CN109867586A - 一种三氟甲烷资源化转化生产四氟化碳的方法 - Google Patents

一种三氟甲烷资源化转化生产四氟化碳的方法 Download PDF

Info

Publication number
CN109867586A
CN109867586A CN201711261421.XA CN201711261421A CN109867586A CN 109867586 A CN109867586 A CN 109867586A CN 201711261421 A CN201711261421 A CN 201711261421A CN 109867586 A CN109867586 A CN 109867586A
Authority
CN
China
Prior art keywords
reaction
raw material
fluoroform
carbon tetrafluoride
fluorine gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711261421.XA
Other languages
English (en)
Inventor
肖恒侨
章祺
徐卫国
朱伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Chemical Industry Research Institute Co Ltd
Sinochem Lantian Co Ltd
Original Assignee
Zhejiang Chemical Industry Research Institute Co Ltd
Sinochem Lantian Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Chemical Industry Research Institute Co Ltd, Sinochem Lantian Co Ltd filed Critical Zhejiang Chemical Industry Research Institute Co Ltd
Priority to CN201711261421.XA priority Critical patent/CN109867586A/zh
Publication of CN109867586A publication Critical patent/CN109867586A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种三氟甲烷与氟气在微通道反应器中反应连续化生产四氟化碳的方法,包括预热、反应和固体碱吸收步骤。本发明提供的方法具有转化率高、反应温度低、反应时间短、反应安全可控、产品容易纯化和适合连续化工业放大的优点,特别适用HCFC‑22生产过程中或HCFC‑22裂解制备四氟乙烯生产过程中的副产三氟甲烷的资源化利用。

Description

一种三氟甲烷资源化转化生产四氟化碳的方法
技术领域
本发明涉及一生产四氟化碳的方法,尤其涉及一种由三氟甲烷生产四氟化碳的方法。
背景技术
HCFC-22曾是应用最为广泛的制冷剂及推进剂之一,由于它是破坏臭氧层的物质,自1987年《蒙特利尔议定书》及后续的《京都议定书》签订后,它的应用逐渐减少。但是HCFC-22是生产诸如四氟乙烯、六氟丙烯、聚四氟乙烯及其他氢氟烃的基本原料。由于这些应用不可避免,用于四氟乙烯、六氟丙烯、聚四氟乙烯等的生产而使用的HCFC-22被排除在议定书规定的减排条目外。三氟甲烷是HCFC-22和四氟乙烯生产过程中产生的一种不可避免的副产品,其全球温室效应潜值(GWP)是CO2的14800倍,在大气层的寿命高达264年,是目前已知的温室效应第二高的温室气体,仅次于SF6。由于三氟甲烷的排放仍将长期持续,所以这些副产的三氟甲烷的利用或者处理而避免排放造成环境问题变得非常必要。
目前,三氟甲烷的减排方式主要是通过联合国环境规划署(UNEP)负责的清洁发展机制(CDM)项目,采用高温焚烧(1200℃)进行的,将三氟甲烷彻底煅烧分解成氟化氢、二氧化碳等物质处理从而避免对环境的危害。此方法非常不经济,不仅无法回收任何副产品,而且消耗大量的能源。如果能够找到一条资源化利用三氟甲烷的方法,将是十分有利的。
四氟化碳是目前微电子工业中用量最大的等离子蚀刻气体,因其相对低廉的价格广泛用于硅、二氧化硅、氮化硅和磷硅玻璃等材料的蚀刻,在电子器件表面清洗、太阳能电池的生产、激光技术、低温制冷、气体绝缘、泄漏检测剂、控制宇宙火箭姿态、印刷电路生产中的去污剂、润滑剂及制动液等方面也有大量应用。
对于四氟化碳的工业制备路线,现有技术中有以下报道:
(1)烷烃直接氟化法
PCT专利申请WO9425418披露了一种四氟化碳的制备方法,使甲烷与Cl2和HF在催化剂作用下于气态下反应制备四氟化碳,反应温度为450~550℃。俄罗斯专利RU2155743C1报道在1200~1600℃下用F2氟化丙烷和丁烷混合物制备高纯四氟化碳的工艺。烷烃直接氟化法虽然操作简单、原料易得,但存在反应不易控制、反应温度高、产物复杂和收率低等问题;
(2)氟氯甲烷氟化法
美国专利US4264530报道一种通过两段反应生产高纯四氟化碳的工艺,先在填充CrO2F2催化剂的流化床反应器中使CF3Cl与HF反应,再通入HF后制备四氟化碳。美国专利US4474895报道一种在催化剂作用下用HF气相氟化CF3Cl制备四氟化碳的工艺,反应温度450℃,HF转化率为47%,四氟化碳选择率为73%。日本专利JP61134330公开一种在催化剂存在下用F2氟化氟氯甲烷制备四氟化碳的工艺。随着CFC和HCFC的逐步禁用,氟氯甲烷氟化法的原料来源受到限制,最终将停止使用;
(3)氢氟甲烷氟化法
美国专利US5714648公开了一种在惰性气体保护下用F 2直接氟化氢氟甲烷生产四氟化碳的工艺,反应温度200~550℃。美国专利US5675046公开了一种两段式循环反应制备四氟化碳的工艺,向第一反应器中通入CHF3和F2,从第二反应器出来的产品被分为两股物流,第一股物流作为稀释气返回第一反应器,另一股物流进入精馏提纯装置精馏。此方法可同时生产2种全氟烷。氢氟甲烷氟化法工艺简单、不需使用催化剂,但氟气氟化反应放热剧烈、反应温度高、有爆炸的危险,并且还存在对设备要求高、产物复杂、选择性低、生产不安全等缺点。
因此,有必要对三氟甲烷与氟气生产四氟化碳工艺作进一步的改进,提高生产安全性。
发明内容
本发明的目的在于提供一种三氟甲烷资源化转化生产四氟化碳的方法,具有转化率高、反应温度低、反应时间短、反应安全可控、产品容易纯化和适合连续化工业放大的特点。
本发明提供的三氟甲烷资源化转化生产四氟化碳的方法,合成工艺路线如下:
本发明提供如下技术方案:
一种三氟甲烷与氟气反应连续化生产四氟化碳的方法,所述方法在微通道反应器中进行,包括以下步骤:
(1)使原料1进入预热模块3,预热温度为-30~100℃,所述原料1包括三氟甲烷;
(2)使经步骤(1)预热后的原料1、原料2进入微通道反应模块4,所述原料2包括F2,原料2与原料1在所述微通道反应模块(4)中混合并反应,所述原料2与原料1的摩尔配比为3.0:1~0.5:1,原料1流量为0.1~50g/min,反应温度为-30~100℃,反应压力为0~3.0MPa;
(3)将步骤(2)微通道反应模块(10)出口处得到的化合物为混气体,经固体碱吸收收集后得到四氟化碳。
本发明提供的生产四氟化碳的方法,使用微通道反应器为反应场所,在反应开始前先将微通道反应器各模块进行组装得到微通道反应器。
在反应过程中,可以根据需要,在微通道反应模块4后再串联个、两个或多个反应模块,以使反应更好的进行。
作为示例,可以将一块预热模块3、六块微通道反应模块4~9和一块淬灭模块10进行串联式安装后得到微通道反应,如附图3所示,其中:与预热模块3相连的1为三氟甲烷气体质量流量计,作为原料1的进料口;与微通道反应模块4相连的2为氟气气体质量流量计,作为原料2进料口。微通道反应器连接好后,可以使用导热油进行传热。
作为另一种示例,可以将一块预热模块3、一块微通道反应模块4和一块淬灭模块10进行串联式安装后得到微通道反应,如附图4所示,其中:与预热模块3相连的1为三氟甲烷气体质量流量计,作为原料1的进料口;与微通道反应模块4相连的2为氟气气体质量流量计,作为原料2进料口。微通道反应器连接好后,可以使用导热油进行传热。
本发明提供的生产四氟化碳方法,由于需要使用F2,所述微通道反应模块的材质,优选的是选自碳化硅、哈C合金或锰奈尔合金。
所述微通道反应器的反应模块,其微通道结构可以是选自直流型通道结构或增强混合型通道结构。
所述直流型通道结构,优选的是,所述直流型通道结构为管状结构。
所述增强混合型通道结构,优选的是,所述增强混合型通道结构为T型结构、球形结构、球形带挡板结构、水滴状结构或心型结构。
所述微通道反应器的反应模块,其通道直径满足使反应顺利进行即可。优选的是,所述通道直径为0.5mm~10mm。
本发明使用的微通道反应器,其传质系数和换热能力满足使反应顺利进行即可。优选的是,所述的传质系数为1~30Ka、换热能力为1700KW/m2·K以上。
本发明使用的微通道反应器,可以选自康宁G2微反应器、微孔阵列式微通道反应器、翅片式微通道反应器、毛细管微通道反应器或多股并流式微反应器。
本发明提供的生产四氟化碳的方法,原料2与原料1的摩尔配比满足使反应顺利进行即可。
优选的是,所述原料2与原料1的摩尔配比为2.5:1~1.0:1。
进一步优选的是,所述原料2与原料1的摩尔配比为1.5:1~1.0:1。
更进一步优选的是,所述原料2与原料1的摩尔配比为1.2:1~1.0:1。
本发明提供的生产四氟化碳的方法,原料1流量满足使反应顺利进行即可。
优选的是,所述原料1流量为0.1~50g/min。
进一步优选的是,所述原料1流量为0.1~10g/min。
更进一步优选的是,所述原料1流量为0.1~6g/min。
本发明提供的生产四氟化碳的方法,步骤(2)中使用的原料2包括F2。作为示例,所述原料2可以是F2,也可以是F2和其他气体的混合气。
为使反应温和,优选的是,所述原料2为F2与选自氮气、氦气和氟化氢气体中的至少一种的混合气。
其中混合气中的F2的浓度,可以是任何比例的浓度。
优选的是,所述混合气中氟气的摩尔浓度为5~95%。
进一步优选的是,所述混合气中氟气的摩尔浓度为10~40%。
更进一步优选的是,所述混合气中氟气的摩尔浓度为20~30%。
本发明提供的生产四氟化碳的方法,步骤(2)中使用的原料1包括三氟甲烷。作为示例,所述原料1可以是三氟甲烷,也可以是HCFC-22生产过程中或HCFC-22裂解制备四氟乙烯生产过程中的副产三氟甲烷。
从经济的角度出发,本发明优选使用HCFC-22生产过程中或HCFC-22裂解制备四氟乙烯生产过程中的副产三氟甲烷,以使副产三氟甲烷得到资源化利用。
本发明提供的生产四氟化碳的方法,步骤(2)中,反应温度满足使反应顺利进行即可。
优选的是,所述反应温度为-30~100℃。
进一步优选的是,所述反应温度为-10~80℃。
再进一步优选的是,所述反应温度为0~80℃。
本发明提供的生产四氟化碳的方法,步骤(2)中,反应压力满足使反应顺利进行即可。
优选的是,所述反应压力为0~3.0MPa。
进一步优选的是,所述反应压力为0~1.0MPa。
再进一步优选的是,所述反应压力为0~0.5MPa。
本发明提供的生产四氟化碳的方法,相比现有技术具有如下优势:
(1)原料转化率高、反应时间短、反应条件温和、反应温度低、反应安全可控、产品容易纯化、适合连续化工业放大;
(2)能够实现HCFC-22生产过程中或HCFC-22裂解制备四氟乙烯生产过程中的副产三氟甲烷的资源化利用。
附图说明
图1为本发明所用微通道反应器模块的典型结构单元图;
图2为本发明所用以Corning微通道反应器为例模块图;
图3为本发明所用以Corning微通道模块为例微通道反应器系统装置图,且图3中:1为三氟甲烷气体质量流量计(原料1进料口)、2为氟气气体质量流量计(原料2进料口)、3为预热模块、4~9为微通道反应模块、10为淬灭模块;
图4为本发明所用以Corning微通道模块为例微通道反应器系统装置图,且图4中:1为三氟甲烷气体质量流量计(原料1进料口)、2为氟气气体质量流量计(原料2进料口)。3为预热模块、4为微通道反应模块、10为淬灭模块;
具体实施方式
下面结合具体实施例来对本发明进行进一步说明,但并不将本发明局限于这些具体实施方式。本领域技术人员应该认识到,本发明涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
实施例1
选用附图2中corning直通道模块1块(作为预混预热模块3)、corning“心形”微通道反应模块6块、corning直通道模块1块(作为淬灭模块10)。按照附图3所示反应流程组成连续流微通道反应系统。反应换热介质采用导热油。根据微通道反应器强制传热原理,仅在该反应器进料口和出料口设置两个测温点。反应前对微通道反应系统及连接管路分别进行除水干燥处理,进行1.0MPa气密性检查。通过附图3中的1为三氟甲烷气体质量流量计,向微通道反应系统连续稳定定量通入原料三氟甲烷。通过附图3中的2为氟气气体质量流量计,向微通道反应系统连续定量通入氟气混合气。
设定换热器温度40℃,即反应温度,通过体系背压阀控制反应压力0MPa。原料三氟甲烷进料速度为0.33g/min,20mo%氟氮混合气进料速度为1.70g/min,反应的停留时间为6s,氟气与三氟甲烷的摩尔配比为1.1:1。反应原料三氟甲烷通过三氟甲烷气体质量流量计经微通道预混预热模块3后进入“心形”微通道反应模块4,氟氮混合气通过氟气气体质量流量计直接进入“心形”微通道反应模块4,在“心形”微通道反应模块4-9中,三氟甲烷与氟气反应。反应混合气经淬灭模块10后通过碱石灰吸收收集得到四氟化碳粗品。
对反应后的混合气体进行取样GC分析,结果表明,三氟甲烷的转化率为100%,四氟化碳选择性为99.76%。其中产物的CF4离子质谱鉴定为m/e,最强峰69(CF3),其次为50(CF2),31(CF),19(F),分子量为69+19(CF3+F)=88,无分子离子峰。
实施例2
使用与实施例1同样的康宁微通道反应器,并按照同样的连接方式及控制方法。本实施例改变反应条件。
设定换热器温度0℃,即反应温度,通过体系背压阀控制反应压力0MPa。原料三氟甲烷进料速度为0.22g/min,20mol%氟氮混合气进料速度为1.13g/min,反应的停留时间为9s,氟气与三氟甲烷的摩尔配比为1.1:1。反应原料三氟甲烷通过三氟甲烷气体质量流量计经微通道预混预热模块3后进入“心形”微通道反应模块4,氟氮混合气通过氟气气体质量流量计直接进入“心形”微通道反应模块4,在“心形”微通道反应模块4-9中,三氟甲烷与氟气反应。反应混合气经淬灭模块10后通过碱石灰吸收收集得到四氟化碳粗品。
对反应后的混合气体进行取样GC分析,结果表明,三氟甲烷的转化率为95.39%,四氟化碳选择性为99.13%。
实施例3
使用与实施例1同样的康宁微通道反应器,并按照同样的连接方式及控制方法。本实施例改变反应条件。
设定换热器温度60℃,即反应温度,通过体系背压阀控制反应压力0.2MPa。原料三氟甲烷进料速度为0.04g/min,10mol%氟氮混合气进料速度为0.45g/min,反应的停留时间为8s,氟气与三氟甲烷的摩尔配比为1.1:1。反应原料三氟甲烷通过三氟甲烷气体质量流量计经微通道预混预热模块3后进入“心形”微通道反应模块4,氟氮混合气通过氟气气体质量流量计直接进入“心形”微通道反应模块4,在“心形”微通道反应模块4-9中,三氟甲烷与氟气反应。反应混合气经淬灭模块10后通过碱石灰吸收收集得到四氟化碳粗品。
对反应后的混合气体进行取样GC分析,结果表明,三氟甲烷的转化率为93.88%,四氟化碳选择性为89.10%。
实施例4
使用与实施例1同样的康宁微通道反应器,并按照同样的连接方式及控制方法。本实施例改变反应条件。
设定换热器温度80℃,即反应温度,通过体系背压阀控制反应压力0MPa。原料三氟甲烷进料速度为0.40g/min,30mol%氟氮混合气进料速度为1.69g/min,反应的停留时间为6s,氟气与三氟甲烷的摩尔配比为1.3:1。反应原料三氟甲烷通过三氟甲烷气体质量流量计经微通道预混预热模块3后进入“心形”微通道反应模块4,氟氮混合气通过氟气气体质量流量计直接进入“心形”微通道反应模块4,在“心形”微通道反应模块4-9中,三氟甲烷与氟气反应。反应混合气经淬灭模块10后通过碱石灰吸收收集得到四氟化碳粗品。
对反应后的混合气体进行取样GC分析,结果表明,三氟甲烷的转化率为100%,四氟化碳选择性为96.51%。
实施例5
使用与实施例1同样的康宁微通道反应器,并按照同样的连接方式及控制方法。本实施例改变反应条件。
设定换热器温度40℃,即反应温度,通过体系背压阀控制反应压力0MPa。原料三氟甲烷进料速度为0.55g/min,30mol%氟氮混合气进料速度为1.96g/min,反应的停留时间为5s,氟气与三氟甲烷的摩尔配比为1.1:1。反应原料三氟甲烷通过三氟甲烷气体质量流量计经微通道预混预热模块3后进入“心形”微通道反应模块4,氟氮混合气通过氟气气体质量流量计直接进入“心形”微通道反应模块4,在“心形”微通道反应模块4-9中,三氟甲烷与氟气反应。反应混合气经淬灭模块10后通过碱石灰吸收收集得到四氟化碳粗品。
对反应后的混合气体进行取样GC分析,结果表明,三氟甲烷的转化率为99.03%,四氟化碳选择性为99.04%。
实施例6
使用与实施例1同样的康宁微通道反应器,并按照同样的连接方式及控制方法。本实施例改变反应条件。
设定换热器温度40℃,即反应温度,通过体系背压阀控制反应压力0MPa。原料三氟甲烷进料速度为0.58g/min,30mol%氟氮混合气进料速度为1.51g/min,反应的停留时间为6s,氟气与三氟甲烷的摩尔配比为0.8:1。反应原料三氟甲烷通过三氟甲烷气体质量流量计经微通道预混预热模块3后进入“心形”微通道反应模块4,氟氮混合气通过氟气气体质量流量计直接进入“心形”微通道反应模块4,在“心形”微通道反应模块4-9中,三氟甲烷与氟气反应。反应混合气经淬灭模块10后通过碱石灰吸收收集得到四氟化碳粗品。
对反应后的混合气体进行取样GC分析,结果表明,三氟甲烷的转化率为98.49%,四氟化碳选择性为88.17%。
实施例7
使用与实施例1同样的康宁微通道反应器,并按照同样的连接方式及控制方法。本实施例改变反应条件。
设定换热器温度20℃,即反应温度,通过体系背压阀控制反应压力0MPa。原料三氟甲烷进料速度为0.46g/min,30mol%氟氮混合气进料速度为1.63g/min,反应的停留时间为6s,氟气与三氟甲烷的摩尔配比为1.1:1。反应原料三氟甲烷通过三氟甲烷气体质量流量计经微通道预混预热模块3后进入“心形”微通道反应模块4,氟氮混合气通过氟气气体质量流量计直接进入“心形”微通道反应模块4,在“心形”微通道反应模块4-9中,三氟甲烷与氟气反应。反应混合气经淬灭模块10后通过碱石灰吸收收集得到四氟化碳粗品。
对反应后的混合气体进行取样GC分析,结果表明,三氟甲烷的转化率为93.02%,四氟化碳选择性为90.28%。
实施例8
使用与实施例1同样的康宁微通道反应器,并按照同样的连接方式及控制方法。本实施例改变反应条件。
设定换热器温度40℃,即反应温度,通过体系背压阀控制反应压力0MPa。原料三氟甲烷进料速度为0.37g/min,30mol%氟氮混合气进料速度为1.42g/min,反应的停留时间为7s,氟气与三氟甲烷的摩尔配比为1.2:1。反应原料三氟甲烷通过三氟甲烷气体质量流量计经微通道预混预热模块3后进入“心形”微通道反应模块4,氟氮混合气通过氟气气体质量流量计直接进入“心形”微通道反应模块4,在“心形”微通道反应模块4-9中,三氟甲烷与氟气反应。反应混合气经淬灭模块10后通过碱石灰吸收收集得到四氟化碳粗品。
对反应后的混合气体进行取样GC分析,结果表明,三氟甲烷的转化率为100%,四氟化碳选择性为99.45%。

Claims (12)

1.一种三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于所述方法在微通道反应器中进行,包括以下步骤:
(1)使原料1进入预热模块3,预热温度为-30~100℃,所述原料1包括三氟甲烷;
(2)使经步骤(1)预热后的原料1、原料2进入微通道反应模块4,所述原料2包括F2,原料2与原料1在所述微通道反应模块(4)中混合并反应,所述原料2与原料1的摩尔配比为3.0:1~0.5:1,原料1流量为0.1~50g/min,反应温度为-30~100℃,反应压力为0~3.0MPa;
(3)将步骤(2)微通道反应模块(10)出口处得到的化合物为混气体,经固体碱吸收收集后得到四氟化碳。
2.按照权利要求1所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于所述步骤(2)中,原料2与原料1在所述微通道反应模块(4)中混合并反应后,再经一个、两个或多个反应模块继续反应。
3.按照权利要求2所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于所述步骤(2)中,原料2与原料1在所述微通道反应模块(4)中混合并反应后,再经反应模块(5)至(9)继续反应。
4.按照权利要求1所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于所述原料2与原料1的摩尔配比为1.5:1~1.0:1,原料1流量为0.1~10g/min,反应温度为-10~80℃,反应压力为0~1.0MPa。
5.按照权利要求1所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于所述原料2与原料1的摩尔配比为1.2:1~1.0:1,原料1流量为0.1~6g/min,反应温度为0~80℃,反应压力为0~0.5MPa。
6.按照权利要求1所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于所述步骤(2)中:所述原料2为F2与选自氮气、氦气和氟化氢气体中的至少一种的混合气,所述混合气中氟气的摩尔浓度为5~95%。
7.按照权利要求6所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于所述混合气中F2的摩尔浓度为10~40%。
8.按照权利要求7所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于所述混合气中F2的摩尔浓度为20~30%。
9.按照权利要求1所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于:所述原料1为HCFC-22生产过程中或HCFC-22裂解制备四氟乙烯生产过程中的副产三氟甲烷。
10.按照权利要求1所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于:步骤(2)中所述微通道反应模块,其材质选自碳化硅、哈C合金或锰奈尔合金。
11.按照权利要求1所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于:所述微通道反应器的反应模块,其微通道结构选自直流型通道结构或增强混合型通道结构,所述直流型通道结构为管状结构,所述增强混合型通道结构为T型结构、球形结构、球形带挡板结构、水滴状结构或心型结构,且通道直径为0.5mm~10mm。
12.按照权利要求11所述的三氟甲烷与氟气反应连续化生产四氟化碳的方法,其特征在于:所述微通道反应器的传质系数为1~30Ka、换热能力为1700KW/m2·K以上,所述微通道反应器选自康宁G2微反应器、微孔阵列式微通道反应器、翅片式微通道反应器、毛细管微通道反应器或多股并流式微反应器。
CN201711261421.XA 2017-12-04 2017-12-04 一种三氟甲烷资源化转化生产四氟化碳的方法 Pending CN109867586A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711261421.XA CN109867586A (zh) 2017-12-04 2017-12-04 一种三氟甲烷资源化转化生产四氟化碳的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711261421.XA CN109867586A (zh) 2017-12-04 2017-12-04 一种三氟甲烷资源化转化生产四氟化碳的方法

Publications (1)

Publication Number Publication Date
CN109867586A true CN109867586A (zh) 2019-06-11

Family

ID=66915719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711261421.XA Pending CN109867586A (zh) 2017-12-04 2017-12-04 一种三氟甲烷资源化转化生产四氟化碳的方法

Country Status (1)

Country Link
CN (1) CN109867586A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778077A (zh) * 2021-01-18 2021-05-11 福建德尔科技有限公司 基于微反应器的电子级c2f6制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161952A (zh) * 1996-03-26 1997-10-15 昭和电工株式会社 生产全氟化碳的方法
RU2181352C1 (ru) * 2001-04-24 2002-04-20 Открытое акционерное общество "Галоген" Способ получения тетрафторметана
CN101580452A (zh) * 2009-06-22 2009-11-18 黎明化工研究院 一种四氟化碳制备工艺及其设备
CN102863312A (zh) * 2012-09-07 2013-01-09 黎明化工研究设计院有限责任公司 一种四氟化碳制备工艺及其设备
CN107383355A (zh) * 2016-05-17 2017-11-24 浙江省化工研究院有限公司 一种全氟聚醚的连续制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161952A (zh) * 1996-03-26 1997-10-15 昭和电工株式会社 生产全氟化碳的方法
RU2181352C1 (ru) * 2001-04-24 2002-04-20 Открытое акционерное общество "Галоген" Способ получения тетрафторметана
CN101580452A (zh) * 2009-06-22 2009-11-18 黎明化工研究院 一种四氟化碳制备工艺及其设备
CN102863312A (zh) * 2012-09-07 2013-01-09 黎明化工研究设计院有限责任公司 一种四氟化碳制备工艺及其设备
CN107383355A (zh) * 2016-05-17 2017-11-24 浙江省化工研究院有限公司 一种全氟聚醚的连续制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
穆金霞等: "微通道反应器在合成反应中的应用", 《化学进展》 *
韦广梅等: "微反应器的发展现状", 《世界科技研究与发展》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778077A (zh) * 2021-01-18 2021-05-11 福建德尔科技有限公司 基于微反应器的电子级c2f6制备方法

Similar Documents

Publication Publication Date Title
CN101133008B (zh) 从1,1,1,3,3,3-六氟丙烷非催化法生产1,1,3,3,3-五氟丙烯
CN106397106A (zh) 一种利用微通道反应器进行烯烃加成反应的方法
CN107216233B (zh) 一种三氟甲烷资源化利用方法
US11578022B2 (en) Process for manufacture of 2-chloro-1,1,1-trifluoropropene
CN108863710B (zh) 一种四氟甲烷的制备方法
JP2018516269A (ja) 1,2,3,4−テトラクロロ−ヘキサフルオロ−ブタンの合成方法
CN106336342A (zh) 一种碘和氯气为原料制备六氟丁二烯的方法
CN109867586A (zh) 一种三氟甲烷资源化转化生产四氟化碳的方法
JP2007502274A (ja) フルオロカーボン製造システム及び製造方法
CN104058925A (zh) 1,1,1,2,3-五氯丙烷的连续制备方法
CN100488926C (zh) 1,1,1,3,3-五氟丙烷的制备方法
CN111138651A (zh) 一种全氟聚醚过氧化物的合成方法
CN105218300B (zh) 含氟烯烃化合物的制备方法
CN106179426A (zh) 一种合成2,3,3,3‑四氟丙烯的催化剂及其制备方法和用途
CN113353893A (zh) 一种四氟化硫的合成方法及反应系统
CN107383355A (zh) 一种全氟聚醚的连续制备方法
CN104998587B (zh) 连续制备烯烃和芳烃的微通道反应装置
CN107814682A (zh) 一种三氟碘甲烷的连续制备方法
CN104650010A (zh) 一种六氟环氧丙烷的制备方法
CN101157595A (zh) 五氟乙烷的制备方法
CN111635291B (zh) 一种二氟一氯甲烷的制备工艺
CN101628851A (zh) 1,2,3,3,3-五氟丙烯的制备方法
CN106748741A (zh) 全氟乙酰氟及其制备方法
Moldavskii et al. Technology for the preparation of perfluoro-organic compounds
Mi et al. Reaction kinetics of phenol synthesis through one-step oxidation of benzene with N 2 O over Fe-ZSM-5 zeolite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190611