CN109904074A - 全包围栅场效应晶体管及其制造方法 - Google Patents

全包围栅场效应晶体管及其制造方法 Download PDF

Info

Publication number
CN109904074A
CN109904074A CN201711307799.9A CN201711307799A CN109904074A CN 109904074 A CN109904074 A CN 109904074A CN 201711307799 A CN201711307799 A CN 201711307799A CN 109904074 A CN109904074 A CN 109904074A
Authority
CN
China
Prior art keywords
layer
grid
spacer
channel
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711307799.9A
Other languages
English (en)
Other versions
CN109904074B (zh
Inventor
唐粕人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201711307799.9A priority Critical patent/CN109904074B/zh
Priority to US16/181,630 priority patent/US10804372B2/en
Publication of CN109904074A publication Critical patent/CN109904074A/zh
Priority to US17/015,270 priority patent/US11637193B2/en
Application granted granted Critical
Publication of CN109904074B publication Critical patent/CN109904074B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/6681Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET using dummy structures having essentially the same shape as the semiconductor body, e.g. to provide stability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7855Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with at least two independent gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本申请公开了一种全包围栅场效应晶体管及其制造方法。方法包括:在衬底上形成第一鳍片结构,其包括第一叠层结构,第一叠层结构由下向上依次包括牺牲层、支撑层和沟道层;形成横跨第一鳍片结构的伪栅结构,其包括伪栅电介质层及其上的伪栅和伪栅侧面的第一间隔物;去除第一鳍片结构位于伪栅结构两侧的部分以形成第二鳍片结构;对第二鳍片结构中的牺牲层的侧面进行第一刻蚀以形成第一空间;在第一空间中形成第二间隔物;对第二鳍片结构中的沟道层的侧面进行第二刻蚀以形成第二空间;对第二鳍片结构中的沟道层的侧面进行选择性外延以形成源区和漏区;在沿着沟道的方向上,与第二间隔物背离牺牲层的侧面相比,第二刻蚀后的沟道层的侧面更靠近牺牲层。

Description

全包围栅场效应晶体管及其制造方法
技术领域
本申请涉及半导体技术领域,尤其涉及一种全包围栅场效应晶体管及其制造方法。
背景技术
对于全包围栅(Gate-all-around)场效应晶体管来说,栅极和源区之间、以及栅极与漏区之间只有栅极介质层,没有有效的侧墙或间隔物(spacer)隔离,这会导致寄生电容产生。
针对上述问题,一种解决办法是在栅极与漏区之间、以及栅极与源区之间形成内部间隔物(internal spacer)。但是,内部间隔物的存在会导致外延形成的源区和漏区与沟道之间的距离增大,这使得在沟道中引入的应力减小,从而导致全包围栅场效应晶体管的开态电流降低,器件性能退化。
发明内容
本申请的一个目的在于增大全包围栅场效应晶体管的开态电流。
根据本申请的一方面,提供了一种全包围栅场效应晶体管的制造方法,包括:在衬底上形成第一鳍片结构,所述第一鳍片结构包括一个或堆叠的多个第一叠层结构,所述第一叠层结构由下向上依次包括牺牲层、支撑层和沟道层;形成横跨所述第一鳍片结构的伪栅结构,所述伪栅结构包括在所述第一鳍片结构的表面上的伪栅电介质层、在所述伪栅电介质层上的伪栅、以及在所述伪栅侧面的第一间隔物;去除所述第一鳍片结构位于所述伪栅结构两侧的部分,以形成第二鳍片结构;对所述第二鳍片结构中的牺牲层的侧面进行第一刻蚀,以形成第一空间;在所述第一空间中形成第二间隔物;对所述第二鳍片结构中的沟道层的侧面进行第二刻蚀,以形成第二空间;在形成所述第二空间之后,对所述第二鳍片结构中的沟道层的侧面进行选择性外延,以形成源区和漏区;其中,在沿着沟道的方向上,与所述第二间隔物背离所述牺牲层的侧面相比,第二刻蚀后的沟道层的侧面更靠近所述牺牲层。
在一个实施例中,所述在所述第一空间中形成第二间隔物包括:在形成所述第一空间之后,沉积第二间隔物材料,所述第二间隔物材料的一部分填充所述第一空间;去除所述第二间隔物材料填充所述第一空间的部分之外的部分,剩余的第二间隔物材料作为所述第二间隔物。
在一个实施例中,所述第一鳍片结构还包括在所述第一叠层结构上的一个或多个堆叠的第二叠层结构,所述第二叠层结构由下向上依次包括所述支撑层、所述牺牲层、所述支撑层和所述沟道层。
在一个实施例中,在形成所述外延区之后,还包括:形成层间电介质层,所述层间电介质层使得所述伪栅暴露;去除所述伪栅和所述伪栅电介质层,以形成第一沟槽;去除所述第二鳍片结构中的牺牲层和支撑层位于牺牲层上的部分,以形成第二沟槽,从而形成悬置在所述衬底上方的沟道层。
在一个实施例中,还去除支撑层位于第二间隔物上的部分。
在一个实施例中,所述方法还包括:在所述第二沟槽的底部、侧壁、以及所述沟道层的表面上形成栅极电介质层;在形成栅极电介质层之后,在所述第二沟槽中填充栅极。
在一个实施例中,所述沟道层包括纳米线。
在一个实施例中,所述支撑层与所述牺牲层具有不同的蚀刻选择比;所述支撑层与所述沟道层具有不同的蚀刻选择比。
在一个实施例中,所述牺牲层和所述支撑层的材料包括SiGe;所述沟道层的材料包括Si。
在一个实施例中,所述牺牲层和所述支撑层中的Ge含量不同。
在一个实施例中,所述牺牲层中的Ge含量大于所述支撑层中的Ge含量。
在一个实施例中,所述牺牲层中的Ge含量小于所述支撑层中的Ge含量。
根据本申请的另一方面,提供了一种全包围栅场效应晶体管,包括:在衬底上方的一个或由下向上彼此间隔开的多个沟道层;全包围所述沟道层的栅极结构,所述栅极结构由内向外依次包括第一栅极电介质层和栅极;位于所述栅极结构两侧通过对所述沟道层的侧面进行外延形成的源区和漏区;位于所述栅极与所述源区之间、以及所述栅极与所述漏区之间的第二栅极电介质层;以及位于所述第二栅极电介质层与所述源区之间、以及所述第二栅极电介质层与所述漏区之间的间隔物;其中,在沿着沟道的方向上,与所述间隔物背离所述栅极的侧面相比,所述沟道层的侧面更靠近所述栅极。
在一个实施例中,所述沟道层包括纳米线。
在一个实施例中,场效应晶体管还包括:第三栅极电介质层,位于所述间隔物的上表面与源区之间、以及所述间隔物的上表面与所述漏区之间。
本申请实施例一方面形成了第二间隔物,可以减小寄生电容;另一方面,在沿着沟道的方向上,与第二间隔物背离牺牲层的侧面相比,第二刻蚀后的沟道层的侧面更靠近牺牲层,这使得沟道层的侧面会更靠近牺牲层去除后形成的栅极,从而可以提高全包围栅场效应晶体管的开态电流。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征、方面及其优点将会变得清楚。
附图说明
附图构成本说明书的一部分,其描述了本申请的示例性实施例,并且连同说明书一起用于解释本申请的原理,在附图中:
图1是根据本申请一个实施例的全包围栅场效应晶体管的制造方法的简化流程图;
图2A示出了根据本申请一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图2B示出了图2A所示阶段沿着垂直于沟道方向的截面示意图;
图3A示出了根据本申请一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图3B示出了图3A所示阶段沿着垂直于沟道方向的截面示意图;
图4A示出了根据本申请一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图4B示出了图4A所示阶段沿着垂直于沟道方向的截面示意图;
图5A示出了根据本申请一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图5B示出了图5A所示阶段沿着垂直于沟道方向的截面示意图;
图6A示出了根据本申请一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图6B示出了图6A所示阶段沿着垂直于沟道方向的截面示意图;
图7A示出了根据本申请一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图7B示出了图7A所示阶段沿着垂直于沟道方向的截面示意图;
图8A示出了根据本申请一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图8B示出了图8A所示阶段沿着垂直于沟道方向的截面示意图;
图9A示出了根据本申请一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图9B示出了图9A所示阶段沿着垂直于沟道方向的截面示意图;
图10A示出了根据本申请另一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图10B示出了图10A所示阶段沿着垂直于沟道方向的截面示意图;
图11A示出了根据本申请另一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图11B示出了图11A所示阶段沿着垂直于沟道方向的截面示意图;
图12A示出了根据本申请另一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图12B示出了图12A所示阶段沿着垂直于沟道方向的截面示意图;
图13A示出了根据本申请另一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图13B示出了图13A所示阶段沿着垂直于沟道方向的截面示意图;
图14A示出了根据本申请另一个实施例的全包围栅场效应晶体管的制造方法的一个阶段沿着沟道方向的截面示意图;
图14B示出了图14A所示阶段沿着垂直于沟道方向的截面示意图;
图15A示出了根据本申请另一个实施例的全包围栅场效应晶体管的沿着沟道方向的截面示意图;
图15B示出了图15A所示全包围栅场效应晶体管沿着垂直于沟道方向的截面示意图。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应理解,除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不应被理解为对本申请范围的限制。
此外,应当理解,为了便于描述,附图中所示出的各个部件的尺寸并不必然按照实际的比例关系绘制,例如某些层的厚度或宽度可以相对于其他层有所夸大。
以下对示例性实施例的描述仅仅是说明性的,在任何意义上都不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和装置可能不作详细讨论,但在适用这些技术、方法和装置情况下,这些技术、方法和装置应当被视为本说明书的一部分。
应注意,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义或说明,则在随后的附图的说明中将不需要对其进行进一步讨论。
图1是根据本申请一个实施例的全包围栅场效应晶体管的制造方法的简化流程图。
图2A-图9B示出了根据本申请一个实施例的全包围栅场效应晶体管的制造方法的各个阶段的截面示意图。图2A、图3A….图9A是根据本申请一个实施例的全包围栅场效应晶体管的制造方法的各个阶段沿着沟道方向(也可以称为水平方向)的截面示意图,图2B、图3B….图9B分别是图2A、图3A….图9A所示阶段沿着垂直于沟道方向(也可以称为竖直方向)的截面示意图。
如图1所示,首先,在步骤102,在衬底200上形成第一鳍片结构。
如图2A和图2B所示,第一鳍片结构可以包括第一叠层结构201,第一叠层结构201由下向上依次可以包括牺牲层211、支撑层221和沟道层231。在一个实施例中,沟道层231可以是纳米线。应理解,虽然图2A和图2B仅示出了一个第一叠层结构201,但是本申请并不限于此,在其他的实施例中,第一鳍片结构可以包括多个第一叠层结构201,多个第一叠层结构201由下向上依次堆叠在衬底200上。
衬底200例如可以是硅衬底、锗衬底等元素半导体衬底,或者可以是砷化镓等化合物半导体衬底等。牺牲层211、支撑层221和沟道层231的材料可以是半导体材料,例如可以是Si、SiGe、Ge或III-V族半导体材料等。
在一个实施例中,支撑层221与牺牲层211具有不同的蚀刻选择比;支撑层221与沟道层231具有不同的蚀刻选择比。作为一个示例,牺牲层211和支撑层221的材料可以包括SiGe,而沟道层231的材料可以包括Si。在一个实现方式中,牺牲层211和支撑层221中的Ge含量不同。例如,牺牲层211中的Ge含量可以大于支撑层221中的Ge含量。又例如,牺牲层211中的Ge含量可以小于支撑层221中的Ge含量。
在一个实现方式中,可以在衬底200上依次外延形成牺牲材料层、支撑材料层和沟道材料层;然后图案化牺牲材料层、支撑材料层和沟道材料层,从而形成包括第一叠层结构201的第一鳍片结构。
作为一个示例,支撑层221的厚度约为1nm-5nm,例如,2nm、4nm等。作为一个示例,牺牲层211的厚度约为2nm-20nm,例如,5nm、10nm、15nm等。
在一个实施例中,参见图2A和图2B,第一鳍片结构还可以包括在第一叠层结构201上的一个或多个堆叠的第二叠层结构202。第二叠层结构202由下向上依次可以包括支撑层221、牺牲层211、支撑层221和沟道层231。应理解,虽然图2A和图2B示意性地示出了堆叠的两个第二叠层结构202,但这并非是限制性的。在其他的实施例中,第一鳍片结构也可以包括一个、三个、四个或更多个第二叠层结构202。替代地,第一鳍片结构中的第一叠层结构201和第二叠层结构202可以交替排列。
回到图1,接下来,在步骤104,形成横跨第一鳍片结构的伪栅结构301。
如图3A和图3B所示,伪栅结构301可以包括在第一鳍片结构的表面(包括上表面和侧面)上的伪栅电介质层311、在伪栅电介质层311上的伪栅321、以及在伪栅321侧面的第一间隔物331。示例性地,伪栅321的材料例如可以是多晶硅等,伪栅电介质层311的材料例如可以是硅的氧化物等,硬掩模层341的材料典型地可以是硅的氮化物、硅的氧化物或硅的氮氧化物等。
在一个实施例中,伪栅结构301还可以包括在伪栅321上的硬掩模层341,例如硅的氮化物等。应理解,第一间隔物331还可以位于伪栅电介质层311和硬掩模层341的侧面。还应理解,伪栅电介质层311的一部分还可以位于衬底200上。
在一个实现方式中,可以通过如下方式形成伪栅结构301:首先,在图2A和图2B所示结构的表面上依次沉积伪栅电介质材料层和伪栅材料层;然后,在伪栅材料层上形成图案化的硬掩模层341;之后,以硬掩模层341为掩模对伪栅电介质材料层和伪栅材料层进行图案化,从而形成伪栅电介质层311和伪栅321;之后,在伪栅电介质层311和伪栅321的两侧形成第一间隔物331,从而形成伪栅结构301。
回到图1,在步骤106,去除第一鳍片结构位于伪栅结构301两侧的部分,以形成第二鳍片结构401(即第一鳍片结构的剩余部分),如图4A和图4B所示。例如,可以通过干法刻蚀去除第一鳍片结构位于伪栅结构301两侧的部分。
之后,在步骤108,对第二鳍片结构401中的牺牲层211的侧面进行第一刻蚀,例如湿法刻蚀,以形成第一空间501,如图5A和图5B所示。例如,第一刻蚀后的牺牲层211的侧面可以基本对准于第一间隔物321和伪栅321邻接的界面(如图5A所示);又例如,第一刻蚀后的牺牲层211的侧面可以位于第一间隔物331下方,即第一空间501比图5A所示变得更小。第一空间501沿着沟道方向的深度约为5nm-20nm,例如,10nm、15nm等。
之后,在步骤110,在第一空间501中形成第二间隔物701。第二间隔物701沿着沟道方向的尺寸约为5nm-20nm,例如,10nm、15nm等。
如图6A和图6B所示,在形成第一空间501之后,沉积第二间隔物材料601,例如硅的氧化物等。第二间隔物材料601的一部分填充第一空间501。
如图7A和图7B所示,例如,可以通过各项异性刻蚀去除第二间隔物材料601填充第一空间501的部分之外的部分,剩余的第二间隔物材料601作为第二间隔物701。
之后,在步骤112,对第二鳍片结构401中的沟道层231的侧面进行第二刻蚀,以形成第二空间801,如图8A和图8B所示。例如,第二刻蚀后的沟道层231的侧面可以基本对准于第一间隔物321和伪栅321邻接的界面(如图8A所示);又例如,第二刻蚀后的沟道层231的侧面可以位于第一间隔物331下方,即第二空间801比图8A所示变得更小。
之后,在步骤114,在形成第二空间801之后,对第二鳍片结构401中的沟道层231的侧面进行选择性外延,以形成源区901和漏区902,如图9A和图9B所示。这里,在沿着沟道的方向上,与第二间隔物701背离牺牲层211的侧面相比,第二刻蚀后的沟道层231的侧面更靠近牺牲层211。例如,第二刻蚀后的沟道层231的侧面可以在第二间隔物701的上方;又例如,第二刻蚀后的沟道层231的侧面与牺牲层211的侧面基本对准。
上述实施例的制造方法一方面形成了第二间隔物,可以减小寄生电容;另一方面,在沿着沟道的方向上,与第二间隔物背离牺牲层的侧面相比,第二刻蚀后的沟道层的侧面更靠近牺牲层,这使得沟道层的侧面会更靠近牺牲层去除后形成的栅极,从而可以提高全包围栅场效应晶体管的开态电流。
之后,可以将伪栅结构替代为栅极结构,例如高k金属栅堆叠结构。
下面参照图10A-图14B介绍将伪栅结构替代为栅极结构的工艺过程。需要说明的是,以下工艺过程并不限于在同一个实施例中进行。
如图10A和图10B所示,形成层间电介质层1001。这里的层间电介质层1001可以使得伪栅331暴露。例如,可以在如图9A和图9B所示的结构上沉积层间电介质材料层,例如,硅的氧化物等;然后,执行平坦化工艺,以使得伪栅331暴露。应理解,在伪栅321上具有硬掩模层341的情况下,平坦化工艺也将硬掩模层341一并去除。
首先,如图11A和图11B所示,去除伪栅321和伪栅电介质层311,以形成第一沟槽1101。这里,第一沟槽1101也可以称为在去除伪栅321和伪栅电介质层311后形成的间隙或空间。
之后,在一个实现方式中,如图12A和图12B所示,去除第二鳍片结构401中的牺牲层211和支撑层221(包括位于牺牲层211上的部分和位于第二间隔物701上的部分),以形成第二沟槽1201,从而形成悬置在衬底200上方的沟道层231。在一个实施例中,沟道层231可以是纳米线。应理解,这里的第二沟槽1201也可以称为在去除伪栅321、伪栅电介质层311、以及第二鳍片结构401中的牺牲层211和支撑层221后形成的间隙或空间。
在另一个实现方式中,如图13A和图13B所示,在形成第二沟槽1201时,例如,可以利用原子层刻蚀(ALE)去除第二鳍片结构401中的牺牲层211和支撑层221位于牺牲层211上的部分,而可以保留支撑层221位于第二间隔物701上的部分的一部分或全部,从而形成悬置在衬底200上方的沟道层231。来应理解,这里的第二沟槽1201也可以称为在去除伪栅321、伪栅电介质层311、以及第二鳍片结构401中的牺牲层211和支撑层221位于牺牲层211上的部分后形成的间隙或空间。
如图14A和图14B所示,在第二沟槽1201的底部、侧壁、以及沟道层231的表面上形成栅极电介质层1301,例如诸如HfO2的高k电介质层。在形成栅极电介质层1301之后,形成填充第二沟槽1201的栅极1302,例如金属栅极。在一个实施例中,在形成栅极电介质层1301之前,可以在第二沟槽1201的底部、侧壁、以及沟道层231的表面上先形成界面层,例如硅的氧化物层,从而可以改善第二沟槽1201的底部、侧壁、以及沟道层231的表面与栅极电介质层1301之间的界面特性,提高结合力。
应理解,在去除伪栅321、伪栅电介质层311、以及第二鳍片结构401中的牺牲层211和支撑层221后,某些区域的表面会暴露出来,例如,衬底200的表面的某些部分、源区901和漏区902的表面的某些部分、第二间隔物701的表面的某些部分、以及沟道层231的表面会暴露出来。而界面层(如果有的话)和栅极电介质层1301可以依次形成在暴露的这些表面上。因此,从这个意义上来说,第二沟槽1201的底部也可以称为衬底200暴露的表面,第二沟槽1201的侧壁也可以称为源区901和漏区902暴露的表面、以及第二间隔物701暴露的表面。
在形成栅极1302后,参见图14A,在沿着沟道的方向上,与第二间隔物701背离栅极1302的侧面相比,沟道层231的侧面更靠近栅极1302,从而使得与沟道层231邻接的源区901和漏区902可以向沟道层231引入更大的应力,提高了全包围栅场效应晶体管的开态电流。
本申请还提供了一种全包围栅场效应晶体管,其可以但不限于利用上述制造方法来制造。
参见图15A和图15B,全包围栅场效应晶体管可以包括:
在衬底200上方的一个或由下向上彼此间隔开的多个沟道层231,例如纳米线;
全包围沟道层231的栅极结构,这里的栅极结构由内向外可以依次包括第一栅极电介质层(栅极电介质层1301包围沟道层231的部分,即,栅极电介质层1301被椭圆1401包围的部分)和栅极1302;
位于栅极结构两侧通过对沟道层231的侧面进行外延形成的源区901和漏区902;
位于栅极1302与源区901之间、以及栅极1302与漏区901之间的第二栅极电介质层(栅极电介质层1301位于第二间隔物701朝向栅极1302的侧面的部分,即,栅极电介质层1301被椭圆1402包围的部分);以及
位于第二栅极电介质层与源区901之间、以及第二栅极电介质层与漏区902之间的间隔物701(对应第二间隔物701);
其中,在沿着沟道的方向上,与间隔物701背离栅极1302的侧面711相比,沟道层231的侧面(即源区901/漏区902与沟道层231邻接的界面)更靠近栅极1302。
在一个实施例中,全包围栅场效应晶体管还可以包括第三栅极电介质层,位于间隔物701的上表面与源区901之间、以及间隔物701的上表面与漏区902之间。
至此,已经详细描述了根据本申请实施例的全包围栅场效应晶体管及其制造方法。为了避免遮蔽本申请的构思,没有描述本领域所公知的一些细节,本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。另外,本说明书公开所教导的各实施例可以自由组合。本领域的技术人员应该理解,可以对上面说明的实施例进行多种修改而不脱离如所附权利要求限定的本申请的精神和范围。

Claims (13)

1.一种全包围栅场效应晶体管的制造方法,包括:
在衬底上形成第一鳍片结构,所述第一鳍片结构包括一个或堆叠的多个第一叠层结构,所述第一叠层结构由下向上依次包括牺牲层、支撑层和沟道层;
形成横跨所述第一鳍片结构的伪栅结构,所述伪栅结构包括在所述第一鳍片结构的表面上的伪栅电介质层、在所述伪栅电介质层上的伪栅、以及在所述伪栅侧面的第一间隔物;
去除所述第一鳍片结构位于所述伪栅结构两侧的部分,以形成第二鳍片结构;
对所述第二鳍片结构中的牺牲层的侧面进行第一刻蚀,以形成第一空间;
在所述第一空间中形成第二间隔物;
对所述第二鳍片结构中的沟道层的侧面进行第二刻蚀,以形成第二空间;
在形成所述第二空间之后,对所述第二鳍片结构中的沟道层的侧面进行选择性外延,以形成源区和漏区;
其中,在沿着沟道的方向上,与所述第二间隔物背离所述牺牲层的侧面相比,第二刻蚀后的沟道层的侧面更靠近所述牺牲层。
2.根据权利要求1所述的方法,其中,所述在所述第一空间中形成第二间隔物包括:
在形成所述第一空间之后,沉积第二间隔物材料,所述第二间隔物材料的一部分填充所述第一空间;
去除所述第二间隔物材料填充所述第一空间的部分之外的部分,剩余的第二间隔物材料作为所述第二间隔物。
3.根据权利要求1所述的方法,其中,所述第一鳍片结构还包括在所述第一叠层结构上的一个或多个堆叠的第二叠层结构,所述第二叠层结构由下向上依次包括所述支撑层、所述牺牲层、所述支撑层和所述沟道层。
4.根据权利要求1所述的方法,其中,在形成所述外延区之后,还包括:
形成层间电介质层,所述层间电介质层使得所述伪栅暴露;
去除所述伪栅和所述伪栅电介质层,以形成第一沟槽;
去除所述第二鳍片结构中的牺牲层和支撑层位于牺牲层上的部分,以形成第二沟槽,从而形成悬置在所述衬底上方的沟道层。
5.根据权利要求4所述的方法,其中,
还去除支撑层位于第二间隔物上的部分。
6.根据权利要求4或5所述的方法,还包括:
在所述第二沟槽的底部、侧壁、以及所述沟道层的表面上形成栅极电介质层;
在形成栅极电介质层之后,在所述第二沟槽中填充栅极。
7.根据权利要求1-6任意一项所述的方法,其中,所述沟道层包括纳米线。
8.根据权利要求1-6任意一项所述的方法,其中,
所述支撑层与所述牺牲层具有不同的蚀刻选择比;
所述支撑层与所述沟道层具有不同的蚀刻选择比。
9.根据权利要求8所述的方法,其中,
所述牺牲层和所述支撑层的材料包括SiGe;
所述沟道层的材料包括Si。
10.根据权利要求9所述的方法,其中,所述牺牲层和所述支撑层中的Ge含量不同。
11.一种全包围栅场效应晶体管,包括:
在衬底上方的一个或由下向上彼此间隔开的多个沟道层;
全包围所述沟道层的栅极结构,所述栅极结构由内向外依次包括第一栅极电介质层和栅极;
位于所述栅极结构两侧通过对所述沟道层的侧面进行外延形成的源区和漏区;
位于所述栅极与所述源区之间、以及所述栅极与所述漏区之间的第二栅极电介质层;以及
位于所述第二栅极电介质层与所述源区之间、以及所述第二栅极电介质层与所述漏区之间的间隔物;
其中,在沿着沟道的方向上,与所述间隔物背离所述栅极的侧面相比,所述沟道层的侧面更靠近所述栅极。
12.根据权利要求11所述的场效应晶体管,其中,所述沟道层包括纳米线。
13.根据权利要求11所述的场效应晶体管,还包括:
第三栅极电介质层,位于所述间隔物的上表面与源区之间、以及所述间隔物的上表面与所述漏区之间。
CN201711307799.9A 2017-12-11 2017-12-11 全包围栅场效应晶体管及其制造方法 Active CN109904074B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711307799.9A CN109904074B (zh) 2017-12-11 2017-12-11 全包围栅场效应晶体管及其制造方法
US16/181,630 US10804372B2 (en) 2017-12-11 2018-11-06 Gate-all-around field effect transistor and method for manufacturing same
US17/015,270 US11637193B2 (en) 2017-12-11 2020-09-09 Gate-all-around field effect transistor and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711307799.9A CN109904074B (zh) 2017-12-11 2017-12-11 全包围栅场效应晶体管及其制造方法

Publications (2)

Publication Number Publication Date
CN109904074A true CN109904074A (zh) 2019-06-18
CN109904074B CN109904074B (zh) 2022-04-08

Family

ID=66696416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711307799.9A Active CN109904074B (zh) 2017-12-11 2017-12-11 全包围栅场效应晶体管及其制造方法

Country Status (2)

Country Link
US (2) US10804372B2 (zh)
CN (1) CN109904074B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889413A (zh) * 2021-09-13 2022-01-04 上海集成电路制造创新中心有限公司 环栅器件及其源漏制备方法、器件制备方法、电子设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200136688A (ko) * 2019-05-28 2020-12-08 삼성전자주식회사 반도체 소자 및 이의 제조 방법
US11894368B2 (en) 2019-12-26 2024-02-06 Intel Corporation Gate-all-around integrated circuit structures fabricated using alternate etch selective material
CN113555284B (zh) * 2020-04-23 2023-04-21 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
US20210408284A1 (en) * 2020-06-25 2021-12-30 Intel Corporation Gate-all-around integrated circuit structures having strained source or drain structures on gate dielectric layer
CN112687546A (zh) * 2020-12-25 2021-04-20 上海华力集成电路制造有限公司 半导体器件及其制备方法
US20220285346A1 (en) * 2021-03-04 2022-09-08 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Devices and Methods of Fabricating the Same
KR102459732B1 (ko) * 2021-05-13 2022-10-27 (재)한국나노기술원 게이트 올 어라운드 채널을 갖는 반도체 소자의 제조 방법
US20220367683A1 (en) * 2021-05-13 2022-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and Method for Multigate Devices with Suppressed Diffusion
KR102543931B1 (ko) * 2021-08-18 2023-06-19 포항공과대학교 산학협력단 트랜치 내부 스페이서를 갖는 게이트-올-어라운드 전계효과 트랜지스터 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060216897A1 (en) * 2005-03-24 2006-09-28 Samsung Electronics Co., Ltd. Semiconductor device having a round-shaped nano-wire transistor channel and method of manufacturing same
KR20170009678A (ko) * 2015-07-16 2017-01-25 삼성전자주식회사 반도체 장치 및 이의 제조 방법
CN106784001A (zh) * 2016-11-21 2017-05-31 华为技术有限公司 一种场效应晶体管及其制作方法
US20170186846A1 (en) * 2015-12-28 2017-06-29 Qualcomm Incorporated Nanowire device with reduced parasitics
US20170221708A1 (en) * 2016-01-28 2017-08-03 International Business Machines Corporation Forming stacked nanowire semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318552B2 (en) * 2014-05-21 2016-04-19 Globalfoundries Inc. Methods of forming conductive contact structures for a semiconductor device with a larger metal silicide contact area and the resulting devices
TWI739879B (zh) * 2016-08-10 2021-09-21 日商東京威力科創股份有限公司 用於半導體裝置的延伸區域
US10600889B2 (en) * 2017-12-22 2020-03-24 International Business Machines Corporation Nanosheet transistors with thin inner spacers and tight pitch gate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060216897A1 (en) * 2005-03-24 2006-09-28 Samsung Electronics Co., Ltd. Semiconductor device having a round-shaped nano-wire transistor channel and method of manufacturing same
KR20170009678A (ko) * 2015-07-16 2017-01-25 삼성전자주식회사 반도체 장치 및 이의 제조 방법
US20170186846A1 (en) * 2015-12-28 2017-06-29 Qualcomm Incorporated Nanowire device with reduced parasitics
US20170221708A1 (en) * 2016-01-28 2017-08-03 International Business Machines Corporation Forming stacked nanowire semiconductor device
CN106784001A (zh) * 2016-11-21 2017-05-31 华为技术有限公司 一种场效应晶体管及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889413A (zh) * 2021-09-13 2022-01-04 上海集成电路制造创新中心有限公司 环栅器件及其源漏制备方法、器件制备方法、电子设备
CN113889413B (zh) * 2021-09-13 2022-08-30 上海集成电路制造创新中心有限公司 环栅器件及其源漏制备方法、器件制备方法、电子设备

Also Published As

Publication number Publication date
US10804372B2 (en) 2020-10-13
US20200411668A1 (en) 2020-12-31
US20190181241A1 (en) 2019-06-13
US11637193B2 (en) 2023-04-25
CN109904074B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN109904074A (zh) 全包围栅场效应晶体管及其制造方法
CN105845578B (zh) 半导体器件及其制造方法
KR101504311B1 (ko) 맨드렐 산화 공정을 사용하여 finfet 반도체 디바이스용 핀들을 형성하는 방법
CN107039503B (zh) 水平栅极环绕纳米线晶体管的底部隔离
US9881993B2 (en) Method of forming semiconductor structure with horizontal gate all around structure
TWI524464B (zh) FinFET元件與其形成方法
TWI540727B (zh) 鰭式場效電晶體元件之鰭結構、鰭式場效電晶體元件
KR101384394B1 (ko) 나노와이어 디바이스를 위한 격리
CN104488079B (zh) 具有合并鳍和垂直硅化物的finfet
CN104979211B (zh) 纳米线器件及其制造方法
TW201907453A (zh) 閘極環繞奈米片場效應電晶體及其製造方法
US9722024B1 (en) Formation of semiconductor structures employing selective removal of fins
KR20090005066A (ko) 핀을 갖는 반도체 디바이스를 형성하기 위한 방법 및 그 구조
CN108695382B (zh) 半导体装置及其制造方法
JP2015097264A (ja) 非プレーナ型の電界効果トランジスタを製造する方法
CN103681846B (zh) 半导体装置及其制造方法
CN107958871A (zh) 半导体装置及其制造方法
CN108010880A (zh) 半导体装置及其制造方法
US20200286857A1 (en) Vertical transistor device and method for fabricating the same
CN108231591B (zh) 形成纳米线内间隔的方法
TWI576898B (zh) 形成具有閘極環繞通道組構的奈米線裝置的方法及該奈米線裝置
CN105514161B (zh) 半导体装置及其制造方法
CN108091611B (zh) 半导体装置及其制造方法
CN106158859B (zh) 一种半导体器件及其制造方法
CN104103506B (zh) 半导体器件制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant