CN113199030B - 一种利用离子渗氮制备3d打印不锈钢粉末的方法 - Google Patents

一种利用离子渗氮制备3d打印不锈钢粉末的方法 Download PDF

Info

Publication number
CN113199030B
CN113199030B CN202110446657.0A CN202110446657A CN113199030B CN 113199030 B CN113199030 B CN 113199030B CN 202110446657 A CN202110446657 A CN 202110446657A CN 113199030 B CN113199030 B CN 113199030B
Authority
CN
China
Prior art keywords
powder
ion nitriding
stainless steel
content
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110446657.0A
Other languages
English (en)
Other versions
CN113199030A (zh
Inventor
刘世锋
薛彤
王岩
魏瑛康
杨鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN202110446657.0A priority Critical patent/CN113199030B/zh
Publication of CN113199030A publication Critical patent/CN113199030A/zh
Application granted granted Critical
Publication of CN113199030B publication Critical patent/CN113199030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0896Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid particle transport, separation: process and apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及不锈钢3D打印技术领域,公开了一种利用离子渗氮制备3D打印不锈钢粉末的方法;具体包括:原料准备;将准备好的原料放入真空熔炼炉中,先将真空熔炼炉抽真空至真空度为0.1Pa~5Pa,再加热至混合物完全熔化成合金熔融液;雾化制粉,冷却形成粒径为3~80μm的粉末;筛分得到四种粒径不同的原始粉末,再按照进行质量比1:3~5:4~6:2的比例进行混合;对混合后的粉末进行离子渗氮;本发明能够大幅提升不锈钢粉末3D打印制品的耐腐蚀性能,以及改善打印制品的机械强度,提升不锈钢制品在一定的腐蚀介质中的使用寿命短。

Description

一种利用离子渗氮制备3D打印不锈钢粉末的方法
技术领域
本发明涉及不锈钢3D打印技术领域,具体是涉及一种利用离子渗氮制备3D打印不锈钢粉末的方法。
背景技术
3D打印技术是通过逐渐增加材料来制造零件的一种工艺方法,也称为增材制造。以其数字化、个性定制化、网络化为特点,解决了一些工程技术问题,已成为国内外研发热点。很多专家认为,3D打印技术会推动第三次工业革命。
不锈钢具有较好的耐蚀性、强度、耐氧化性、韧性和优良的可加工性等综合性能,已广泛应用于水电、化工、航空航天、能源等领域。不锈钢作为水电涡轮机的叶轮材料,通常在一定的腐蚀介质中服役,因此要求具有较高的耐腐蚀性能。离子渗氮技术是在低真空含氮气氛中,利用模具阴极和阳极之间产生的辉光放电进行渗氮的工艺,与气体渗氮相比,有渗入速度快、零件变形少、能源消耗少等优点。
目前3D打印不锈钢的耐腐蚀性和强度亟待进一步提升。针对耐腐蚀性,现有研究集中在后处理和制备抗腐蚀涂层上,耗费时间较长、成本高且工艺复杂。因此,提高不锈钢粉末在3D打印技术领域的耐腐蚀性与强度有重大意义,能够从源头上提高3D打印不锈钢产品的综合性能,提高不锈钢粉末3D打印制品的使用寿命。
发明内容
本发明解决的技术问题是:解决现有技术中不锈钢粉末3D打印制品耐腐蚀差、机械强度低,导致在一定的腐蚀介质中使用寿命短的问题。
本发明的技术方案是:一种利用离子渗氮制备3D打印不锈钢粉末的方法,包括以下步骤:
步骤一:原料准备
将铁、铜块、镍块、硅锰合金块及金属铬破碎至粒径3~8mm后,混合10~30min得到混合物;
步骤二:真空熔炼
将步骤一得到的混合物放入真空熔炼炉中,先将真空熔炼炉抽真空至真空度为0.1Pa~5Pa,再加热至混合物完全熔化成合金熔融液;
步骤三:雾化制粉
将步骤二得到的合金融合液通入雾化设备中,在雾化室中雾化分散成微小液滴后冷却形成粒径为3~80μm的原始粉末;
步骤四:筛分、混合
将步骤三得到的原始粉末进行筛分,分别得到粒径为3~15μm的原始粉末a,粒径为15~30μm的原始粉末b,粒径为30~56μm的原始粉末c,以及粒径为56~80μm的原始粉末d;
使得到的原始粉末a、原始粉末b、原始粉末c、原始粉末d按照质量比1:3~5:4~6:2的比例充分混合60~120min得到混合粉末;
步骤五:离子渗氮
对混合粉末进行真空清洗,然后烘干后放入离子氮化炉内,抽真空至0.1~5pa,充入氮气与氢气,控制离子氮化炉内气压为300~500Pa后,加热至500~580℃,保温30~40min后,进行6~12h的离子渗氮,渗氮时的电压为500~800V,随炉冷却至150℃后空气冷却;得到表面氮层厚度为0.03~0.12μm、物相组织为马氏体和残余奥氏体的不锈钢粉末。
进一步地,所述步骤二中具体的加热步骤是:先以500~700℃预热5~10min,然后升温至混合物开始熔化,充入高纯氩气至标准大气压,升温至混合物全部熔化,保温5~20min,得到合金熔融液。通过充入高纯氩气能够对合金熔融液实现有效保护,防止发生氧化及其它杂质掺入。
进一步地,以质量百分数计,步骤一所述混合物中Cr含量为16~18%,Cu含量为3~5%,Ni含量为3~5%,Si含量为0.5~1.5%,Mn含量为0.5~1.5%,C含量为0.05~0.07%,余量为Fe。通过调控Cr含量与Ni含量的比值实现在打印成型时沉积残余奥氏含量的主动调控,确保打印的不锈钢制件具有优良的耐腐蚀性能。
进一步地,步骤五中氮气与氢气按照体积比为1:1~6。通过调节氮气与氢气的比值能够控制氮势,确保不锈钢粉末在可控的氮气氛围内,确保渗氮层的均匀性。
进一步地,将粒径为10~30μm的钽粉末、粒径为10~30μm的铌粉末与步骤四得到的原始粉末a按照重量比为1:1:30~60充分混合,得到优化粉末A;用得到的优化粉末A替换步骤四得到的原始粉末a进行混合,得到优化混合粉末A;步骤五对优化混合粉末A进行离子渗氮。通过加入铌粉末、钽粉末能够在一定程度上改善不锈钢粉末在成型后的耐腐蚀性能。
进一步地,步骤五所述离子渗氮具体为:对优化混合粉末A进行真空清洗,然后烘干后放入离子氮化炉内,抽真空至0.1pa,充入氮气与氢气,控制离子氮化炉内气压为455Pa后,加热至560℃,保温30min后,进行8h的离子渗氮,渗氮时的电压为650V,随炉冷却至150℃后空气冷却;得到表面氮层厚度为0.12μm、物相组织为马氏体和残余奥氏体的不锈钢粉末;通过离子渗氮后的不锈钢粉末在后续3D打印过程中具有梯度残余奥氏体,因此打印制件硬度高,抗拉强度高,屈服强度高,耐腐蚀,用于3D打印成型过程中材料变形小、无开裂,耐磨性和耐腐蚀性能好。
进一步地,以质量百分数计,步骤一所述混合物中,Cr含量为17%,Ni含量为4%,Cu含量为4%,Mn含量为1.0%,Si含量为1.0%,N含量为0.5%,C含量为0.07%,P含量为0.04%,S含量为0.03%,Nb+Ta含量为0.25%,其余为Fe。17-4PH钢作为水电涡轮机的叶轮材料,通常在一定的腐蚀介质中使用,因此其本身具有一定的耐腐蚀性能,通过结合粉末离子渗氮能够有效提升其机械性能与耐腐蚀性。
进一步地,步骤五所述离子渗氮具体是:进行真空清洗,烘干后放入离子氮化炉内,抽真空至3pa,充入氮气与氢气,控制离子氮化炉内气压为450Pa后,加热至560℃,保温30min后,进行9h的离子渗氮,渗氮时的电压为650V,随炉冷却至150℃后空气冷却;其中氮气与氢气的体积比为1:3;得到表面氮层厚度为0.12μm、物相组织为马氏体和残余奥氏体的不锈钢粉末。经离子渗氮处理后的不锈钢粉料,在3D打印成型过后具有更强的耐腐蚀性、硬度和抗拉强度。
进一步地,步骤三所述雾化制粉采用水雾化设备进行制粉;水雾化压力高,制备出的粉末平均粒径较小且分布均匀,具有氧含量低,振实密度高的优点。
本发明的有益效果是:本发明通过真空熔炼、雾化制粉,再通过筛分特定粒径的粉末,最后通过离子渗氮能够得到用于3D打印性能优良的不锈钢粉末;由于现有用于不锈钢3D打印的不锈钢粉末熔覆宽度的搭接率太小,从而导致内部缺陷,造成打印制品强度低且耐腐蚀性差;本发明通过调节不锈钢粉末中稳定元素Cr当量与奥氏体稳定元素Ni当量的比值,实现在打印沉积中残余奥氏含量的主动调控,结合离子渗氮工艺有效提升3D打印成型件的耐磨性、硬度和抗拉强度;大幅提高3D不锈钢制品在一定的腐蚀介质中的使用寿命,相对于在打印制品表面增加抗腐蚀涂层,能够从根本上增强不锈钢材料的抗腐蚀性能。
附图说明
图1是本发明实施例1制备不锈钢粉末的形貌图;
具体实施方式
实施例1:
一种利用离子渗氮制备3D打印不锈钢粉末的方法,包括以下步骤:
步骤一:原料准备
将铁、铜块、镍块、硅锰合金块及金属铬破碎至粒径3mm后,混合10min得到混合物;混合物中Cr含量为16%,Cu含量为3%,Ni含量为3%,Si含量为0.5%,Mn含量为0.5%,C含量为0.05%,余量为Fe。
步骤二:真空熔炼
将步骤一得到的混合物放入真空熔炼炉中,先将真空熔炼炉抽真空至0.1Pa,再加热至混合物完全熔化成合金熔融液;
具体的加热步骤是:先以500℃预热5min,然后升温至混合物开始熔化,充入高纯氩气至标准大气压,升温至混合物全部熔化,保温5min,得到合金熔融液;
步骤三:雾化制粉
将步骤二得到的合金融合液通入水雾化设备中,在雾化室中雾化分散成微小液滴后冷却形成粒径为3~80μm的原始粉末;
步骤四:筛分、混合
将步骤三得到的原始粉末进行筛分,分别得到粒径为3~15μm的原始粉末a,粒径为15~30μm的原始粉末b,粒径为30~56μm的原始粉末c,以及粒径为56~80μm的原始粉末d;
使得到的原始粉末a、原始粉末b、原始粉末c、原始粉末d按照质量比1:3:4:2的比例充分混合60min得到混合粉末;
步骤五:离子渗氮
对混合粉末进行真空清洗,然后烘干后放入离子氮化炉内,抽真空至0.1pa,充入氮气与氢气,控制离子氮化炉内气压为300Pa后,加热至500℃,保温30min后,进行6h的离子渗氮,渗氮时的电压为500V,随炉冷却至150℃后空气冷却;其中氮气与氢气的体积比为1:1;最终得到表面氮层厚度为0.03μm、物相组织为马氏体和残余奥氏体的不锈钢粉末。
实施例2:
一种利用离子渗氮制备3D打印不锈钢粉末的方法,包括以下步骤:
步骤一:原料准备
将铁、铜块、镍块、硅锰合金块及金属铬破碎至粒径8mm后,混合30min得到混合物;混合物中Cr含量为18%,Cu含量为5%,Ni含量为5%,Si含量为1.5%,Mn含量为1.5%,C含量为0.07%,余量为Fe。
步骤二:真空熔炼
将步骤一得到的混合物放入真空熔炼炉中,先将真空熔炼炉抽真空至5Pa,再加热至混合物完全熔化成合金熔融液;
具体的加热步骤是:先以700℃预热10min,然后升温至混合物开始熔化,充入高纯氩气至标准大气压,升温至混合物全部熔化,保温20min,得到合金熔融液;
步骤三:雾化制粉
将步骤二得到的合金融合液通入水雾化设备中,在雾化室中雾化分散成微小液滴后冷却形成粒径为3~80μm的原始粉末;
步骤四:筛分、混合
将步骤三得到的原始粉末进行筛分,分别得到粒径为3~15μm的原始粉末a,粒径为15~30μm的原始粉末b,粒径为30~56μm的原始粉末c,以及粒径为56~80μm的原始粉末d;
使得到的原始粉末a、原始粉末b、原始粉末c、原始粉末d按照质量比1:5:6:2的比例充分混合120min得到混合粉末;
步骤五:离子渗氮
对混合粉末进行真空清洗,然后烘干后放入离子氮化炉内,抽真空至5pa,充入氮气与氢气,控制离子氮化炉内气压为500Pa后,加热至580℃,保温40min后,进行12h的离子渗氮,渗氮时的电压为800V,随炉冷却至150℃后空气冷却;其中氮气与氢气的体积比为1:6;最终得到表面氮层厚度为0.12μm、物相组织为马氏体和残余奥氏体的不锈钢粉末。
实施例3:
一种利用离子渗氮制备3D打印不锈钢粉末的方法,包括以下步骤:
步骤一:原料准备
将铁、铜块、镍块、硅锰合金块及金属铬破碎至粒径5mm后,混合20min得到混合物;混合物中Cr含量为17%,Cu含量为4%,Ni含量为4%,Si含量为1.0%,Mn含量为1.0%,C含量为0.06%,余量为Fe。
步骤二:真空熔炼
将步骤一得到的混合物放入真空熔炼炉中,先将真空熔炼炉抽真空至3Pa,再加热至混合物完全熔化成合金熔融液;
具体的加热步骤是:先以600℃预热7.5min,然后升温至混合物开始熔化,充入高纯氩气至标准大气压,升温至混合物全部熔化,保温12.5min,得到合金熔融液。
步骤三:雾化制粉
将步骤二得到的合金融合液通入水雾化设备中,在雾化室中雾化分散成微小液滴后冷却形成粒径为3~80μm的原始粉末;
步骤四:筛分、混合
将步骤三得到的原始粉末进行筛分,分别得到粒径为3~15μm的原始粉末a,粒径为15~30μm的原始粉末b,粒径为30~56μm的原始粉末c,以及粒径为56~80μm的原始粉末d;
使得到的原始粉末a、原始粉末b、原始粉末c、原始粉末d按照质量比1:4:5:2的比例充分混合90min得到混合粉末;
步骤五:离子渗氮
对混合粉末进行真空清洗,然后烘干后放入离子氮化炉内,抽真空至2pa,充入氮气与氢气,控制离子氮化炉内气压为400Pa后,加热至540℃,保温35min后,进行9h的离子渗氮,渗氮时的电压为650V,随炉冷却至150℃后空气冷却;其中氮气与氢气的体积比为1:3;最终得到表面氮层厚度为0.08μm、物相组织为马氏体和残余奥氏体的不锈钢粉末。
实施例4:
将粒径为10~30μm的钽粉末、粒径为10~30μm的铌粉末与步骤四得到的原始粉末a按照重量比为1:1:30充分混合,得到优化粉末A;
对优化混合粉末A进行真空清洗,然后烘干后放入离子氮化炉内,抽真空至0.1pa,充入氮气与氢气,控制离子氮化炉内气压为455Pa后,加热至560℃,保温30min后,进行8h的离子渗氮,渗氮时的电压为650V,随炉冷却至150℃后空气冷却;其中氮气与氢气的体积比为1:3;得到表面氮层厚度为0.12μm、物相组织为马氏体和残余奥氏体的不锈钢粉末。
实施例5:
将粒径为10~30μm的钽粉末、粒径为10~30μm的铌粉末与步骤四得到的原始粉末a按照重量比为1:1:60充分混合,得到优化粉末A;
对优化混合粉末A进行真空清洗,然后烘干后放入离子氮化炉内,抽真空至2pa,充入氮气与氢气,控制离子氮化炉内气压为400Pa后,加热至540℃,保温35min后,进行9h的离子渗氮,渗氮时的电压为650V,随炉冷却至150℃后空气冷却;其中氮气与氢气的体积比为1:3;最终得到表面氮层厚度为0.08μm、物相组织为马氏体和残余奥氏体的不锈钢粉末。
实施例6:
以质量百分数计,步骤一混合物中,Cr含量为17%,Ni含量为4%,Cu含量为4%,Mn含量为1.0%,Si含量为1.0%,N含量为0.5%,C含量为0.07%,P含量为0.04%,S含量为0.03%,Nb+Ta含量为0.25%,其余为Fe。
对上述粉末进行离子渗氮具体是:进行真空清洗,烘干后放入离子氮化炉内,抽真空至3pa,充入氮气与氢气,控制离子氮化炉内气压为450Pa后,加热至560℃,保温30min后,进行9h的离子渗氮,渗氮时的电压为650V,随炉冷却至150℃后空气冷却;
其中,氮气与氢气的体积比为1:3;
得到表面氮层厚度为0.1μm、物相组织为马氏体和残余奥氏体的不锈钢粉末。
实施例7:
以质量百分数计,步骤一混合物中,Cr含量为17%,Ni含量为4%,Cu含量为4%,Mn含量为1.0%,Si含量为1.0%,N含量为0.5%,C含量为0.07%,P含量为0.04%,S含量为0.03%,Nb+Ta含量为0.25%,其余为Fe。
对上述粉末进行离子渗氮具体是:进行真空清洗,烘干后放入离子氮化炉内,抽真空至3pa,充入氮气与氢气,控制离子氮化炉内气压为450Pa后,加热至540℃,保温30min后,进行10h的离子渗氮,渗氮时的电压为650V,随炉冷却至150℃后空气冷却;
其中,氮气与氢气的体积比为1:3;
得到表面氮层厚度为0.12μm、物相组织为马氏体和残余奥氏体的不锈钢粉末。
试验例:应用上述实施例1~7的方法制备3D打印不锈钢粉末,并与现有技术制备的3D打印不锈钢粉末对比;经SLM成形后对各个不锈钢试样的测试数据,记录数据如下表:
表1:各个实施例制备出试样的测试数据
需要说明的是,取100g各个实施例制备的不锈钢试样放入温度为50~63℃、相对湿度70~81%的环境下,采用连续喷雾的方式,持续30天喷洒浓度为5%的NaCl溶液,测量各实验的失重数据。
通过上述数据可知,每个实施例中所制备的不锈钢粉料较原始粉料有了不同厚度的渗氮层,对于其后续SLM成形后的试样,相对于现有技术成形试样抗拉强度、硬度及耐腐蚀性均有提升,符合3D打印用高性能不锈钢粉料的性能要求了;其中通过对比能够得出实施例7为上述方法的最佳实施方案,相较于现有技术粉料成型后的试样,表面硬度提升了31.97%,抗拉强度提升了20.79%。

Claims (1)

1.一种利用离子渗氮制备3D打印不锈钢粉末的方法,其特征在于,包括以下步骤:
步骤一:原料准备
将铁、铜块、镍块、硅锰合金块及金属铬破碎至粒径3~8mm后,混合10~30min得到混合物;
步骤二:真空熔炼
将步骤一得到的混合物放入真空熔炼炉中,先将真空熔炼炉抽真空至真空度为0.1Pa~5Pa,再加热至混合物完全熔化成合金熔融液;
步骤三:雾化制粉
将步骤二得到的合金融合液通入雾化设备中,在雾化室中雾化分散成微小液滴后冷却形成粒径为3~80μm的原始粉末,所述雾化制粉采用水雾化设备进行制粉;
步骤四:筛分、混合
将步骤三得到的原始粉末进行筛分,分别得到粒径为3~15μm的原始粉末a,粒径为15~30μm的原始粉末b,粒径为30~56μm的原始粉末c,以及粒径为56~80μm的原始粉末d;
使得到的原始粉末a、原始粉末b、原始粉末c、原始粉末d按照质量比1:3~5:4~6:2的比例充分混合60~120min得到混合粉末;
步骤五:离子渗氮
对混合粉末进行真空清洗,然后烘干后放入离子氮化炉内,抽真空至0.1~5pa,充入氮气与氢气,控制离子氮化炉内气压为300~500Pa后,加热至500~580℃,保温30~40min后,进行6~12h的离子渗氮,渗氮时的电压为500~800V,随炉冷却至150℃后空气冷却;得到表面氮层厚度为0.03~0.12μm、物相组织为马氏体和残余奥氏体的不锈钢粉末;
所述步骤二中具体的加热步骤是:先以500~700℃预热5~10min,然后升温至混合物开始熔化,充入高纯氩气至标准大气压,升温至混合物全部熔化,保温5~20min,得到合金熔融液;
步骤五中氮气与氢气按照体积比为1:1~6;
将粒径为10~30μm的钽粉末、粒径为10~30μm的铌粉末与步骤四得到的原始粉末a按照重量比为1:1:30~60充分混合,得到优化粉末A;用得到的优化粉末A替换步骤四得到的原始粉末a进行混合,得到优化混合粉末A;
对优化混合粉末A进行离子渗氮:对优化混合粉末A进行真空清洗,然后烘干后放入离子氮化炉内,抽真空至3pa,充入氮气与氢气,氮气与氢气的体积分数比为1:3,控制离子氮化炉内气压为450Pa后,加热至540℃,保温30min后,进行10h的离子渗氮,渗氮时的电压为650V,随炉冷却至150℃后空气冷却;得到表面氮层厚度为0.12μm、物相组织为马氏体和残余奥氏体的不锈钢粉末;
以质量百分数计,所述优化混合粉末A中,Cr含量为17%,Ni含量为4%,Cu含量为4%,Mn含量为1.0%,Si含量为1.0%,N含量为0.5%,C含量为0.07%,P含量为0.04%,S含量为0.03%,Nb+Ta含量为0.25%,其余为Fe。
CN202110446657.0A 2021-04-25 2021-04-25 一种利用离子渗氮制备3d打印不锈钢粉末的方法 Active CN113199030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110446657.0A CN113199030B (zh) 2021-04-25 2021-04-25 一种利用离子渗氮制备3d打印不锈钢粉末的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110446657.0A CN113199030B (zh) 2021-04-25 2021-04-25 一种利用离子渗氮制备3d打印不锈钢粉末的方法

Publications (2)

Publication Number Publication Date
CN113199030A CN113199030A (zh) 2021-08-03
CN113199030B true CN113199030B (zh) 2023-08-15

Family

ID=77028402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110446657.0A Active CN113199030B (zh) 2021-04-25 2021-04-25 一种利用离子渗氮制备3d打印不锈钢粉末的方法

Country Status (1)

Country Link
CN (1) CN113199030B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502446A (en) * 1964-10-08 1970-03-24 Metal Innovations Inc Production of powder,strip and other metal products from refined molten metal
JPS5330413A (en) * 1976-09-02 1978-03-22 Honda Motor Co Ltd Method of producing ironnbased sintered alloy
CN101966591A (zh) * 2010-09-09 2011-02-09 东北大学 高氮不锈钢粉末的一步操作生产法
CN105039869A (zh) * 2015-08-11 2015-11-11 中国人民解放军装甲兵工程学院 一种马氏体不锈钢零件激光再制造用合金粉末及制备方法
CN105537582A (zh) * 2016-03-03 2016-05-04 上海材料研究所 一种用于3d打印技术的316l不锈钢粉末及其制备方法
CN106086776A (zh) * 2016-06-26 2016-11-09 彭晓领 一种氮化铁磁粉的低温等离子氮化制备方法
JP2017105075A (ja) * 2015-12-10 2017-06-15 キヤノン株式会社 窒化粉体製造方法、及び窒化粉体製造装置
CN107760973A (zh) * 2017-10-26 2018-03-06 江西省中蔚建设集团有限公司 一种建筑用奥氏体不锈钢的加工方法
CN109890552A (zh) * 2016-11-01 2019-06-14 纳米钢公司 用于粉末层熔融的可3d印刷的硬质含铁金属性合金
CN111560564A (zh) * 2020-06-09 2020-08-21 江苏省海洋资源开发研究院(连云港) 一种资源节约型高氮双相不锈钢及其近净成形方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145598B2 (en) * 2009-10-16 2015-09-29 Hoganas Ab (Publ) Nitrogen containing, low nickel sintered stainless steel
US8182617B2 (en) * 2010-10-04 2012-05-22 Moyer Kenneth A Nitrogen alloyed stainless steel and process
JP6797642B2 (ja) * 2015-12-10 2020-12-09 キヤノン株式会社 原料粉体の処理方法、および三次元造形物の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502446A (en) * 1964-10-08 1970-03-24 Metal Innovations Inc Production of powder,strip and other metal products from refined molten metal
JPS5330413A (en) * 1976-09-02 1978-03-22 Honda Motor Co Ltd Method of producing ironnbased sintered alloy
CN101966591A (zh) * 2010-09-09 2011-02-09 东北大学 高氮不锈钢粉末的一步操作生产法
CN105039869A (zh) * 2015-08-11 2015-11-11 中国人民解放军装甲兵工程学院 一种马氏体不锈钢零件激光再制造用合金粉末及制备方法
JP2017105075A (ja) * 2015-12-10 2017-06-15 キヤノン株式会社 窒化粉体製造方法、及び窒化粉体製造装置
CN105537582A (zh) * 2016-03-03 2016-05-04 上海材料研究所 一种用于3d打印技术的316l不锈钢粉末及其制备方法
CN106086776A (zh) * 2016-06-26 2016-11-09 彭晓领 一种氮化铁磁粉的低温等离子氮化制备方法
CN109890552A (zh) * 2016-11-01 2019-06-14 纳米钢公司 用于粉末层熔融的可3d印刷的硬质含铁金属性合金
CN107760973A (zh) * 2017-10-26 2018-03-06 江西省中蔚建设集团有限公司 一种建筑用奥氏体不锈钢的加工方法
CN111560564A (zh) * 2020-06-09 2020-08-21 江苏省海洋资源开发研究院(连云港) 一种资源节约型高氮双相不锈钢及其近净成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
316奥氏体不锈钢的等离子体源渗氮;刘金定等;热处理;第33卷(第03期);第44-48页 *

Also Published As

Publication number Publication date
CN113199030A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN109234601B (zh) 一种电弧熔覆用的高熵合金实心丝材及其制备方法
CN101342591B (zh) 粉末冶金含氮不锈钢零件的制备方法
CN113136531B (zh) 一种粉末冶金不锈钢
CN112981231B (zh) 一种高锰氮奥氏体不锈钢粉末及其制备方法
CN110042305A (zh) 一种防腐性、耐磨性高铬铸铁合金及其制备方法
CN115446331A (zh) 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法
CN112077300A (zh) 一种增材制造的高强度耐磨耐腐蚀钢粉及增材制造方法
CN113199030B (zh) 一种利用离子渗氮制备3d打印不锈钢粉末的方法
CN115044794A (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
CN114734044A (zh) 高氮无镍不锈钢粉末及其制备方法和应用
US20210323063A1 (en) Method for preparing metal powder by water atomization
KR100538692B1 (ko) 저압 유도용해법을 이용한 고질소 스테인리스강 제조방법및 그 방법으로 제조된 고질소 스테인리스강
CN110172610B (zh) 一种铜杆的生产方法
CN109182878B (zh) 一种预合金化的高熵合金多孔材料的制备方法
CN111604503A (zh) 一种FeCrAl不锈钢复合管坯及其制备方法
CN101629276B (zh) 锆钇合金靶件的制备方法
CN108220804B (zh) 抗锌液腐蚀磨损的铬铝合金化Fe-B合金及其制造方法
CN107267778B (zh) 一种炼镁还原罐及其制作方法
CN110819875B (zh) 一种Fe2B块体耐磨材料及其韧化方法
CN115401216A (zh) 一种合金过配粉体选区激光熔化制备高氮不锈钢的方法
CN110193598B (zh) 一种制造奥氏体铁合金的方法
CN104878300B (zh) 喷射成形高韧性工具钢
CN114309578A (zh) 耐磨损金属陶瓷粉及应用和耐磨损金属陶瓷
CN114318132B (zh) 耐腐蚀耐磨损工具钢
CN116689767B (zh) 一种航空航天用铝合金材料的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant