CN109890552B - 用于粉末层熔融的可3d印刷的硬质含铁金属性合金 - Google Patents

用于粉末层熔融的可3d印刷的硬质含铁金属性合金 Download PDF

Info

Publication number
CN109890552B
CN109890552B CN201780067209.1A CN201780067209A CN109890552B CN 109890552 B CN109890552 B CN 109890552B CN 201780067209 A CN201780067209 A CN 201780067209A CN 109890552 B CN109890552 B CN 109890552B
Authority
CN
China
Prior art keywords
present
alloy
metallic part
hardness
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780067209.1A
Other languages
English (en)
Other versions
CN109890552A (zh
Inventor
C·D·图菲勒
H·莱姆基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fumette Co ltd
MacLean Fogg Co
Horizon Technology Finance Corp
Original Assignee
MacLean Fogg Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MacLean Fogg Co filed Critical MacLean Fogg Co
Priority to CN202211024979.7A priority Critical patent/CN115584434A/zh
Publication of CN109890552A publication Critical patent/CN109890552A/zh
Application granted granted Critical
Publication of CN109890552B publication Critical patent/CN109890552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/44Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/30Carburising atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明涉及用于3D金属印刷工序的合金组合物,其向金属性零件提供高的硬度、拉伸强度、屈服强度和延伸率。该合金包括Fe、Cr和Mo和选自C、Ni、Cu、Nb、Si和N的至少三种或更多种元素。制造状态的零件显示至少1000MPa的拉伸强度、至少640MPa的屈服强度、至少3.0%的延伸率、和至少375的硬度(HV)。

Description

用于粉末层熔融的可3D印刷的硬质含铁金属性合金
相关申请的交叉引用
这一申请要求2016年11月1日提交的美国临时专利申请序列号62/415,667的权益,其通过引用完全并入本文。
领域
本公开内容涉及合金组合物和3D印刷工序来提供用于形成具有相对高的硬度、拉伸强度、屈服强度和延伸率的金属性零件。该合金还显示形成对这样的机械性质特性有贡献的所需相(例如金属碳化物相和/或金属碳氮化物相)的能力。
背景
金属3D印刷方法提供众多非凡的益处例如使用大幅减少的零件制备时间制备高度复杂零件的能力。出于这些原因,3D印刷对许多产业具有高价值。虽然存在许多用于制造金属零件的3D印刷方法,但是最广泛采用的方法是利用固-液-固相转变来制造零件的那些。这些方法通常被称为粉末层熔融(PBF)、选择性激光熔化(SLM)和电子束熔化(EBM),下文将这些方法称为PBF。
虽然PBF在其由特定的金属合金制备复杂零件的能力方面非常通用,但是该方法被限制为能够由相对少的合金钢(例如316L、17-4PH和马氏体时效钢M300)制备零件。在这些合金中,仅M300具有被认为足以将该合金分类为硬质合金(HV>370)的硬度。
扩展硬质PBF钢合金的材料宽度遇到了各种问题,其中居首的为在印刷工艺中或印刷工艺之后裂纹形成的出现。零件的开裂可由许多因素引起,例如热应力、热开裂和液化开裂,并且通常随着所制造零件的硬度提高和韧性降低,开裂的可能性提高。
许多产业对利用具有较高硬度材料(HV>370)的PBF用于应用例如刀具、拉模、模具、切割工具、齿轮、过滤器和轴承非常有兴趣。除了高硬度,这些应用通常还需要高强度、韧性、和耐腐蚀性、低温健康、低安全和管理风险、和低成本。
概述
金属性零件的逐层构造的方法,包括:提供颗粒形式的铁基合金,其包括元素Cr和Mo以及来自C、Ni、Cu、Nb、Si和N的至少三种元素,其中Cr以10.0重量%至19.0重量%存在,Mo以0.5重量%至3.0重量%存在,其中C以0至0.35重量%存在,Ni以0至4.0重量%存在,Cu以0至5.0重量%存在,Nb以0至1.0重量%存在,Si以0至1.0重量%存在且N以0至0.25重量%存在;
所述合金组成的余量含有Fe;和
通过将该合金熔化成熔融状态并冷却并且形成具有元素的凝固层来形成该合金的一个或多个层,其中固体层中每个具有2.0微米至200.0微米的形成状态厚度。包含一个或多个层的金属性零件具有以下性质:至少1000MPa的拉伸强度,至少640MPa的屈服强度,至少3.0%的延伸率,至少375的硬度(HV)。
本发明还涉及3D印刷的金属性零件,包含一个或多个铁基金属性合金层,其包括元素Cr和Mo以及来自C、Ni、Cu、Nb、Si和N的至少三种元素,其中Cr以10.0重量%至19.0重量%存在,Mo以0.5重量%至3.0重量%存在,其中C以0至0.35重量%存在,Ni以0至5.0重量%存在,Cu以0至5.0重量%存在,Nb以0至1.0重量%存在,Si以0至1.0重量%存在且N以0至0.25重量%存在,并且所述合金组成的余量含有Fe;
所述层具有2.0微米至200.0微米范围内的厚度;和
所述印刷的金属性零件显示至少1000MPa的拉伸强度,至少640MPa的屈服强度,至少3.0%的延伸率,和至少375的硬度(HV)。
附图简要描述
图1是在SLM 280 HL机器上制造的合金1(A10)的光学图像。
图2是在Trumpf TRUMAFORM LF 250 PBF机器上制造的合金1(A10)的光学图像。
图3是具有密度>99.5%在EOS机器上制造的合金1(A10)的光学图像。
图4显示制造状态合金1(A10)的10000倍SEM显微照片。
图5显示使用Thermo-Calc产生的合金1平衡相图。
图6显示渗碳之后在两个不同放大倍率下由合金5(表1)制成的零件的表面处的显微组织。
图7显示在渗碳的表面硬化合金5和合金8(表1)中硬度与深度的关系。
图8显示渗氮之后在两个不同放大倍率下合金9(表1)的零件的表面处的显微组织。
图9显示在渗氮的表面硬化合金8和9(表1)中硬度与深度的关系。
详细描述
已经开发了新一类钢合金,其在“制造状态”和在“热处理的”状态都结合优异的可印刷性与高硬度(>375HV)、高屈服和拉伸强度、和高延展性,以及低安全(EH&S)和管理风险和相对低的成本。
合金的可印刷性为在所制造的零件中没有开裂或过多孔隙的情况下在各种商用PBF机器上印刷金属合金的容易性。本文将制造状态条件理解为在从PBF机器取出时PBF制造零件的条件,即没有任何制造后热处理。本文将热处理的条件理解为已经经历了制造后热处理的PBF制造零件的条件。本文合金能够3D印刷,其是指产生三维物体的方法。
表1以下列出本文优选采用的合金化学组成,其包括合金1(A10)和然后10种额外的合金共计11种合金:
表1-合金化学组成(重量%)
Figure BDA0002044274340000041
因此,可从以上领会技术人员以颗粒形式提供金属合金,其包含Fe、Cr和Mo和来自C、Ni、Cu、Nb、Si和N的至少三种或更多种元素,或基本上由Fe、Cr和Mo和来自C、Ni、Cu、Nb、Si和N的至少三种或更多种元素组成,或由Fe、Cr和Mo和来自C、Ni、Cu、Nb、Si和N的至少三种或更多种元素组成,其中Cr以10.0重量%至19.0重量%存在,Mo以0.5重量%至3.0重量%存在,并且其中C以0至0.35重量%存在,Ni以0至5.0重量%存在,Cu以0至5.0重量%存在,Nb以0至1.0重量%存在,Si以0至1.0重量%存在和N以0至0.25重量%存在。所述合金组成的余量含有Fe。因此,对于给出的合金配制剂,技术人员可从C、Ni、Cu、Nb、Si和N选择四种元素、五种元素或全部六种元素。
在优选实施方案中,技术人员再一次提供以颗粒形式的金属合金,其包含Fe、Cr和Mo和来自C、Ni、Cu、Nb、Si和N的至少三种或更多种元素,或基本上由Fe、Cr和Mo和来自C、Ni、Cu、Nb、Si和N的至少三种或更多种元素组成,或由Fe、Cr和Mo和来自C、Ni、Cu、Nb、Si和N的至少三种或更多种元素组成,其中Cr以10.0重量%至18.3重量%存在,Mo以0.5重量%至2.5重量%存在,并且其中C以0至0.30重量%存在,Ni以0至4.0重量%存在,Cu以0至4.0重量%存在,Nb以0至0.7重量%存在,Si以0至0.7重量%存在和N以0至0.25重量%存在。所述合金组成的余量含有Fe。
此外,合金可包括一些量的不可避免的杂质,其中这样的杂质水平可为至多1.0重量%,例如以上未列出的元素还可以至多1.0重量%的水平存在,其中然后可将Fe的相应水平减小1.0重量%。关于杂质,注意到考虑这样包括例如硫、磷和氧的元素。
合金1(其之前被命名为合金A10)自身可具有以下优选组成:82.0至86.0重量%的Fe,10.5至12.0重量%的Cr,1.5至2.5重量%的Ni,0.4至0.7重量%的Cu,1.2至1.8重量%的Mo,0.14至0.18重量%的C,0.02至0.05重量%的Nb,0.04至0.07重量%的N和0-1.0重量%的Si。
以粉末颗粒或线形式将金属合金提供至PBF方法,并且优选使用常规熔化与利用气体例如氮气或氩气的气体离心雾化、或水雾化来制备金属合金。可使用氮气体熔化和雾化来提高粉末合金中的氮含量。粉末颗粒可具有在1至200微米、更优选从3至70微米和最优选从15至53微米范围内的直径。
优选由本文金属合金使用可商购得到的常规PBF机器例如
Figure BDA0002044274340000051
280HL或EOS M-280和Trumpf TRUMAFORM LF 250来制造PBF零件。优选在氮或氩气氛中制造零件。可在预加热最高达300℃、例如在100℃至300℃范围内、且更优选在20℃至200℃范围内的金属基材上制造零件。另外,可不采用基材的预加热。对于本文的PBF工序而言技术人员可利用一个或多个具有30至500J/m3、更优选在50J/mm3至300J/m3范围内和最优选在60J/mm3至200J/mm3范围内的能量密度的激光或电子束。
金属基材优选由表1中合金1-11组成或者来自其他材料例如来自304L型不锈钢。本文PBF工序涵盖单个层的累积,每个层具有通常在2.0微米至200.0微米、更优选5.0微米至150.0微米和最优选5.0微米至120.0微米范围内的厚度。因此,对于累积层而言合适的厚度范围为2.0微米和更高。然而,更常见地,取决于给定印刷工序的能力或需要,对于累积层(单个层的组合)而言厚度范围为从2微米至800mm和甚至更高。
零件中的孔隙和开裂可消极地影响许多零件性质,包括强度、韧性、和耐疲劳性。如此,对于致密零件而言期望在PBF零件中使孔隙和开裂最小化。零件中的孔隙优选小于1.0%,更优选小于0.5%,和最优选小于0.2%,即使一些大的零件可承受更高的孔隙水平,例如大于1.0%至15.0%的孔隙率。在图1-3中所示的横截面光学显微照片图像中证明了在使用本文金属合金的制造状态PBF零件中低孔隙和没有开裂,所述图像分别采集自在SLM280HL和Trumpf TRUMAFORM LF 250 PBF机器和EOS M280/290上使用合金1(A10)制造的零件。在没有预加热的基材上制造图1-3中所示的零件至10mm的高度(使用0.040mm厚的层,在零件中共计250层)。使用100倍放大倍率下的光学图像分析测量孔隙率并且合金1显示小于0.2%的孔隙率。
在制造零件后优选热处理PBF零件从而能够实现相对高的硬度、强度和延性。由于在制造零件时零件中的热应力和热疲劳,以及高硬度合金通常低的韧性和延性,在制造零件时原位实现高硬度而没有开裂是相对困难的。PBF使用能量源来产生小的快速横移的熔融金属焊接熔池来选择性熔化粉末层中的粉末,其然后再次凝固从而在零件中添加下一层。横移的焊接熔池的热大部分传导至零件中,其导致升高总体零件温度并在焊接熔池的局部附近中提供相对大的温度梯度。由于零件中的热梯度和相转变,在PBF零件制造过程中可在零件中出现大的连续且循环的热应力。因此零件优选具有足够的强度、韧性、和延性来在局部应力条件下抵抗裂纹形成和在连续且循环的应力下抵抗裂纹扩展。
“制造状态”合金性质:表2显示在制造状态条件下(没有之后热处理)使用商用PBF钢合金和来自表1的合金1(A10)制备的PBF零件的对比机械性质。在没有预加热的基材上PBF制造至10mm高度(使用0.040mm厚的层,在零件中共计250层)的零件上测量合金1(A10)的性质。表2显示与商业应用的不含裂纹的钢合金对比,本文金属合金的提高的硬度和强度。
表2
Figure BDA0002044274340000071
关于表2中的硬度数据,值得注意的是所报道的硬度使得观察到其为合金组成以及所采用的印刷工序的函数。因此,在例如M300的情况下,取决于印刷工序,印刷硬度可变化使得HV硬度可在320至370的范围内。
表3以下现在提供在“AB”或制造状态条件下(没有热处理)和在条件“B1”下(其是指热处理,本文进一步讨论所述热处理)在表1中确定的所有合金的机械性质:
表3
Figure BDA0002044274340000072
因此,可从以上领会本文合金在制造状态条件下(没有热处理)使得它们显示至少1000MPa、更优选至少1100MPa、或至少1200MPa、和甚至更优选至少1300MPa的拉伸强度。此外,现在可领会本文制造状态合金的拉伸强度落入1000MPa至1900MPa、或1100MPa至1900MPa、或1200MPa至1900MPa、或1300MPa至1900MPa范围内。
与至少640MPa、或至少700MPa、或至少800MPa、或至少900MPa、或至少1000MPa、或至少1100MPa、或至少1200MPa、或至少1300MPa、或至少1400MPa、或至少1500MPa的屈服强度结合实现以上拉伸强度。此外,现在可领会本文制造状态合金的屈服强度落入640MPa至1500MPa范围内。
此外,还优选与至少3%、4%、5%、6%、7%、8%、9%、10%、11%等直至25%的延伸率结合实现以上拉伸强度和屈服强度。此外,可领会本文制造状态合金的延伸率落入3%至25%范围内。
然后优选与至少375、400、410、420、430、440等直至600的硬度(HV)值结合实现以上拉伸强度、屈服强度和延伸率。此外,可领会本文合金的HV值落入375至600范围内。
因此,应领会本文合金使得它们可提供在制造状态条件下至少1000MPa的拉伸强度、至少640MPa的屈服强度和至少3%的延伸率和至少375的硬度(HV)值。现在可从对于未热处理的合金而言本文指出的拉伸强度、屈服强度、延伸率和硬度的单个优选水平选择拉伸强度、屈服强度、延伸率和硬度的其他组合。
图4显示PBF制备的制造状态合金1(A10)零件的10000倍二次电子扫描电子显微术(SEM)显微照片。在没有预加热的基材上制造图4中所示零件至10mm的高度(使用0.040mm厚的层,在零件中共计250层)。在Jeol JSM-7001F场发射SEM上进行SEM成像。考虑图4中的显微组织含有BCC/马氏体、FCC、M2CN和M7C3
图5显示使用Thermo-Calc产生的合金1(A10)平衡相图,其显示在从20℃至1500℃温度范围内热力学稳定的每种相的相分数。使用平衡相图来确定具有对提高硬度和强度有贡献的最高可能性的相。
考虑了在制造过程中PBF零件提高的温度(这是由从横移的焊接熔池至零件的热转移引起的)可在本文金属合金中足够高以驱动对于合金1(A10)而言图5相图中所示的第二相(例如Cu富集的FCC相、M2N((Cr,Mo)2N)相、和M23C6((Cr,Fe,Mo)23C6)相)的原位析出。期望在零件制造过程中这些相的原位析出对制造状态条件下零件强度和硬度有贡献。
“热处理”:可通过热处理进一步增强使用本文金属合金制备的PBF零件来提高零件的强度和硬度。考虑了可进行各种热处理来影响零件性质并且可从平衡相图选择热处理温度。
考虑对于本文金属合金而言有效的热处理包括(1)高温固溶(溶解一种或多种第二相)、淬火、和回火(第二相的析出)和/或(2)制造状态零件的回火,其中在真空、氩或氮气氛中进行每个热处理步骤。优选在大于900℃和例如在900℃至1400℃范围内的温度下进行固溶,并且优选在150-900℃范围内的温度下进行回火。
(1)考虑高温固溶和淬火步骤从而:
a.减小可由PBF方法产生的零件中的各向异性,
b.提高马氏体含量并由此提高硬度和可能的强度
c.溶解可负面影响零件耐腐蚀性的Cr碳化物和/或Cr氮化物,
d.使未溶解的碳化物和/或氮化物粗化。
(2)考虑由随后的回火处理引发通过额外析出各种相来进一步强化和硬化零件。
“热处理”-工序:使用图5中的平衡相图来选择对于来自合金1(A10)的PBF零件而言的固溶和回火温度。在合金1(A10)PBF零件上使用的热处理由以下组成:在1000℃下固溶1.5小时,然后气体淬火至-84℃2小时,并最后在氩中在454℃下回火48小时来强化和硬化零件。
“热处理的”-合金性质:在使合金经历它们制造者规定的PBF零件热处理之后,与商用PBF钢合金一起,在表4中显示热处理的PBF合金1(A10)零件的性质。在表3中还列出热处理的合金1、4、5、6、7、9、0、10和11的性质。在没有预加热的基材上PBF制造至10mm
高度(使用0.040mm厚的层,在零件中共计250层)的热处理的零件上测量合金1(A10)的性质。在热处理的零件的表面处获得表4中所示合金1(A10)的硬度。
表4
Figure BDA0002044274340000101
因此,可从表3和4领会按照热处理的本文合金使得它们显示至少1000MPa、或至少1100MPa、或至少1200MPa、或至少1300MPa、或至少1400MPa、或至少1500MPa、或至少1600MPa、或至少1700MPa、或至少1800MPa的拉伸强度。此外,可领会热处理的合金具有在1000MPa至1900MPa范围内的拉伸强度。
与至少900MPa、或至少或至少1000MPa、或至少1100MPa、或至少1200MPa、或至少1300MPa、或至少1400MPa、或至少1500MPa、或至少1600MPa的屈服强度结合实现这样的拉伸强度。此外,可领会本文热处理的合金具有在900MPa至1600MPa范围内的屈服强度。
还优选与至少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%等直至16%的延伸率结合实现这样的拉伸强度和屈服强度。此外,可领会本文热处理的合金具有在1%至16%范围内的延伸率。
然后优选与至少至少475、或至少500、或至少525、或至少550、或至少600的硬度(HV)值结合实现这样的拉伸强度、屈服强度和延伸率。此外,可领会本文热处理的合金具有在475至650范围内的HV值。
因此,应领会使用热处理的本文合金使得它们可提供例如至少1000MPa的拉伸强度、至少900MPa的屈服强度和至少1%的延伸率和至少475的硬度(HV)值。现在可从对于热处理的合金而言本文指出的拉伸强度、屈服强度、延伸率和硬度的单个优选水平选择拉伸强度、屈服强度、延伸率和硬度的其他组合。
表4显示热处理没有将316L和17-4PH的硬度提高至可将任一合金分类为硬质合金(HV>370)的水平。仅热处理之后的M-300的硬度值使该合金分类为硬质合金(HV>370)并且当需要硬质合金时M300是增材制造中目前主要的合金选择。然而,M-300的应用空间高度受限制,因为在这样的硬度水平下M300的特征仅显示低的延伸率(2%),其显示当暴露于甚至小的冲击力例如将零件跌落至地面时,零件开裂或经历破碎的趋势。因此,M300的应用发现相对受限制的工业用途。
另外,M300合金含有大浓度的相对高成本元素(18重量%Ni、9重量%Co和5重量%Mo),并且因此将不被认为是低成本合金,从而进一步限制其工业用途。最后,由于它的高钴含量赋予它的潜在EH&S和产品管理风险,进一步限制M-300的工业用途。已知钴在吸入后为健康风险和由于它分类为冲突矿物的管理风险,因为钴主要来自刚果共和国。
与此相反,与目前既有的M300对比,热处理的合金1(A10)具有许多益处。合金1(A10)具有更高的硬度、更高的延伸率、更低的成本结构,并且优选不含钴。
表面硬化处理-可通过渗碳和渗氮表面硬化处理进一步增强由本文金属合金制备的PBF零件的表面硬度。这些处理分别将碳和氮引入至零件的表面,从而产生相对于“制造状态”或“热处理的”条件具有提高的硬度的表面层,同时在芯部维持热处理的性质。考虑了也可使用用于表面硬化所采用的其他处理例如碳氮共渗。
渗碳-对于本文金属合金而言渗碳方法优选包括以下步骤的组合:氧化物还原、渗碳、固溶、淬火和回火。在还原气氛中优选在800℃和1200℃之间、更优选在900℃和1150℃之间、和最优选在950℃和1100℃之间的温度下进行氧化物还原。通过在零件周围的气氛或环境中(例如块体(pack)、气体、真空、液体和等离子渗碳)优选在800℃和1000℃之间、更优选在850℃和975℃之间、和最优选在875℃和950℃之间的温度下提供或产生碳源的方法来进行渗碳。
渗碳导致在零件表面处碳富集,从而导致对于合金5而言与图6中两种不同放大倍率下看到的芯部的显微组织相比具有不同显微组织的材料层。这种组织导致为优选650至1000HV、更优选700至975HV、和最优选800至950HV的外表面处最大硬度。随着距外表面的距离(即进入零件的深度)提高,则硬度逐渐降低,直至其在芯部达到与本文讨论的热处理的值类似的稳定状态值。图7中看到渗碳的表面硬化合金5和8中硬度与深度关系的代表性实例。可类似地通过具有类似效果的渗碳方法来表面硬化本文所列的其他合金。可在表面向下至至少2.0mm和至多4.0mm的深度处提高碳水平。
渗氮-对于本文金属合金而言渗碳方法包括以下步骤的组合:固溶、淬火和回火。考虑了可通过其他渗氮方法(包括等离子和液体渗氮方法)将氮引入至零件表面。图8中说明零件表面处氮富集导致对于合金9(表1)而言与在两种不同放大倍率下看到的芯部的显微组织相比具有不同显微组织的材料层。这种组织导致为优选700至1300HV、更优选750至1250HV、和最优选825至1225HV的外表面处最大硬度。随着距外表面的距离(即进入零件的深度)提高,则硬度逐渐降低,直至其在芯部达到与本文讨论的热处理的值类似的稳定状态值。图9中看到渗氮的表面硬化合金8和9中硬度与深度关系的代表性实例。如可见的,从表面向下至至少200μm和至多400μm的深度氮水平提高。可类似地通过具有类似效果的渗氮方法来表面硬化本文所列的其他合金。

Claims (22)

1.金属性零件的逐层构造的方法,包括:
提供颗粒形式的铁基合金,其包括元素C、Cr和Mo以及来自Ni、Cu、Nb、Si和N的至少两种元素,其中C以0.1至0.35重量%存在,Cr以10.0重量%至19.0重量%存在,Mo以0.5重量%至3.0重量%存在,其中Ni以0至5.0重量%存在,Cu以0至5.0重量%存在,Nb以0至1.0重量%存在,Si以0至1.0重量%存在且N以0至0.25重量%存在;
所述合金组成的余量含有Fe;和
至少部分通过粉末层熔融来形成该合金的一个或多个层包括将该合金熔化成熔融状态并冷却并且形成元素的凝固层,其中固体层中每个具有2.0微米至200.0微米的形成状态厚度;
所述金属性零件具有以下性质:至少1000MPa的拉伸强度,至少640MPa的屈服强度,至少3.0%的延伸率,至少375的硬度(HV)。
2.根据权利要求1所述的方法,其中Cr以10.0重量%至18.3重量%存在,Mo以0.89重量%至2.5重量%存在,C以0.1至0.30重量%存在,Ni以0至2.5重量%存在,Cu以0至2.56重量%存在,Nb以0至0.7重量%存在,Si以0至0.7重量%存在和N以0至0.25重量%存在,余量为Fe。
3.根据权利要求1所述的方法,其中所述合金包含82.0重量%至86.0重量%的Fe,10.5重量%至12.0重量%的Cr,1.5重量%至2.5重量%的Ni,0.4重量%至0.7重量%的Cu,1.2重量%至1.8重量%的Mo,0.14重量%至0.18重量%的C,0.02重量%至0.05重量%的Nb,0.04至0.07重量%的N和0至1.0重量%的Si。
4.根据权利要求1所述的方法,其中所述金属性零件具有以下性质:1000MPa至1900MPa的拉伸强度,640MPa至1500MPa的屈服强度,3.0%至25.0%的延伸率,和375至600的硬度(HV)。
5.根据权利要求1所述的方法,其中所述层具有2.0微米至200微米的厚度。
6.根据权利要求1所述的方法,其中通过具有的能量密度在30J/mm3至500J/mm3范围内的激光或电子束实现熔化。
7.根据权利要求1所述的方法,其中在氮和/或氩气氛中制造该金属性零件。
8.根据权利要求1所述的方法,其中在预加热至小于或等于300℃的温度的基材上制造所述金属性零件。
9.根据权利要求1所述的方法,其中该金属性零件经历在大于900℃的温度下固溶然后气体淬火和冷却。
10.根据权利要求9所述的方法,其中在处于或大于150℃的温度下将冷却之后的所述金属性零件回火。
11.根据权利要求9所述的方法,其中所述合金显示至少1000MPa的拉伸强度,至少900MPa的屈服强度,至少1.0%的延伸率和至少475的硬度(HV)。
12.根据权利要求1所述的方法,其中使所述金属性零件渗碳以提高从表面向下至4.0mm深度的碳水平。
13.根据权利要求1所述的方法,其中使所述金属性零件渗氮以提高从表面向下至400μm深度的氮水平。
14.根据权利要求1所述的方法,其中合金包括选自Ni、Cu、Nb、Si和N的至少三种元素。
15.根据权利要求1所述的方法,其中所述合金包括选自Ni、Cu、Nb、Si和N的至少四种元素。
16.根据权利要求1所述的方法,其中所述合金包括Ni、Cu、Nb、Si和N。
17.一种3D印刷的金属性零件,包含:
一个或多个铁基金属性合金层,其包括元素C、Cr和Mo以及来自Ni、Cu、Nb、Si和N的至少两种元素,其中C以0.1至0.35重量%存在,Cr以10.0重量%至19.0重量%存在,Mo以0.5重量%至3.0重量%存在,其中Ni以0至5.0重量%存在,Cu以0至5.0重量%存在,Nb以0至1.0重量%存在,Si以0至1.0重量%存在且N以0至0.25重量%存在,并且所述合金组成的余量含有Fe;
所述层具有2.0微米至200.0微米范围内的厚度;和
所述印刷的金属性零件显示至少1000MPa的拉伸强度,至少640MPa的屈服强度,至少3.0%的延伸率,和至少375的硬度(HV)。
18.根据权利要求17所述的印刷的金属性零件,其中Cr以10.0重量%至18.3重量%存在,Mo以0.89重量%至2.5重量%存在,C以0.1至0.30重量%存在,Ni以0至2.5重量%存在,Cu以0至2.56重量%存在,Nb以0至0.7重量%存在,Si以0至0.7重量%存在且N以0至0.25重量%存在,余量为Fe。
19.根据权利要求17所述的印刷的金属性零件,其中所述合金包括选自Ni、Cu、Nb、Si和N的至少三种元素。
20.根据权利要求17所述的印刷的金属性零件,其中所述合金包括选自Ni、Cu、Nb、Si和N的至少四种元素。
21.根据权利要求17所述的印刷的金属性零件,其中所述合金包括Ni、Cu、Nb、Si和N。
22.根据权利要求17所述的印刷的金属性零件,其中所述零件显示1000MPa至1900MPa的拉伸强度,640MPa至1500MPa的屈服强度,3.0%至25.0%的延伸率,和375至600的硬度(HV)。
CN201780067209.1A 2016-11-01 2017-11-01 用于粉末层熔融的可3d印刷的硬质含铁金属性合金 Active CN109890552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211024979.7A CN115584434A (zh) 2016-11-01 2017-11-01 用于粉末层熔融的可3d印刷的硬质含铁金属性合金

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662415667P 2016-11-01 2016-11-01
US62/415,667 2016-11-01
PCT/US2017/059449 WO2018085332A1 (en) 2016-11-01 2017-11-01 3d printable hard ferrous metallic alloys for powder bed fusion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202211024979.7A Division CN115584434A (zh) 2016-11-01 2017-11-01 用于粉末层熔融的可3d印刷的硬质含铁金属性合金

Publications (2)

Publication Number Publication Date
CN109890552A CN109890552A (zh) 2019-06-14
CN109890552B true CN109890552B (zh) 2022-09-16

Family

ID=62021123

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780067209.1A Active CN109890552B (zh) 2016-11-01 2017-11-01 用于粉末层熔融的可3d印刷的硬质含铁金属性合金
CN202211024979.7A Pending CN115584434A (zh) 2016-11-01 2017-11-01 用于粉末层熔融的可3d印刷的硬质含铁金属性合金

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202211024979.7A Pending CN115584434A (zh) 2016-11-01 2017-11-01 用于粉末层熔融的可3d印刷的硬质含铁金属性合金

Country Status (13)

Country Link
US (1) US10920295B2 (zh)
EP (1) EP3535086A4 (zh)
JP (2) JP7121001B2 (zh)
KR (2) KR20230090376A (zh)
CN (2) CN109890552B (zh)
AU (1) AU2017355375B2 (zh)
BR (1) BR112019008959B1 (zh)
CA (1) CA3041682A1 (zh)
IL (2) IL266276A (zh)
MX (1) MX2019005067A (zh)
SG (1) SG11201903856YA (zh)
WO (1) WO2018085332A1 (zh)
ZA (1) ZA201903115B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210245248A1 (en) * 2017-01-24 2021-08-12 Sodick Co., Ltd. Method for producing three-dimensional molded object
JP6703511B2 (ja) * 2017-10-27 2020-06-03 山陽特殊製鋼株式会社 造形用のFe基金属粉末
CN108642392B (zh) * 2018-06-12 2020-04-07 东北大学 一种激光增材制造用低碳高铬合金钢粉末及制备方法
CN109128204B (zh) * 2018-09-27 2021-09-28 江苏理工学院 一种FeCrNiB系高强高耐磨合金及其激光熔覆层的制备方法
DE112020002099T5 (de) * 2019-04-24 2022-01-20 Formetrix, Inc. 3D-Druckbare harte Eisenmetalllegierungen für Pulverbettfusion
CA3044930C (en) * 2019-05-31 2023-08-29 Apollo Machine & Welding Ltd. Hybrid process for enhanced surface hardening
KR20220058936A (ko) 2019-09-06 2022-05-10 바스프 에스이 비구형 입자를 함유하는 철계 합금 분말
WO2021078885A1 (en) * 2019-10-22 2021-04-29 Kanthal Ab Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof
EP3892403A1 (de) * 2020-04-08 2021-10-13 Heraeus Additive Manufacturing GmbH Additive fertigung von refraktärmetallen mit reduziertem verunreinigungsgrad
WO2021211685A1 (en) * 2020-04-14 2021-10-21 Maclean-Fogg Company Printable hard ferrous metallic alloys for additive manufacturing by direct energy deposition processes
WO2021214958A1 (ja) * 2020-04-24 2021-10-28 ヤマハ発動機株式会社 ステンレス鋼からなる造形用粉末または造形用ワイヤ
US11885027B2 (en) 2020-04-29 2024-01-30 Swagelok Company Activation of self-passivating metals using reagent coatings for low temperature nitrocarburization
JP2023541842A (ja) * 2020-09-10 2023-10-04 スウェージロック カンパニー 付加製造物品及び材料の低温表面硬化ならびに表面改質の標的塗布
GB202019374D0 (en) * 2020-12-09 2021-01-20 Renishaw Plc Manufacturing method
CN113199030B (zh) * 2021-04-25 2023-08-15 西安建筑科技大学 一种利用离子渗氮制备3d打印不锈钢粉末的方法
KR102562188B1 (ko) 2021-10-29 2023-08-01 한국생산기술연구원 금속적층가공용 합금소재 및 이를 이용하여 제조된 금형 또는 금속 부품 제조와 보수 방법
KR102562199B1 (ko) 2021-11-18 2023-08-01 한국생산기술연구원 금속적층가공용 기능성 철 합금소재 및 이를 이용한 금형 제조 기술
WO2023183409A1 (en) * 2022-03-22 2023-09-28 Maclean-Fogg Company 3d printed die and die holder
CN115074657A (zh) * 2022-06-22 2022-09-20 福建华开电力科技有限公司 一种金属材料的表面热处理加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1307312A1 (de) * 2000-08-07 2003-05-07 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Verfahren zur herstellung präziser bauteile mittels lasersintern
CN1431332A (zh) * 2002-12-31 2003-07-23 武汉材料保护研究所 激光熔敷专用铁基合金粉末
EP1992709A1 (en) * 2007-05-14 2008-11-19 EOS GmbH Electro Optical Systems Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder
CN101974724A (zh) * 2010-11-24 2011-02-16 上海交通大学 高强韧性激光熔敷涂层用铁基合金粉末
CN105722636A (zh) * 2013-11-12 2016-06-29 西门子能源公司 利用可变掩蔽对粉末状材料的床的激光处理

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235212B2 (en) * 2001-02-09 2007-06-26 Ques Tek Innovations, Llc Nanocarbide precipitation strengthened ultrahigh strength, corrosion resistant, structural steels and method of making said steels
US6030472A (en) * 1997-12-04 2000-02-29 Philip Morris Incorporated Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
US20050129563A1 (en) * 2003-12-11 2005-06-16 Borgwarner Inc. Stainless steel powder for high temperature applications
JP2005343768A (ja) * 2004-06-07 2005-12-15 Toyota Central Res & Dev Lab Inc 金属/セラミック接合体及びその製造方法
JP4386364B2 (ja) * 2005-07-07 2009-12-16 株式会社日立製作所 蒸気タービン用配管とその製造法及びそれを用いた蒸気タービン用主蒸気配管と再熱配管並びに蒸気タービン発電プラント
EP2010754A4 (en) * 2006-04-21 2016-02-24 Shell Int Research ADJUSTING ALLOY COMPOSITIONS FOR SELECTED CHARACTERISTICS IN TEMPERATURE-LIMITED HEATERS
KR20080110623A (ko) * 2006-04-21 2008-12-18 제이에프이 스틸 가부시키가이샤 템퍼링 연화 저항이 큰 브레이크 디스크
WO2009126954A2 (en) 2008-04-11 2009-10-15 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
DE112011101779T5 (de) * 2010-05-25 2013-03-14 Panasonic Corporation Metallpulver zum selektiven Lasersintern, Verfahren zur Herstellung eines dreidimensionalen Formgegenstands unter Verwendung desselben und davon erhaltener dreidimensionaler Formgegenstand
GB2519190B (en) * 2012-02-24 2016-07-27 Malcolm Ward-Close Charles Processing of metal or alloy objects
GB201209482D0 (en) * 2012-05-29 2012-07-11 Element Six Gmbh Polycrystalline material,bodies comprising same,tools comprising same and method for making same
FR2998496B1 (fr) * 2012-11-27 2021-01-29 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines Procede de fabrication additive d'une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie
CN116377301A (zh) * 2013-10-17 2023-07-04 Xjet有限公司 用于3d喷墨打印的碳化钨/钴油墨组合物
WO2015091366A1 (en) * 2013-12-20 2015-06-25 Höganäs Ab (Publ) A method for producing a sintered component and a sintered component
JP2017507251A (ja) * 2014-01-27 2017-03-16 ロバルマ, ソシエダッド アノニマRovalma, S.A. 鉄系合金の遠心噴霧法
JP6270563B2 (ja) * 2014-03-14 2018-01-31 山陽特殊製鋼株式会社 焼結−時効処理後に高強度が得られる析出硬化型ステンレス鋼粉末およびその製造方法並びにその成形体
US10011894B2 (en) * 2014-03-14 2018-07-03 Sanyo Special Steel Co., Ltd. Precipitation-hardening stainless steel powder and sintered compact thereof
CN106457769B (zh) * 2014-05-16 2019-09-17 纳米钢公司 金属性材料的分层构造
EP3253516B1 (en) 2015-02-03 2021-09-22 The Nanosteel Company, Inc. Infiltrated ferrous materials
JP2016160454A (ja) * 2015-02-27 2016-09-05 日本シリコロイ工業株式会社 レーザー焼結積層方法、熱処理方法、金属粉末、及び、造形品
JP6112262B2 (ja) * 2015-03-03 2017-04-12 新日鐵住金株式会社 固体高分子形燃料電池セパレータ用ステンレス薄鋼板
US9764384B2 (en) * 2015-04-14 2017-09-19 Honeywell International Inc. Methods of producing dispersoid hardened metallic materials
CN105039869B (zh) * 2015-08-11 2017-10-27 中国人民解放军装甲兵工程学院 一种马氏体不锈钢零件激光再制造用合金粉末及制备方法
US10583532B2 (en) * 2015-12-28 2020-03-10 General Electric Company Metal additive manufacturing using gas mixture including oxygen
US20160184897A1 (en) * 2016-03-10 2016-06-30 Caterpillar Inc. Method of producing a three-dimensional component
US10953465B2 (en) * 2016-11-01 2021-03-23 The Nanosteel Company, Inc. 3D printable hard ferrous metallic alloys for powder bed fusion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1307312A1 (de) * 2000-08-07 2003-05-07 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Verfahren zur herstellung präziser bauteile mittels lasersintern
CN1431332A (zh) * 2002-12-31 2003-07-23 武汉材料保护研究所 激光熔敷专用铁基合金粉末
EP1992709A1 (en) * 2007-05-14 2008-11-19 EOS GmbH Electro Optical Systems Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder
CN101974724A (zh) * 2010-11-24 2011-02-16 上海交通大学 高强韧性激光熔敷涂层用铁基合金粉末
CN105722636A (zh) * 2013-11-12 2016-06-29 西门子能源公司 利用可变掩蔽对粉末状材料的床的激光处理

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Si,Al对激光熔覆MoFeCrTiW高熵合金涂层组织性能的影响;周芳等;《强激光与粒子束》;20151115(第11期);全文 *

Also Published As

Publication number Publication date
WO2018085332A1 (en) 2018-05-11
EP3535086A4 (en) 2020-06-17
BR112019008959A2 (pt) 2019-07-09
AU2017355375A1 (en) 2019-05-23
US10920295B2 (en) 2021-02-16
EP3535086A1 (en) 2019-09-11
KR20190082220A (ko) 2019-07-09
ZA201903115B (en) 2020-01-29
JP2020509152A (ja) 2020-03-26
CN109890552A (zh) 2019-06-14
KR20230090376A (ko) 2023-06-21
BR112019008959B1 (pt) 2023-01-10
US20180119239A1 (en) 2018-05-03
JP2022166097A (ja) 2022-11-01
SG11201903856YA (en) 2019-05-30
CA3041682A1 (en) 2018-05-11
CN115584434A (zh) 2023-01-10
KR102545083B1 (ko) 2023-06-19
MX2019005067A (es) 2019-08-21
IL304368A (en) 2023-09-01
JP7121001B2 (ja) 2022-08-17
IL266276A (en) 2019-06-30
AU2017355375B2 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
CN109890552B (zh) 用于粉末层熔融的可3d印刷的硬质含铁金属性合金
Haghdadi et al. Additive manufacturing of steels: a review of achievements and challenges
US20210301362A1 (en) 3d printable hard ferrous metallic alloys for powder bed fusion
JP5618978B2 (ja) 鋼、鋼ブランクの製造方法、およびこの鋼製の部品を製造する方法
CA2949389C (en) Layered construction of metallic materials
TW201042058A (en) Carburized steel part
CN107406942B (zh) 软氮化用钢及部件及其制造方法
WO2013087379A1 (de) Wälzlagerkomponente
CN109663906B (zh) 金属粉末层压造形用的金属粉末材料及三维造形物
JP6301145B2 (ja) スリーブ・ドッグギヤ
WO2019102584A1 (ja) はだ焼鋼の鍛造熱処理品
KR20170105138A (ko) 열간 가공 공구 강 및 열간 가공 공구 강 제조를 위한 방법
JP2019116688A (ja) 粉末高速度工具鋼
CN106574335A (zh) 热作工具材料、热作工具的制造方法及热作工具
WO2020219345A1 (en) 3d printable hard ferrous metallic alloys for powder bed fusion
KR102356521B1 (ko) 균일한 강 합금 및 공구
US20230166330A1 (en) Printable hard ferrous metallic alloys for additive manufacturing by direct energy deposition processes
JP2022123411A (ja) 精密切削性に優れるマルテンサイト系快削ステンレス鋼
JP2006249494A (ja) ブローチ加工性に優れた窒化部品用素材及びその製造方法
DE102011079955A1 (de) Stahl, Bauteil und Verfahren zum Herstellen von Stahl

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220825

Address after: Illinois, US

Applicant after: MacLean-Fogg Co.

Address before: Massachusetts

Applicant before: fumette Co.,Ltd.

Effective date of registration: 20220825

Address after: Connecticut USA

Applicant after: Horizon Tech Finance Corp.

Address before: Rhode Island USA

Applicant before: THE NANOSTEEL Co.,Inc.

Effective date of registration: 20220825

Address after: Massachusetts

Applicant after: fumette Co.,Ltd.

Address before: Connecticut USA

Applicant before: Horizon Tech Finance Corp.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant