CN109894137A - 一种可磁分离的太阳光催化剂及其制备方法 - Google Patents

一种可磁分离的太阳光催化剂及其制备方法 Download PDF

Info

Publication number
CN109894137A
CN109894137A CN201910219670.5A CN201910219670A CN109894137A CN 109894137 A CN109894137 A CN 109894137A CN 201910219670 A CN201910219670 A CN 201910219670A CN 109894137 A CN109894137 A CN 109894137A
Authority
CN
China
Prior art keywords
presoma
preparation
aurivillius
sunlight
photochemical catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910219670.5A
Other languages
English (en)
Other versions
CN109894137B (zh
Inventor
徐靖才
洪波
王新庆
彭晓领
金红晓
金顶峰
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
徐靖才
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐靖才 filed Critical 徐靖才
Priority to CN201910219670.5A priority Critical patent/CN109894137B/zh
Publication of CN109894137A publication Critical patent/CN109894137A/zh
Application granted granted Critical
Publication of CN109894137B publication Critical patent/CN109894137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种可磁分离的太阳光催化剂及其制备方法,本发明通过先制备γ‑Fe2O3前驱体,然后用混合水热法制备γ‑Fe2O3/g‑C3N4/Bi2WO6前驱体,然后通过超声剥离、离心分离得到二维超薄Aurivillius结构的γ‑Fe2O3/g‑C3N4/Bi2WO6。本发明具有以下优点和有益效果:1)二维超薄Aurivillius结构可以抑制光生电子‑空穴对的快速复合,提高光催化剂的活性和光催化反应的转换效率;2)利用g‑C3N4催化剂修饰Aurivillius结构,调控材料的表面电子,拓宽光催化剂光谱吸收范围,有效地利用太阳光实现全波段光催化;3)有效地利用磁分离技术筛选分离,光催化剂易于回收再利用,避免二次污染,对于促进自然太阳光光催化技术应用,缓解能源危机以及加强环境治理具有重要的意义。

Description

一种可磁分离的太阳光催化剂及其制备方法
技术领域
本发明涉及光催化领域,具体涉及一种γ-Fe2O3/g-C3N4/Bi2WO6复合型催化剂的制备方法。
背景技术
能源短缺和环境污染是当前人类面临的重大挑战,利用光催化分解水制氢制氧、还原二氧化碳和降解有机污染物是光催化领域重要的研究热点。目前大部分的光催化剂仅具有波长较短的紫外光(约占太阳光强的4%)或可见光(约占太阳光强的48%)催化活性,不能最大限度的利用从紫外到近红外的太阳光全波段进行光催化。为了实现太阳光全波段光催化目标,光催化材料应该拓宽光催化剂光谱吸收范围和提高的光吸收效率与量子转换效率。为了能够有效地利用太阳光谱中的近红外光(约占太阳光强的44%),半导体的禁带宽度应该更小。
Bi2WO6的禁带宽度为2.1~2.8 eV,被认为是Bi基氧化物中具有最佳可见光催化活性的半导体催化剂。但对于近红外光催化,Bi2WO6还存在光吸收效率与能量转换效率较低的缺点,其主要原因是催化剂光生电子-空穴对在表面快速复合。Bi2WO6通过结构优化、表面修饰改性和材料复合可以抑制光生电子-空穴的快速复合,提高近红外光催化效率。
类石墨相氮化碳 g-C3N4具有优异的可见光反应又不具备毒性,尤其是其独特的二维超薄类石墨烯结构,它的量子限域效应和表面效应使带隙变窄,能够吸收从紫外光到可见光波段光谱,使其成为一种新型热门的光催化材料。若将g-C3N4改性或复合其他材料,可以以微小的调节使 g-C3N4的结构不同从而来改变其活性的差异。近红外光响应范围也是g-C3N4光催化提升的一个重要方向,而经过大量研究表示对其进行改性可达到扩大波长响应范围的要求,也可以阻碍g-C3N4进行催化时出现的光生电子-空穴对的重新合成,使光催化效率升高。
将磁性材料和光催化剂有效复合,制得可磁分离的光催化剂复合材料。可以实现光催化剂的有效回收再利用,减少光催化剂二次污染。磁分离提供了一个极其方便的回收利用催化剂的方法,通过外加磁场能够迅速分离催化剂并进行回收利用,而不需要进一步的处理,明显提高其回收效率。
发明内容
本发明的目的是提供一种可磁分离的太阳光催化剂,该光催化剂为二维超薄Aurivillius结构的γ-Fe2O3/g-C3N4/Bi2WO6复合材料,同时提供了一种制备该光催化剂的方法。
一种可磁分离的太阳光催化剂的制备方法,具体是按以下步骤合成:
1) γ-Fe2O3前驱体的制备
将一定量的Fe(NO3)3•9H2O和酒石酸溶于100 ml水中,搅拌1~5 h后放入100℃干燥箱中干燥至粉末,得到γ-Fe2O3前驱体;
2) γ-Fe2O3/g-C3N4的制备
按一定的比例将步骤1)的得到γ-Fe2O3前驱体与三聚氰胺研磨均匀,然后置于坩埚中,升温速率设定为1~4℃/min,在温度400~500 ℃下于马弗炉中煅烧4~8h,得到γ-Fe2O3/g-C3N4
3) γ-Fe2O3/g-C3N4/Bi2WO6前驱体的制备
将一定量Na2WO4•2H2O和Bi(NO3)3•5H2O溶于比例为1:1~1:4的油胺和水混合液中,充分搅拌均匀,然后将一定量步骤2)得到的γ-Fe2O3/g-C3N4加入混合液中,搅拌混合3~8 h后将混合溶液移至具有0.01~0.1T磁场的聚四氟乙烯内衬反应釜中,在120~200℃下反应5~20h,冷却后得到γ-Fe2O3/g-C3N4/Bi2WO6前驱体;
4) 二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6的制备
将步骤3)得到的沉淀物和溶剂以30~80 kHz的频率超声剥离10~60 min;将超声剥离后的混合物以5000~10000 r·min-1的转速离心分离,用蒸馏水清洗后100~150℃烘干得到二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6
本发明具有以下优点和有益效果:
1) 二维超薄Aurivillius结构可以抑制光生电子-空穴对的快速复合,提高光催化剂的活性和光催化反应的转换效率;
2) 利用g-C3N4催化剂修饰Aurivillius结构,调控材料的表面电子,拓宽光催化剂光谱吸收范围,有效地利用太阳光实现全波段光催化;
3) 有效地利用磁分离技术筛选分离,光催化剂易于回收再利用,避免二次污染。
附图说明
图1是实施例1得到催化剂的TEM图,证明实施例1所制备的样品呈二维超薄Aurivillius结构。
图2是实施例1得到催化剂的XRD图,证明实施例1所制备的样品具有γ-Fe2O3物相、g-C3N4物相和Bi2WO6物相。
图3是实施例1得到催化剂的VSM和磁分离图,证明实施例1所制备的样品具有磁性能,能够磁分离回收再利用。
图4是实施例1得到的催化剂分别在模拟太阳光和可见光下催化降解甲基蓝曲线图,证明实施例1所制备的样品能有效地利用太阳光实现全波段光催化。
具体实施方式
下面是结合具体实施例,进一步阐述本发明。这些实施例仅用于说明本发明,但不用来限制本发明的范围。
本发明的具体步骤为:
1) γ-Fe2O3前驱体的制备
将一定量的Fe(NO3)3•9H2O和酒石酸溶于100 ml水中,搅拌1~5 h后放入100℃干燥箱中干燥至粉末,得到γ-Fe2O3前驱体;
2) γ-Fe2O3/g-C3N4的制备
按一定的比例将步骤1)的得到γ-Fe2O3前驱体与三聚氰胺研磨均匀,然后置于坩埚中,升温速率设定为1~4℃/min,在温度400~500 ℃下于马弗炉中煅烧4~8h,得到γ-Fe2O3/g-C3N4
3) γ-Fe2O3/g-C3N4/Bi2WO6前驱体的制备
将一定量Na2WO4•2H2O和Bi(NO3)3•5H2O溶于比例为1:1~1:4的油胺和水混合液中,充分搅拌均匀,然后将一定量步骤2)得到的γ-Fe2O3/g-C3N4加入混合液中,搅拌混合3~8 h后将混合溶液移至具有0.01~0.1T磁场的聚四氟乙烯内衬反应釜中,在120~200℃下反应5~20h,冷却后得到γ-Fe2O3/g-C3N4/Bi2WO6前驱体;
4) 二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6的制备
将步骤3)得到的沉淀物和溶剂以30~80 kHz的频率超声剥离10~60 min;将超声剥离后的混合物以5000~10000 r·min-1的转速离心分离,用蒸馏水清洗后100~150℃烘干得到二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6
通过本发明可以制备具有可磁分离的二维超薄Aurivillius结构的γ-Fe2O3/g-C3N4/Bi2WO6太阳光全波段光催化剂。
实施例1:
步骤为:
1) γ-Fe2O3前驱体的制备
将0.01 mol的Fe(NO3)3•9H2O和酒石酸溶于100 ml水中,搅拌3 h后放入100℃干燥箱中干燥至粉末,得到γ-Fe2O3前驱体;
2) γ-Fe2O3/g-C3N4的制备
按1:1的比例将步骤1)的得到γ-Fe2O3前驱体与三聚氰胺研磨均匀,然后置于坩埚中,升温速率设定为1℃/min,在温度400 ℃下于马弗炉中煅烧6 h,得到γ-Fe2O3/g-C3N4
3) γ-Fe2O3/g-C3N4/Bi2WO6前驱体的制备
将一定量Na2WO4•2H2O和Bi(NO3)3•5H2O溶于比例为1:2的油胺和水混合液中,充分搅拌均匀,然后将0.1 g步骤2)得到的γ-Fe2O3/g-C3N4加入混合液中,搅拌混合5 h后将混合溶液移至具有0.05 T磁场的聚四氟乙烯内衬反应釜中,在160℃下反应8 h,冷却后得到γ-Fe2O3/g-C3N4/Bi2WO6前驱体;
4) 二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6的制备
将步骤3)得到的沉淀物和溶剂以50 kHz的频率超声剥离30 min;将超声剥离后的混合物以8000 r·min-1的转速离心分离,用蒸馏水清洗后120℃烘干得到二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6
对实施例1所制备的样品进行TEM和XRD表征,发现γ-Fe2O3/g-C3N4/Bi2WO6光催化剂呈二维超薄结构,并检测到γ-Fe2O3物相、g-C3N4物相和Bi2WO6物相;对实施例1所制备的样品进行磁性能测试,在外磁铁下可进行磁分离;对实施例1所制备的样品进行光催化降解甲基蓝测试,在30 min模拟大阳光光照射下,甲基蓝的降解率为58%,在30 min可见光光照射下,甲基蓝的降解率为78%。
实施例2:
步骤为:
1) γ-Fe2O3前驱体的制备
将0.01 mol的Fe(NO3)3•9H2O和酒石酸溶于100 ml水中,搅拌5 h后放入100℃干燥箱中干燥至粉末,得到γ-Fe2O3前驱体;
2) γ-Fe2O3/g-C3N4的制备
按1:2的比例将步骤1)的得到γ-Fe2O3前驱体与三聚氰胺研磨均匀,然后置于坩埚中,升温速率设定为4℃/min,在温度500 ℃下于马弗炉中煅烧4 h,得到γ-Fe2O3/g-C3N4
3) γ-Fe2O3/g-C3N4/Bi2WO6前驱体的制备
将一定量Na2WO4•2H2O和Bi(NO3)3•5H2O溶于比例为1:1的油胺和水混合液中,充分搅拌均匀,然后将0.15 g步骤2)得到的γ-Fe2O3/g-C3N4加入混合液中,搅拌混合8 h后将混合溶液移至具有0.01 T磁场的聚四氟乙烯内衬反应釜中,在200℃下反应5 h,冷却后得到γ-Fe2O3/g-C3N4/Bi2WO6前驱体;
4) 二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6的制备
将步骤3)得到的沉淀物和溶剂以30 kHz的 频率超声剥离10 min;将超声剥离后的混合物以10000 r· min-1的转速离心分离,用蒸馏水清洗后150℃烘干得到二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6
对实施例2所制备的样品进行TEM和XRD表征,发现γ-Fe2O3/g-C3N4/Bi2WO6光催化剂呈二维超薄结构,并检测到γ-Fe2O3物相、g-C3N4物相和Bi2WO6物相;对实施例2所制备的样品进行磁性能测试,在外磁铁下可进行磁分离;对实施例2所制备的样品进行光催化降解甲基蓝测试,在30 min模拟大阳光光照射下,甲基蓝的降解率为46%,在30 min可见光光照射下,甲基蓝的降解率为64%。
实施例3:
步骤为:
1) γ-Fe2O3前驱体的制备
将0.01的Fe(NO3)3•9H2O和酒石酸溶于100 ml水中,搅拌1 h后放入100℃干燥箱中干燥至粉末,得到γ-Fe2O3前驱体;
2) γ-Fe2O3/g-C3N4的制备
按2:1的比例将步骤1)的得到γ-Fe2O3前驱体与三聚氰胺研磨均匀,然后置于坩埚中,升温速率设定为2℃/min,在温度450 ℃下于马弗炉中煅烧8 h,得到γ-Fe2O3/g-C3N4
3) γ-Fe2O3/g-C3N4/Bi2WO6前驱体的制备
将一定量Na2WO4•2H2O和Bi(NO3)3•5H2O溶于比例为1:4的油胺和水混合液中,充分搅拌均匀,然后将0.1 g步骤2)得到的γ-Fe2O3/g-C3N4加入混合液中,搅拌混合3 h后将混合溶液移至具有0.1T磁场的聚四氟乙烯内衬反应釜中,在120℃下反应20 h,冷却后得到γ-Fe2O3/g-C3N4/Bi2WO6前驱体;
4) 二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6的制备
将步骤3)得到的沉淀物和溶剂以80 kHz的频率超声剥离60 min;将超声剥离后的混合物以5000 r·min-1的转速离心分离,用蒸馏水清洗后100℃烘干得到二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6
对实施例3所制备的样品进行TEM和XRD表征,发现γ-Fe2O3/g-C3N4/Bi2WO6光催化剂呈二维超薄结构,并检测到γ-Fe2O3物相、g-C3N4物相和Bi2WO6物相;对实施例3所制备的样品进行磁性能测试,在外磁铁下可进行磁分离;对实施例3所制备的样品进行光催化降解甲基蓝测试,在30 min模拟大阳光光照射下,甲基蓝的降解率为42%,在30 min可见光光照射下,甲基蓝的降解率为59%。

Claims (1)

1.一种可磁分离的太阳光催化剂,其特征在于,该光催化剂为二维超薄Aurivillius结构的γ-Fe2O3/g-C3N4/Bi2WO6复合材料,具体是按以下步骤合成:
1) γ-Fe2O3前驱体的制备
将一定量的Fe(NO3)3•9H2O和酒石酸溶于100 ml水中,搅拌1~5 h后放入100℃干燥箱中干燥至粉末,得到γ-Fe2O3前驱体;
2) γ-Fe2O3/g-C3N4的制备
按一定的比例将步骤1)的得到γ-Fe2O3前驱体与三聚氰胺研磨均匀,然后置于坩埚中,升温速率设定为1~4℃/min,在温度400~500 ℃下于马弗炉中煅烧4~8h,得到γ-Fe2O3/g-C3N4
3) γ-Fe2O3/g-C3N4/Bi2WO6前驱体的制备
将一定量Na2WO4•2H2O和Bi(NO3)3•5H2O溶于比例为1:1~1:4的油胺和水混合液中,充分搅拌均匀,然后将一定量步骤2)得到的γ-Fe2O3/g-C3N4加入混合液中,搅拌混合3~8 h后将混合溶液移至具有0.01~0.1T磁场的聚四氟乙烯内衬反应釜中,在120~200℃下反应5~20h,冷却后得到γ-Fe2O3/g-C3N4/Bi2WO6前驱体;
4) 二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6的制备
将步骤3)得到的沉淀物和溶剂以30~80 kHz的频率超声剥离10~60 min;将超声剥离后的混合物以5000~10000 r·min-1的转速离心分离,用蒸馏水清洗后100~150℃烘干得到二维超薄Aurivillius结构γ-Fe2O3/g-C3N4/Bi2WO6
CN201910219670.5A 2019-03-22 2019-03-22 一种可磁分离的太阳光催化剂及其制备方法 Active CN109894137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910219670.5A CN109894137B (zh) 2019-03-22 2019-03-22 一种可磁分离的太阳光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910219670.5A CN109894137B (zh) 2019-03-22 2019-03-22 一种可磁分离的太阳光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109894137A true CN109894137A (zh) 2019-06-18
CN109894137B CN109894137B (zh) 2022-03-18

Family

ID=66953719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910219670.5A Active CN109894137B (zh) 2019-03-22 2019-03-22 一种可磁分离的太阳光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109894137B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251234A (zh) * 2020-10-21 2021-01-22 国网河北省电力有限公司电力科学研究院 一种降解土壤中重金属离子的光催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319563A (zh) * 2011-05-30 2012-01-18 湖南大学 一种磁性纳米复合光催化剂及应用
CN106378171A (zh) * 2016-08-17 2017-02-08 浙江工业大学 一种磁性ZnFe2O4/g‑C3N4复合光催化材料的制备方法
CN106732708A (zh) * 2016-11-11 2017-05-31 湖南大学 石墨相氮化碳纳米片负载单层钨酸铋纳米片异质结材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319563A (zh) * 2011-05-30 2012-01-18 湖南大学 一种磁性纳米复合光催化剂及应用
CN106378171A (zh) * 2016-08-17 2017-02-08 浙江工业大学 一种磁性ZnFe2O4/g‑C3N4复合光催化材料的制备方法
CN106732708A (zh) * 2016-11-11 2017-05-31 湖南大学 石墨相氮化碳纳米片负载单层钨酸铋纳米片异质结材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONG ZHOU, ET AL.: "High-Yield Synthesis of Ultrathin and Uniform Bi2WO6 Square Nanoplates Benefitting from Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel under Visible Light", 《ACS APPL. MATER. INTERFACES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251234A (zh) * 2020-10-21 2021-01-22 国网河北省电力有限公司电力科学研究院 一种降解土壤中重金属离子的光催化剂及其制备方法

Also Published As

Publication number Publication date
CN109894137B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN112169819B (zh) 一种g-C3N4/(101)-(001)-TiO2复合材料的制备方法和应用
CN106582765B (zh) 一种一步合成制备的钠掺杂石墨相氮化碳及其应用
CN110152665B (zh) CuO/Cu2O/Cu三元复合材料的制备方法
CN113457711B (zh) 一种石墨相氮化碳负载镁单原子复合材料及其制备方法、光催化制备过氧化氢的方法
CN107308957B (zh) 一种球状Bi2S3/Bi2WO6异质结光催化材料的制备方法
CN102125848B (zh) 磁性异相光芬顿催化剂的制备及其降解有机污染物的方法
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN106076389A (zh) 钼酸铋/石墨相氮化碳复合催化剂的制备方法及应用
CN106140141A (zh) 一种含氧缺陷的ZnWO4光催化材料及其制备方法
CN109317183A (zh) 一种氮化硼量子点/超薄多孔氮化碳复合光催化材料及其制备方法和应用
CN105056973B (zh) 化学腐蚀法原位生长制备高效的硫化铋‑铁酸铋复合可见光催化剂及其应用
CN110589886A (zh) 一种碳酸氧铋的制备方法
CN107511154A (zh) 一种海胆状CeO2/Bi2S3复合可见光催化剂及其制备方法
CN110756203A (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用
CN110270356A (zh) 一种低温液相沉淀法碘氧化铋/氧化石墨烯可见光光催化剂的制备方法
CN107098429A (zh) 一种BiVO4/BiPO4复合材料及其制备方法和应用
CN109317184A (zh) 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用
CN109999879A (zh) 一种硒辅助的层状石墨相氮化碳光催化剂及其制备方法
CN107497455A (zh) 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用
CN107570197A (zh) 一种空心自掺杂结构双金属光催化剂的合成方法及应用
CN113058601B (zh) 用于光解水催化制氢的三元复合催化剂的制备方法及应用
CN109894137A (zh) 一种可磁分离的太阳光催化剂及其制备方法
CN103212405B (zh) 一种镉掺杂钼酸铋可见光催化剂及其制备方法和应用
CN108479812A (zh) 一种AgInS2/Bi2WO6异质结纳米片的制备方法和应用
CN107308972A (zh) 一种用谷氨酸改性g‑C3N4‑Cu2O复合催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220228

Address after: No.258 Xueyuan street, Qiantang New District, Hangzhou City, Zhejiang Province, 310018

Applicant after: China Jiliang University

Address before: 310018 No. 258, Yuen Xue street, Hangzhou, Zhejiang, Jianggan District

Applicant before: Xu Jingcai

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant