1) 所述介孔硅/二硅化钴复合微球具有网状介孔的三维结构,由条状纳米颗粒彼此相连组装而成。网状介孔结构可有效解决纳米颗粒团聚问题,有利于充分发挥纳米颗粒优势,增大电化学反应界面,缩短电荷传输距离,提高电化学反应速率;网状介孔结构还为硅与锂合金化过程中的体积膨胀提供了容纳空间,可有效缓冲材料内应力,抑制材料粉化。
(2) 所述介孔硅/二硅化钴复合微球中的二硅化钴组分具有良好的导电性,可有效减轻电极极化;二硅化钴与硅的复合,也有利于提高材料的结构强度。
所述介孔硅/二硅化钴复合微球的上述优势有利于稳定材料结构,增强材料参与电极反应的动力学,从而提升材料的实际可逆容量、循环性能和高倍率性能。
附图说明
为了更清楚地说明本发明实施的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为实施例1中介孔硅/二硅化钴复合微球材料的X射线衍射(XRD)图谱;
图2为实施例1中介孔硅/二硅化钴复合微球材料的电镜照片,其中图2(a)是扫描电镜(SEM)照片,图2(b)是透射电镜(TEM)照片;
图3为实施例1中介孔硅/二硅化钴复合微球材料的循环性能曲线。
具体实施方式
下面通过具体实施例对本发明做出进一步的具体说明,但本发明并不局限于下述实例。
实施例1:
(1) 在搅拌条件下,往10 mL浓度为0.1 mol/L的硝酸钴的乙醇溶液中依次加入20 mL浓度为4 mol/L的氨水溶液和30 mL浓度为0.5 mol/L的正硅酸乙酯的乙醇溶液,在25 oC下反应36 h后,离心分离所得沉淀物并用去离子水清洗,烘干后得到前驱体粉末;
(2) 将前驱体粉末与镁粉按1:1的质量比混合均匀,置于氩气气氛中,加热到700 oC使其反应并保温3 h,冷却后,将产物用2 mol/L的盐酸清洗,再用去离子水反复清洗,烘干后制得介孔硅/二硅化钴复合微球材料。
所得介孔硅/二硅化钴复合微球材料中,硅的质量分数为88%,二硅化钴的质量分数为12%,其XRD图谱如图1所示。复合微球的直径为0.7 μm,由宽为40~60 nm的条状纳米颗粒组装而成,其中介孔的尺寸为20~50 nm,其电镜照片如图2所示。
将该介孔硅/二硅化钴复合微球材料与乙炔黑、聚偏二氟乙烯(PVDF)按80:10:10的质量比混合,再加入N-甲基吡咯烷酮(NMP),搅拌成均匀浆料,涂布在铜箔集流体上,真空烘干后制得工作电极,采用金属锂片为对电极,采用1 mol/L LiPF6的碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/氟代碳酸乙烯酯(FEC)(EC与DMC的体积比为1:1,FEC质量分数为10%)溶液为电解液,采用Celgard2400聚丙烯膜为隔膜,在高纯氩气保护的手套箱中组装成CR2025扣式电池。在25 oC的环境下,在0.02~1.5 V的电压区间内,采用100 mA/g、500 mA/g及1000mA/g等不同电流密度对电池进行恒流充放电测试,测分析材料的可逆容量、循环稳定性和高倍率性能。
本实施例的介孔硅/二硅化钴复合微球材料,其实际容量高,循环稳定性和高倍率稳定性好。材料在100 mA/g电流密度下的首次可逆容量(充电容量)为2250 mAh/g,经100次循环后的容量保持率为77%,如图3所示;材料在500 mA/g和1000 mA/g电流密度下的首次可逆容量分别为,1860 mAh/g和1210 mAh/g。
实施例2:
(1) 在搅拌条件下,往10 mL浓度为0.05 mol/L的硝酸钴的乙醇溶液中依次加入20 mL浓度为4 mol/L的氨水溶液和30 mL浓度为0.5 mol/L的正硅酸乙酯的乙醇溶液,在25 oC下反应36 h后,离心分离所得沉淀物并用去离子水清洗,烘干后得到前驱体粉末;
(2) 将前驱体粉末与镁粉按1:1的质量比混合均匀,置于氩气气氛中,加热到700 oC使其反应并保温3 h,冷却后,将产物用2 mol/L的盐酸清洗,再用去离子水反复清洗,烘干后制得介孔硅/二硅化钴复合微球材料。
所得介孔硅/二硅化钴复合微球材料中,硅的质量分数为93%,二硅化钴的质量分数为7%,复合微球的直径为0.7 μm,由宽为40~60 nm的条状纳米颗粒组装而成,其中介孔的尺寸为20~50 nm。
将该介孔硅/二硅化钴复合微球材料与乙炔黑、聚偏二氟乙烯(PVDF)按80:10:10的质量比混合,再加入N-甲基吡咯烷酮(NMP),搅拌成均匀浆料,涂布在铜箔集流体上,真空烘干后制得工作电极,采用金属锂片为对电极,采用1 mol/L LiPF6的碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/氟代碳酸乙烯酯(FEC)(EC与DMC的体积比为1:1,FEC质量分数为10%)溶液为电解液,采用Celgard2400聚丙烯膜为隔膜,在高纯氩气保护的手套箱中组装成CR2025扣式电池。在25 oC的环境下,在0.02~1.5 V的电压区间内,采用100 mA/g、500 mA/g及1000mA/g等不同电流密度对电池进行恒流充放电测试,测分析材料的可逆容量、循环稳定性和高倍率性能。
本实施例的介孔硅/二硅化钴复合微球材料,其实际容量高,循环稳定性和高倍率稳定性好。材料在100 mA/g电流密度下的首次可逆容量(充电容量)为2310 mAh/g,经100次循环后的容量保持率为72%;材料在500 mA/g和1000 mA/g电流密度下的首次可逆容量分别为,1890 mAh/g和1260 mAh/g。
实施例3:
(1) 在搅拌条件下,往10 mL浓度为0.2 mol/L的硝酸钴的乙醇溶液中依次加入20 mL浓度为4 mol/L的氨水溶液和30 mL浓度为0.5 mol/L的正硅酸乙酯的乙醇溶液,在25 oC下反应48 h后,离心分离所得沉淀物并用去离子水清洗,烘干后得到前驱体粉末;
(2) 将前驱体粉末与镁粉按1:1的质量比混合均匀,置于氩气气氛中,加热到700 oC使其反应并保温5 h,冷却后,将产物用2 mol/L的盐酸清洗,再用去离子水反复清洗,烘干后制得介孔硅/二硅化钴复合微球材料。
所得介孔硅/二硅化钴复合微球材料中,硅的质量分数为80%,二硅化钴的质量分数为20%,复合微球的直径为0.8 μm,由宽为40~60 nm的条状纳米颗粒组装而成,其中介孔的尺寸为20~50 nm。
将该介孔硅/二硅化钴复合微球材料与乙炔黑、聚偏二氟乙烯(PVDF)按80:10:10的质量比混合,再加入N-甲基吡咯烷酮(NMP),搅拌成均匀浆料,涂布在铜箔集流体上,真空烘干后制得工作电极,采用金属锂片为对电极,采用1 mol/L LiPF6的碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/氟代碳酸乙烯酯(FEC)(EC与DMC的体积比为1:1,FEC质量分数为10%)溶液为电解液,采用Celgard2400聚丙烯膜为隔膜,在高纯氩气保护的手套箱中组装成CR2025扣式电池。在25 oC的环境下,在0.02~1.5 V的电压区间内,采用100 mA/g、500 mA/g及1000mA/g等不同电流密度对电池进行恒流充放电测试,测分析材料的可逆容量、循环稳定性和高倍率性能。
本实施例的介孔硅/二硅化钴复合微球材料,其实际容量高,循环稳定性和高倍率稳定性好。材料在100 mA/g电流密度下的首次可逆容量(充电容量)为1960 mAh/g,经100次循环后的容量保持率为70%;材料在500 mA/g和1000 mA/g电流密度下的首次可逆容量分别为,1710 mAh/g和1110 mAh/g。

Claims (3)

1.一种介孔硅/二硅化钴复合微球材料,其特征在于,复合微球中所含硅的质量分数为80%~95%,所含二硅化钴的质量分数为5%~20%,复合微球的直径为0.5~1.0 μm,由宽为40~60nm的条状纳米颗粒组装而成,其中介孔的尺寸为20~50 nm。
2.根据权利要求1所述的介孔硅/二硅化钴复合微球材料的制备方法,其特征在于包括以下步骤:(1) 在搅拌条件下,往0.05~0.2 mol/L的硝酸钴的乙醇溶液中依次加入4 mol/L的氨水和0.5 mol/L的正硅酸乙酯的乙醇溶液,硝酸钴溶液、氨水和正硅酸乙酯溶液的体积比为1:2:3,在25 oC下反应24~72 h后,离心分离所得沉淀物并用去离子水清洗,烘干后得到前驱体粉末;(2) 将前驱体粉末与镁粉按1:1的质量比混合均匀,置于氩气气氛中,加热到700 oC使其反应并保温2~6 h,冷却后,将产物用2 mol/L的盐酸清洗,再用去离子水反复清洗,烘干后制得介孔硅/二硅化钴复合微球材料。
3.根据权利要求1或2所述的介孔硅/二硅化钴复合微球材料在锂离子电池负极材料中的应用。
CN201910293821.1A 2019-04-12 2019-04-12 介孔硅/二硅化钴复合微球材料及其制备方法和应用 Expired - Fee Related CN109987607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910293821.1A CN109987607B (zh) 2019-04-12 2019-04-12 介孔硅/二硅化钴复合微球材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910293821.1A CN109987607B (zh) 2019-04-12 2019-04-12 介孔硅/二硅化钴复合微球材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109987607A true CN109987607A (zh) 2019-07-09
CN109987607B CN109987607B (zh) 2020-11-06

Family

ID=67133393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910293821.1A Expired - Fee Related CN109987607B (zh) 2019-04-12 2019-04-12 介孔硅/二硅化钴复合微球材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109987607B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836262A1 (en) * 2019-12-09 2021-06-16 Toyota Jidosha Kabushiki Kaisha Anode active material and battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916167A (zh) * 2011-08-04 2013-02-06 上海交通大学 用作锂离子电池负极材料的介孔硅复合物及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916167A (zh) * 2011-08-04 2013-02-06 上海交通大学 用作锂离子电池负极材料的介孔硅复合物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LILI WU ET AL.: "Enhanced Electrochemical Performance of Heterogeneous Si/MoSi2 Anodes Prepared by a Magnesiothermic Reduction", 《ACS APPL. MATER. INTERFACES》 *
王升高等: "SiO2负载纳米Co催化剂的制备", 《真空科学与技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836262A1 (en) * 2019-12-09 2021-06-16 Toyota Jidosha Kabushiki Kaisha Anode active material and battery
US11605809B2 (en) 2019-12-09 2023-03-14 Toyota Jidosha Kabushiki Kaisha Anode active material and battery

Also Published As

Publication number Publication date
CN109987607B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN108807931B (zh) 一种表面包覆硅酸铝锂和表层掺杂氟的高镍材料及制备方法
WO2020143533A1 (zh) 正极活性材料及其制备方法、钠离子电池及包含钠离子电池的装置
CN104781960B (zh) 正极活性物质的制备方法及由该方法制备的锂二次电池用正极活性物质
CN102479948B (zh) 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN102479949B (zh) 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
WO2020143531A1 (zh) 正极活性材料及其制备方法、钠离子电池和包含钠离子电池的装置
CN107732172B (zh) 一种锂离子电池负极材料及其制备方法
CN103904321B (zh) 锂离子电池负极材料锰酸锂的高温固相制备方法
CN109659540B (zh) 一种多孔碳包覆碲化锑纳米片的制备方法及其作为金属离子电池负极材料的应用
CN113363415B (zh) 一种含固态电解质的高镍三元复合正极及锂离子电池
CN106410153B (zh) 一种氮化钛包覆钛酸镍复合材料及其制备方法和应用
CN108777294B (zh) 一种由纳米片组成的碳支持的多孔球形MoN及其作为负极材料在锂电池中的应用
CN101442123B (zh) 锂离子电池负极用复合材料及其制备方法以及负极和电池
CN109671946B (zh) 锌离子电池正极活性材料、正极材料、锌离子电池正极、锌离子电池及其制备方法和应用
CN112645390A (zh) 一种具有包覆结构的钴酸锂前驱体、其制备方法及用途
CN107026263B (zh) 海胆状硫化铋/大孔石墨烯复合材料、制备方法及其应用
CN109817962A (zh) 一种酚醛树脂修饰的锂离子电池硅基负极材料及制备方法
CN114520320B (zh) 一种基于碱金属还原法的氧化锂复合正极材料
CN109942001B (zh) 一种球形刺状结构的硅负极材料及其制备方法
KR102229456B1 (ko) 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
JP2015088343A (ja) 非水電解液二次電池用正極活物質の製造方法。
CN109461917B (zh) 一种锆酸镧原位包覆高镍三元正极材料的制备方法
CN109987607A (zh) 介孔硅/二硅化钴复合微球材料及其制备方法和应用
CN110931726A (zh) 一种钛酸锂负极复合材料及其制备方法、锂离子电池
Qi et al. Nano-architectured nickel-cobalt-manganese based ternary materials as cathodes for sodium/potassium ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201106