CN110193598B - 一种制造奥氏体铁合金的方法 - Google Patents

一种制造奥氏体铁合金的方法 Download PDF

Info

Publication number
CN110193598B
CN110193598B CN201910144981.XA CN201910144981A CN110193598B CN 110193598 B CN110193598 B CN 110193598B CN 201910144981 A CN201910144981 A CN 201910144981A CN 110193598 B CN110193598 B CN 110193598B
Authority
CN
China
Prior art keywords
iron alloy
austenitic iron
nitrogen
austenitic
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910144981.XA
Other languages
English (en)
Other versions
CN110193598A (zh
Inventor
D.A.斯图沃特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of CN110193598A publication Critical patent/CN110193598A/zh
Application granted granted Critical
Publication of CN110193598B publication Critical patent/CN110193598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • B22F1/0003
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2241/00Treatments in a special environment
    • C21D2241/01Treatments in a special environment under pressure
    • C21D2241/02Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种制造奥氏体铁合金的方法。具体地,该方法包括将奥氏体铁合金粉末放入罐中(12),从罐中排空空气和其他气体(14),向罐中供应氮气(16),密封罐(18)和然后对罐中的奥氏体铁合金粉末进行热等静压以将氮扩散到奥氏体铁合金粉末中和制备富氮的奥氏体铁合金棒(20),并且移除罐以取出富氮的奥氏体铁合金棒(22)。

Description

一种制造奥氏体铁合金的方法
技术领域
本公开涉及制造奥氏体铁合金或奥氏体钢的方法。
背景技术
通常将氮添加到奥氏体铁合金(奥氏体钢)中,以对奥氏体铁合金或奥氏体钢提高强度和/或提高耐腐蚀性和/或提供奥氏体相稳定性。通常在奥氏体铁合金的原材料的生产过程中将氮添加到奥氏体铁合金中,例如在铸造过程中,例如通过使用具有相对高氮含量的母合金。可以在制造组件期间将氮添加到奥氏体铁合金中,例如通过氮化奥氏体铁合金组件。奥氏体铁合金的氮化在相对高的温度下进行,这可能影响奥氏体铁合金组件的机械性能。此外,必须掩蔽不需要氮化的奥氏体铁合金组件的区域以防止它们被氮化,这增加了氮化过程的时间和成本。
发明内容
奥氏体铁合金组件可以通过将合金铸造到模具中来制造。奥氏体铁合金组件也可以通过粉末冶金制造。这包括将奥氏体铁合金粉末放入罐中,从罐中排空空气和其他气体,密封罐和然后对罐进行热等静压(hot isostatically pressing)以制备奥氏体铁合金棒。然后移除罐以取出奥氏体铁合金棒,和然后使用奥氏体铁合金棒制造组件。
根据第一方面,提供一种制造奥氏体铁合金的方法,包括将奥氏体铁合金粉末放入罐中,从罐中排空空气和其他气体,向罐中供应氮气,密封罐和然后对罐中的奥氏体铁合金粉末进行热等静压以将氮扩散到奥氏体铁合金粉末中和制备富氮的奥氏体铁合金棒,并且移除罐以取出富氮的奥氏体铁合金棒,所述富氮的奥氏体铁合金由12至41重量%的铬,7至9重量%的锰,4至5重量%的硅,4至6重量%的镍,至多2.5重量%的碳,小于0.2重量%的氮和余量铁以及附带的杂质组成。
所述奥氏体铁合金粉末可以包括奥氏体铁合金粉末,或者奥氏体铁合金粉末与铁合金粉末的一种或多种其他相的混合物。
奥氏体铁合金粉末和铁合金粉末的一种或多种其他相的混合物可以包括奥氏体铁合金粉末和铁素体(ferritic)铁合金粉末的混合物。
氮降低了奥氏体铁合金的整个奥氏体基体中的堆垛层错能。
奥氏体铁合金粉末可以包括尺寸不大于150微米的粉末颗粒。
奥氏体铁合金粉末可以包括尺寸不小于50微米的粉末颗粒。
所述罐可以包括低碳钢(mild steel)罐。
所述方法可以包括在1000℃至1200℃的温度下对罐中的奥氏体铁合金粉末进行热等静压。该方法可以包括在1110℃至1130℃的温度下对罐中的奥氏体铁合金粉末进行热等静压。该方法可以包括在1120℃的温度下对罐中的奥氏体铁合金粉末进行热等静压。
该方法可以包括在80 MPa至140 MPa的压力下对罐中的奥氏体铁合金粉末进行热等静压。该方法可以包括在90 MPa至110 MPa的压力下对罐中的奥氏体铁合金粉末进行热等静压。该方法可以包括在100 MPa的压力下对罐中的奥氏体铁合金粉末进行热等静压。
所述富氮的奥氏体铁合金可以由28重量%的铬,9重量%的锰,5重量%的硅,6重量%的镍,至多2.5重量%的碳,小于0.2重量%的氮和余量的铁加上附带的杂质组成。
所述富氮的奥氏体铁合金可以包含0.8至1.2重量%的碳。所述富氮的奥氏体铁合金可以包含1.7至2.0重量%的碳。所述富氮的奥氏体铁合金可以包含2.2至2.5重量%的碳。
所述富氮的奥氏体铁合金可以包含0.08至0.2重量%的氮。
所述富氮的奥氏体铁合金不含钴。
所述富氮的奥氏体铁合金可以用于制造组件或在组件上提供涂层。
所述组件可以是核反应堆的组成部分。更一般地,所述富氮的奥氏体合金可以构成制品或构成制品的涂层,例如硬饰面(facing)。
所述奥氏体铁合金可以是奥氏体钢。
本领域技术人员将理解,除非相互排斥,否则关于任何一个上述方面描述的特征可以在必要的变更后(mutatis mutandis)应用于任何其他方面。此外,除非相互排斥,否则本文描述的任何特征可以应用于任何方面和/或与本文描述的任何其他特征组合。
现在将参考附图仅通过示例的方式描述实施方案。
附图说明
图1是说明制造奥氏体铁合金的方法的流程图。
图2是显示用于排空制造奥氏体铁合金的方法中使用的罐和向该罐供应氮气的装置的示意图。
图3是显示用于制造奥氏体铁合金的方法的热等静压炉的示意图。
具体实施方式
如图1所示,制造奥氏体铁合金的方法包括将奥氏体铁合金粉末放入罐中12,从罐中排空空气和其他气体14,将氮气供应到罐中16,密封罐18和然后对罐中的奥氏体铁合金粉末进行热等静压以将氮扩散到奥氏体铁合金粉末中并制造富氮的奥氏体铁合金棒20,和移除罐以取出富氮的奥氏体铁合金棒22。热等静压将奥氏体铁合金粉末颗粒34合并(例如压缩和扩散结合)成奥氏体铁合金棒20。奥氏体铁合金粉末最初通过气体雾化产生,这包括熔化铁合金以产生液态铁合金和然后将液态铁合金气体雾化以快速产生固体粉末铁合金。由于液态铁合金气体雾化过程中液态铁合金的快速凝固,奥氏体铁合金粉末可以包括奥氏体铁合金粉末或者奥氏体铁合金粉末与铁合金粉末的一种或多种其他相的混合物,例如奥氏体铁合金粉末和铁素体铁合金粉末的混合物。铁合金粉末的组成和铁合金粉末在热等静压过程中的热加工的组合产生了经合并的奥氏体铁合金棒中的奥氏体相。
图2示出了用于从罐中排空空气和其他气体并向罐供应氮气的装置30。图2显示了包含奥氏体铁合金粉末34的罐32。所述奥氏体铁合金可以是奥氏体钢。罐32可以包括低碳钢罐。放入罐32中的奥氏体铁合金粉末34包括尺寸不大于150微米的粉末颗粒。放入罐32中的奥氏体铁合金粉末34包括尺寸不小于50微米的粉末颗粒。泵36布置成经由管道38从罐32的内部排空空气和其他气体,并且氮气源40布置成经由管道42和阀44向罐的内部供应氮气。泵36布置成通过管道38从罐32的内部排空气体和然后通过任何合适的技术(例如焊接或压接和焊接)密封管道38。一旦管道38已经被密封,打开阀44以通过管道42将氮气供应到罐32的内部。当向罐32中供应足够量的氮气时,通过任何合适的技术(例如焊接或压接和焊接)密封管道42以形成完全密封的罐32。然后将密封的罐32从氮气供应源40、阀44和泵36移除并准备进行热等静压。
图3显示了在热等静压(HIP)容器50中含有奥氏体铁合金粉末的密封的罐32。HIP容器50具有加热器和管道52以及阀54,以将惰性气体供应到HIP容器50中。向HIP容器50供应惰性气体,并且增加HIP容器50内的温度和压力以对罐32中的奥氏体铁合金粉末34进行热等静压,以将氮扩散到奥氏体铁合金粉末34中并产生富氮的奥氏体铁合金棒。
所述方法包括在1000℃至1200℃的温度下对罐32中的奥氏体铁合金粉末34进行热等静压。该方法包括在1110℃至1130℃的温度下对罐32中的奥氏体铁合金粉末34进行热等静压,并且例如包括在1120℃的温度下对罐32中的奥氏体铁合金粉末34进行热等静压。该方法包括在80 MPa至140 MPa的压力下对罐32中的奥氏体铁合金粉末34进行热等静压。该方法包括在90 MPa至110 MPa的压力下对罐32中的奥氏体铁合金粉末34进行热等静压,并且例如该方法包括在100 MPa的压力下对罐32中的奥氏体铁合金粉末34进行热等静压。热等静压包括将温度和压力保持恒定数小时。在一个实例中,该方法包括将罐32中的奥氏体铁合金粉末34在1120℃的温度和100 MPa的压力下热等静压4小时。如果使用低于1120℃的温度,则适当地增加热等静压奥氏体铁合金粉末的压力和时间。如果使用高于1120℃的温度,则适当地降低热等静压奥氏体铁合金粉末的压力和时间。加热速率可以是每分钟10℃,和冷却速率可以是每分钟10℃。
所得的富氮的奥氏体铁合金棒包含不超过0.2重量%的氮。所得的富氮的奥氏体铁合金可以包含高达2.5重量%的碳,碳的添加产生奥氏体钢合金。富氮的奥氏体铁合金由12至41重量%的铬,7至9重量%的锰,4至5重量%的硅,4至6重量%的镍,小于0.2重量%的氮和余量的铁加上附带的杂质组成。例如,富氮的奥氏体铁合金由28重量%的铬,9重量%的锰,5重量%的硅,6重量%的镍,小于0.2重量%的氮和余量的铁加上附带的杂质组成。富氮的奥氏体铁合金可以包含0.08至0.2重量%的氮。应注意,所述奥氏体铁合金不含钴。
在一个实施方案中,奥氏体铁合金具有按重量计0.8至1.2重量%的碳。这产生了具有与Stellite 6相当的碳化物含量的合金。在另一个实施方案中,奥氏体铁合金具有按重量计1.7至2.0重量%的碳。这产生具有与Stellite 12相当的碳化物含量的合金。在另一个实施方案中,奥氏体合金具有按重量计2.2至2.5重量%的碳。这产生具有与Stellite 3相当的碳化物含量的合金。Stellite是注册商标。
返回参照图1,所得的富氮的奥氏体铁合金棒可用于制造组件或提供组件上的涂层24。所得的富氮的奥氏体铁合金棒可机械加工成件,这些件随后机械加工、成形或成型为制品,或者所得的富氮的奥氏体铁合金棒可以加工成粉末形式以用于提供在制品上的涂层,或者所得的富氮的奥氏体铁合金棒可以机械加工成件,这些件随后机械加工、成形或成型为用于制品的成形涂层或成形衬里。所述制品可以是核反应堆的组成部分。更一般地,所述富氮的奥氏体合金可以构成制品或构成制品的涂层,例如硬饰面。
本公开的优点在于,由于在粉末冶金加工中将氮添加到奥氏体铁合金中,而奥氏体铁合金在罐中并且在罐被密封并且进行热等静压之前,由于与奥氏体铁合金粉末(而不是大块(液态或固态)奥氏体铁合金)相关的大表面积与体积比,进入奥氏体铁合金中的氮的吸收更有效。利用热等静压(HIP)工艺使氮扩散到奥氏体铁合金中并将奥氏体铁合金粉末合并成奥氏体铁合金棒。因此,热等静压(HIP)工艺同时进行了两个不同但平行的过程。奥氏体铁合金粉末的大表面积与体积比确保了将氮引入到奥氏体铁合金中,使得其在奥氏体铁合金内产生更均匀的氮分布,并且热等静压(HIP)工艺的时间、压力和温度分布可以实现这一目标。氮在奥氏体铁合金或奥氏体钢的整个奥氏体基体中降低了堆垛层错能。添加高于0.2重量%的氮可导致一些氮与铬反应形成氮化铬Cr2N相,这通过减少游离铬的量而使得奥氏体铁合金增加硬度,降低延展性并降低耐腐蚀性。
硬饰面奥氏体铁合金需要低的堆垛层错能,因为低的堆垛层错能使得更容易将内部缺陷置于奥氏体铁合金的晶体结构中。奥氏体铁合金的晶体结构中的内部缺陷使得基体更坚固并且因此更难以变形,这导致更高的耐磨损性(galling resistance),而磨损在硬饰面奥氏体合金的接触表面处会产生永久的塑性变形。因此,较低的堆垛层错能使得更容易产生更多的内部缺陷,因此需要更高的变形应力和因此更高的耐磨损性。
应当理解,本发明不限于上述实施方案,并且在不脱离这里描述的概念的情况下可以进行各种修改和改进。除非相互排斥,任何特征可以单独使用或与任何其他特征组合使用,并且本公开扩展到并包括本文描述的一个或多个特征的所有组合和子组合。

Claims (14)

1.一种制造奥氏体铁合金的方法,包括将奥氏体铁合金粉末放入罐中,从罐中排空空气,向罐中供应氮气,密封罐和然后对罐中的奥氏体铁合金粉末进行热等静压以将氮扩散到奥氏体铁合金粉末中和制备富氮的奥氏体铁合金棒,并且移除罐以取出富氮的奥氏体铁合金棒,所述富氮的奥氏体铁合金由12至41重量%的铬,7至9重量%的锰,4至5重量%的硅,4至6重量%的镍,至多2.5重量%的碳,0.08至0.2重量%的氮和余量铁以及附带的杂质组成。
2.如权利要求1所述的方法,其中所述奥氏体铁合金粉末包括尺寸不大于150微米的粉末颗粒。
3.如权利要求1所述的方法,其中所述奥氏体铁合金粉末包括尺寸不小于50微米的粉末颗粒。
4.如权利要求1所述的方法,其中所述罐包括低碳钢罐。
5.如权利要求1至4中任一项所述的方法,包括在1000℃至1200℃的温度下对罐中的奥氏体铁合金粉末进行热等静压。
6.如权利要求5所述的方法,包括在1110℃至1130℃的温度下对罐中的奥氏体铁合金粉末进行热等静压。
7.如权利要求6所述的方法,包括在1120℃的温度下对罐中的奥氏体铁合金粉末进行热等静压。
8.如权利要求1至4中任一项所述的方法,包括在80至140 MPa的压力下对罐中的奥氏体铁合金粉末进行热等静压。
9.如权利要求8所述的方法,包括在90至110 MPa的压力下对罐中的奥氏体铁合金粉末进行热等静压。
10.如权利要求9所述的方法,包括在100 MPa的压力下对罐中的奥氏体铁合金粉末进行热等静压。
11.如权利要求1所述的方法,其中富氮的奥氏体铁合金由28重量%的铬,9重量%的锰,5重量%的硅,6重量%的镍,至多2.5重量%的碳,0.08至0.2重量%的氮和余量铁以及附带的杂质组成。
12.如权利要求1所述的方法,其中富氮的奥氏体铁合金包含0.8至1.2重量%的碳。
13.如权利要求1所述的方法,其中富氮的奥氏体铁合金包含1.7至2.0重量%的碳。
14.如权利要求1所述的方法,其中富氮的奥氏体铁合金包含2.2至2.5重量%的碳。
CN201910144981.XA 2018-02-27 2019-02-27 一种制造奥氏体铁合金的方法 Active CN110193598B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1803142.7A GB201803142D0 (en) 2018-02-27 2018-02-27 A method of manufacturing an austenitc iron alloy
GB1803142.7 2018-02-27

Publications (2)

Publication Number Publication Date
CN110193598A CN110193598A (zh) 2019-09-03
CN110193598B true CN110193598B (zh) 2023-03-10

Family

ID=61903385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910144981.XA Active CN110193598B (zh) 2018-02-27 2019-02-27 一种制造奥氏体铁合金的方法

Country Status (7)

Country Link
US (1) US11007571B2 (zh)
EP (1) EP3530383B1 (zh)
JP (1) JP7242344B2 (zh)
CN (1) CN110193598B (zh)
GB (1) GB201803142D0 (zh)
HU (1) HUE053001T2 (zh)
PL (1) PL3530383T3 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3983155A4 (en) * 2019-09-05 2023-03-15 Hewlett-Packard Development Company, L.P. THREE-DIMENSIONAL PRINTING WITH AUSTENITIC STEEL PARTICLES

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912503A (en) * 1973-05-14 1975-10-14 Armco Steel Corp Galling resistant austenitic stainless steel
JPS61227153A (ja) * 1985-03-29 1986-10-09 Sumitomo Metal Ind Ltd 高窒素含有オ−ステナイト系焼結合金およびその製造方法
CN101342591A (zh) * 2008-08-29 2009-01-14 安泰科技股份有限公司 粉末冶金含氮/高氮不锈钢零件的制备方法
CN101353768A (zh) * 2008-09-26 2009-01-28 北京科技大学 一种含氮无镍不锈钢及其粉末冶金成形工艺
CN102695815A (zh) * 2009-11-02 2012-09-26 Ati资产公司 贫奥氏体不锈钢
CN102828097A (zh) * 2012-09-16 2012-12-19 北京科技大学 用机械合金化法制备含氮ods无镍奥氏体合金的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190552A (ja) * 1984-03-12 1985-09-28 Sumitomo Metal Ind Ltd 焼結ステンレス鋼およびその製造方法
JPS61201706A (ja) 1985-03-01 1986-09-06 Sumitomo Metal Ind Ltd 継目無し焼結鋼管およびその製造方法
JPH0772328B2 (ja) * 1985-08-09 1995-08-02 住友金属工業株式会社 高窒素含有オーステナイト系焼結ステンレス鋼およびその製造方法
US4803045A (en) * 1986-10-24 1989-02-07 Electric Power Research Institute, Inc. Cobalt-free, iron-base hardfacing alloys
JP2703552B2 (ja) * 1988-03-04 1998-01-26 エレクトリック パワー リサーチ インスチテュート インコーポレーテッド コバルトを含まない鉄基表面硬化合金
SE462837B (sv) 1988-07-04 1990-09-10 Kloster Speedsteel Ab Saett att pulvermetallurgiskt framstaella ett kvaevelegerat staal
JP3987297B2 (ja) * 2001-03-21 2007-10-03 株式会社神戸製鋼所 コーティング性に優れた粉末高速度鋼および高速度鋼工具
TWI341337B (en) 2003-01-07 2011-05-01 Cabot Corp Powder metallurgy sputtering targets and methods of producing same
SE526249C2 (sv) 2003-12-05 2005-08-02 Erasteel Kloster Ab Stålmaterial samt användning av detta material
WO2012027552A1 (en) * 2010-08-25 2012-03-01 Crs Holdings, Inc. Processable high thermal neutron absorbing fe-base alloys
US8182617B2 (en) 2010-10-04 2012-05-22 Moyer Kenneth A Nitrogen alloyed stainless steel and process
FR3005882B1 (fr) 2013-05-22 2015-06-26 Aubert & Duval Sa Procede de fabrication par metallurgie des poudres d'une piece metallique, et piece en acier ainsi obtenue, et conteneur pour la mise en oeuvre de ce procede
CN103801691B (zh) * 2014-01-15 2015-10-21 安泰科技股份有限公司 具有回转体形式的含氮不锈钢制品及其制备方法
US20170167005A1 (en) * 2014-07-07 2017-06-15 Hitachi, Ltd. Austenitic stainless steel and method for producing the same
WO2017068153A1 (en) 2015-10-23 2017-04-27 Sandvik Intellectual Property Ab A process of manufacturing cermet or cemeted carbide component
US20190055633A1 (en) * 2017-08-16 2019-02-21 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Methods and compositions for improved low alloy high nitrogen steels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912503A (en) * 1973-05-14 1975-10-14 Armco Steel Corp Galling resistant austenitic stainless steel
JPS61227153A (ja) * 1985-03-29 1986-10-09 Sumitomo Metal Ind Ltd 高窒素含有オ−ステナイト系焼結合金およびその製造方法
CN101342591A (zh) * 2008-08-29 2009-01-14 安泰科技股份有限公司 粉末冶金含氮/高氮不锈钢零件的制备方法
CN101353768A (zh) * 2008-09-26 2009-01-28 北京科技大学 一种含氮无镍不锈钢及其粉末冶金成形工艺
CN102695815A (zh) * 2009-11-02 2012-09-26 Ati资产公司 贫奥氏体不锈钢
CN102828097A (zh) * 2012-09-16 2012-12-19 北京科技大学 用机械合金化法制备含氮ods无镍奥氏体合金的方法

Also Published As

Publication number Publication date
US11007571B2 (en) 2021-05-18
JP2019151924A (ja) 2019-09-12
EP3530383B1 (en) 2020-12-16
JP7242344B2 (ja) 2023-03-20
GB201803142D0 (en) 2018-04-11
HUE053001T2 (hu) 2021-06-28
EP3530383A1 (en) 2019-08-28
US20190264303A1 (en) 2019-08-29
PL3530383T3 (pl) 2021-04-19
CN110193598A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
CN109848420B (zh) 一种440c不锈钢金属粉末注射成形方法及其制品
CN101342591B (zh) 粉末冶金含氮不锈钢零件的制备方法
CN102498227B (zh) 轴承钢
Bandar Powder metallurgy of stainless steel: State of the art, challenges and development
KR20110089338A (ko) 내마모성 코팅의 표면 영역을 지닌 컴파운드 생성물을 제조하는 방법, 이러한 생성물, 및 상기 코팅을 얻기 위한 스틸 재질의 용도
CN109604611B (zh) 一种粉末冶金制备耐磨耐蚀高熵合金齿轮的成型方法
CN108118191A (zh) 镍基铸造合金、铸件以及制造旋转机械的叶轮的方法
US5114470A (en) Producing void-free metal alloy powders by melting as well as atomization under nitrogen ambient
CN109759593A (zh) 粉末冶金工艺制备耐磨耐蚀合金棒材的方法
TWI441927B (zh) 低合金化鋼粉
CN110193598B (zh) 一种制造奥氏体铁合金的方法
CN101338385A (zh) 一种含氮/高氮不锈钢制品及其制备方法
EP0363047A1 (en) A method of producing nitrogen strengthened alloys
CN102284699B (zh) 一种预合金粉末
Hale PM stainless steels uses in automotive exhausts
Dunning et al. Advanced processing technology for high-nitrogen steels
JP3301441B2 (ja) 高温高圧成形用複合シリンダ
GB1590953A (en) Making articles from metallic powder
US20110052441A1 (en) Method and device for hot isostatic pressing of alloyed materials
CN114309578A (zh) 耐磨损金属陶瓷粉及应用和耐磨损金属陶瓷
Tornberg et al. New optimised manufacturing route for PM tool steels and High Speed Steels
US6572671B1 (en) Addition of h-BN in stainless steel powder metallurgy
JPH04187746A (ja) 耐食耐摩耗性焼結合金からなるライニング層を有する複合シリンダ
CN114318132B (zh) 耐腐蚀耐磨损工具钢
JPS62142705A (ja) プラスチツク成形装置用シリンダの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant