CN109853030A - 一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途 - Google Patents

一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途 Download PDF

Info

Publication number
CN109853030A
CN109853030A CN201711243362.3A CN201711243362A CN109853030A CN 109853030 A CN109853030 A CN 109853030A CN 201711243362 A CN201711243362 A CN 201711243362A CN 109853030 A CN109853030 A CN 109853030A
Authority
CN
China
Prior art keywords
metal
organic frame
metallic oxide
frame film
metal organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711243362.3A
Other languages
English (en)
Other versions
CN109853030B (zh
Inventor
姚明水
徐刚
曹琳安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201711243362.3A priority Critical patent/CN109853030B/zh
Publication of CN109853030A publication Critical patent/CN109853030A/zh
Application granted granted Critical
Publication of CN109853030B publication Critical patent/CN109853030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途。所述方法是在金属氧化物(MOX)纳米晶表面可控生长金属有机框架(MOFs)薄膜,其具有普适性。所述金属有机框架薄膜包覆的金属氧化物纳米晶具有核鞘结构,其中,所述金属有机框架薄膜为至少两层结构,且多层的金属有机框架薄膜的种类和厚度也是可控的,每层厚度在1‑100nm之间。所述金属有机框架薄膜包覆的金属氧化物纳米晶可以用于气敏传感器、锂硫电池、燃料电池等薄膜电学器件。

Description

一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方 法和用途
技术领域
本发明涉及薄膜制备技术领域,尤其涉及一种金属有机框架薄膜包覆金属氧化物纳米晶及其制备方法和用途。
背景技术
薄膜的质量和多功能性是高性能薄膜电学器件的重要决定因素之一。通过多层不同功能薄膜的组合,多功能性和协同作用赋予其提升薄膜电学器件性能的巨大潜力。因此,多层薄膜已引起学术界和工业界的兴趣和关注。同时,探索新型多层功能薄膜将为薄膜电学器件的发展提供新的平台。金属有机骨架材料(Metal Organic Frameworks,MOFs)是一类由金属离子或金属簇与有机配体自组装形成的具有规则网络结构的晶态多孔配位聚合物。通过金属位点和有机配体的修饰和调整改变吸附位点、孔道尺寸、功能基团等,可实现诸如带隙、气体选择性、荧光等不同的功能。特别是针对其可同时解决过滤膜中高选择性(selectivity)和高渗透性(permeability)的潜力,多层MOFs薄膜对于涉及过滤或分离的诸如气敏传感器、锂硫电池、燃料电池等薄膜电学器件至关重要。
多层MOFs薄膜与电学器件的集成要求发展一种普适的方法能够在纳米尺度上可控地制备MOFs薄膜并推广至各种生长表面。作为典型例子,沸石咪唑酯骨架结构材料(zeolitic imidazolate frameworks,ZIFs),是一类具有良好化学稳定性和热稳定性的MOFs,被选为典型的MOFs生长于复杂表面材料。
作为物联网和“中国制造2025”的重要一环,智能传感器作为21世纪最具影响力和发展前景高新技术,正引起国内外电子信息界和材料界的高度重视。作为智能传感器重要成员之一,金属氧化物(metal oxide,MOX)气敏传感器虽然取得一定的成果,但对单一气体的选择性检测却一直缺乏普适性的技术,限制了其在数字化、智能化和微型化的精确检测领域的应用。因此,发展一种简便、廉价、选择性好并具有技术普适性的高灵敏度高选择性气敏材料,在扩展可选择性检测气体种类以及简化和替代电子鼻方面意义重大,为解决居室和工作场所的实际应用所涉及的高湿度干扰和多组分复杂气氛交叉响应问题提供新的思路。
因此,在MOX纳米晶表面上可控生长多层MOFs纳米薄膜将结合MOX纳米晶本身优异的中温气敏性能和多层MOFs薄膜对目标气体的多级筛选能力,克服单层MOF单级选择性不能满足现有技术要求的问题,实现高选择性高灵敏度的MOX-多层MOFs复合气敏材料的制备。
发明内容
为了改善现有技术中存在的不足,本发明提供了一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途。所述方法是在金属氧化物(MOX)纳米晶表面可控生长金属有机框架(MOFs)薄膜,其具有普适性。所述金属有机框架薄膜包覆的金属氧化物纳米晶具有核鞘结构,其中,所述金属有机框架薄膜为至少两层结构,且多层的金属有机框架薄膜的种类和厚度也是可控的,每层厚度在1-100nm之间。
本发明提供如下技术方案:
一种金属有机框架薄膜包覆的金属氧化物纳米晶,其特征在于,所述金属有机框架薄膜包覆的金属氧化物纳米晶具有核鞘结构,其中,所述金属氧化物纳米晶作为内核,所述金属有机框架薄膜作为外壳,所述金属有机框架薄膜包覆在金属氧化物纳米晶外表面,且作为外壳的金属有机框架薄膜为至少两层薄膜结构。
根据本发明,所述纳米晶选自纳米颗粒、纳米线、纳米片中的至少一种。
根据本发明,所述纳米晶的尺寸优选为至少一维尺寸小于100nm,优选为30-80nm,例如50-80nm。
优选地,所述纳米晶为三个维度上小于100nm的纳米颗粒,或为两个维度上小于100nm的一维纳米线,或为一个维度上小于100nm的二维纳米片。
根据本发明,所述金属氧化物纳米晶优选为纯氧化锌,或者贵金属负载/修饰的氧化锌纳米晶,或者表面负载氧化锌籽晶的其他金属氧化物纳米晶。
优选地,所述贵金属选自金、银、铂中的至少一种。
优选地,所述的其他金属氧化物选自二氧化锡、二氧化钛、三氧化钨、三氧化钼、四氧化三钴、氧化钴、氧化亚钴中的至少一种。
根据本发明,所述金属有机框架薄膜为至少两层薄膜结构,例如为两层薄膜结构、三层薄膜结构或四层薄膜结构。
根据本发明,所述多层金属有机框架薄膜的厚度相同或不同,且所述每层金属有机框架薄膜的厚度为1-100nm,优选为1-50nm,例如为1nm,5nm,10nm,15nm,20nm,25nm,35nm,50nm。
根据本发明,所述多层金属有机框架薄膜中相邻层的金属有机框架薄膜的有机配体不同,和/或相邻层的金属有机框架薄膜的金属不同。
优选地,所述有机配体选自取代或未取代的咪唑。还优选地,所述有机配体选自咪唑,2-甲基咪唑,2-乙基咪唑,4-甲基咪唑,4,5-二甲基咪唑,2,4,5-三甲基咪唑,苯并咪唑,2-甲基苯并咪唑,2-乙基苯并咪唑,5,6-二甲基苯并咪唑,2,5,6-三甲基苯并咪唑,2-乙基-5,6-二甲基苯并咪唑中的至少一种。
本发明还提供上述金属有机框架薄膜包覆的金属氧化物纳米晶的制备方法,所述方法包括如下步骤:
1)采用液相外延生长法,将金属氧化物纳米晶浸入到金属盐和有机配体的混合溶液中,反应,制备得到一层金属有机框架薄膜包覆的金属氧化物纳米晶;
2)采用液相外延生长法,将步骤1)的一层金属有机框架薄膜包覆的金属氧化物纳米晶浸入到金属盐和有机配体的混合溶液中,反应,制备得到两层金属有机框架薄膜包覆的金属氧化物纳米晶,其中,所述金属盐和有机配体中的至少一种不同于步骤1)中的金属盐和有机配体;或者,
2’)采用配体交换法,将步骤1)的一层金属有机框架薄膜包覆的金属氧化物纳米晶浸入到不同于步骤1)的有机配体溶液中,反应,制备得到两层金属有机框架薄膜包覆的金属氧化物纳米晶。
优选地,所述方法还包括如下步骤:
1)采用液相外延生长法,将金属氧化物纳米晶浸入到金属盐和有机配体的混合溶液中,反应,制备得到一层金属有机框架薄膜包覆的金属氧化物纳米晶;
2)采用液相外延生长法,将步骤1)的一层金属有机框架薄膜包覆的金属氧化物纳米晶浸入到金属盐和不同于步骤1)的有机配体的混合溶液中,反应,制备得到两层金属有机框架薄膜包覆的金属氧化物纳米晶;或者,
2’)采用配体交换法,将步骤1)的一层金属有机框架薄膜包覆的金属氧化物纳米晶浸入到不同于步骤1)的有机配体溶液中,反应,制备得到两层金属有机框架薄膜包覆的金属氧化物纳米晶。
根据本发明,所述方法还包括如下步骤:
3)重复步骤2),区别在于使用的有机配体不同于步骤2)和步骤2’)的有机配体,和/或使用的金属盐不同于步骤2)和步骤2’)的金属盐,制备得到多层金属有机框架薄膜包覆的金属氧化物纳米晶;或者,
3’)重复步骤2’),区别在于使用的有机配体不同于步骤2)和步骤2’)的有机配体,制备得到多层金属有机框架薄膜包覆的金属氧化物纳米晶。
根据本发明,步骤1)中,所述金属氧化物纳米晶选自金属氧化物纳米颗粒、金属氧化物纳米线、金属氧化物纳米片中的至少一种。
根据本发明,步骤1)中,所述金属氧化物纳米晶优选为纯氧化锌,或者贵金属负载/修饰的氧化锌纳米晶,或者表面负载氧化锌籽晶的其他金属氧化物纳米晶。优选地,所述贵金属选自金、银、铂中的至少一种。优选地,所述的其他金属氧化物选自二氧化锡、二氧化钛、三氧化钨、三氧化钼、四氧化三钴、氧化钴、氧化亚钴中的至少一种。
根据本发明,步骤1)中,所述金属氧化物纳米晶可以是现有技术中已知的金属氧化物纳米晶,例如为通过商业途径购买得到的金属氧化物纳米晶,如金属氧化物纳米颗粒、金属氧化物纳米线、金属氧化物纳米片中的至少一种,也可以是采用现有技术已知的方法制备得到金属氧化物纳米晶。
根据本发明,步骤1)中,所述金属盐选自锌盐或钴盐。
优选地,所述锌盐选自硝酸锌、乙酸锌、氯化锌、硫酸锌中的至少一种。
优选地,所述钴盐选自硝酸钴、乙酸钴、氯化钴、硫酸钴中的至少一种。
根据本发明,步骤1)和步骤2)中,所述金属盐和有机配体的混合溶液采用如下方法制备:分别配制金属盐溶液和有机配体溶液,按一定摩尔比将金属盐溶液和有机配体溶液进行混合,制备得到金属盐和有机配体的混合溶液。所述金属盐溶液和有机配体溶液的配制采用本领域常规的方法制备得到。
优选地,所述金属盐和有机配体的摩尔比为1:(1.8-2.2),例如为1:2。
优选地,所述金属盐溶液的浓度为1-20mmol/L,优选为1-5mmol/L,例如为2.5mmol/L。
优选地,所述金属盐在混合溶液中的浓度为0.5-10mmol/L。
优选地,所述金属盐溶液中的溶剂为甲醇,或二甲基甲酰胺与水的混合溶液,进一步优选地,所述二甲基甲酰胺与水的体积比为1:9-9:1。
优选地,所述有机配体溶液中的溶剂为甲醇,或二甲基甲酰胺与水的混合溶液,进一步优选地,所述二甲基甲酰胺与水的体积比为1:9-9:1。
优选地,所述有机配体溶液中还可以加入三乙胺,所述三乙胺用于对溶液中有机配体进行去质子化。所述三乙胺的加入量没有具体的限定,可以达到溶液中有机配体进行去质子化的目的即可。
根据本发明,步骤1)和步骤2)中,所述反应的温度为0-100℃,优选为20-50℃,例如为25℃;所述反应的时间为1-300min,优选为10-100min,例如为30min。
根据本发明,步骤2’)中,所述有机配体溶液中的摩尔浓度为0.01-0.5mol/L,优选为0.02-0.1mol/L,例如为0.034mol/L。
根据本发明,步骤2’)中,所述反应的温度为50-150℃,优选为55-100℃,例如为60℃;所述反应的时间为0.5-100h,优选为5-30h,例如为15h。
根据本发明,步骤2)和步骤2’)中的有机配体相同或不同。
根据本发明,所述有机配体选自取代或未取代的咪唑。
优选地,所述有机配体选自咪唑,2-甲基咪唑,2-乙基咪唑,4-甲基咪唑,4,5-二甲基咪唑,2,4,5-三甲基咪唑,苯并咪唑,2-甲基苯并咪唑,2-乙基苯并咪唑,5,6-二甲基苯并咪唑,2,5,6-三甲基苯并咪唑,2-乙基-5,6-二甲基苯并咪唑中的至少一种。
根据本发明,所述每层金属有机框架薄膜的厚度为1-100nm。所述金属有机框架薄膜的厚度可以随着反应时间的延长而增厚。
本发明还提供上述金属有机框架薄膜包覆的金属氧化物纳米晶的用途,其用于气敏传感器、锂硫电池、燃料电池等薄膜电学器件。
优选地,用于中温气敏传感器,所述中温是指温度介于150-600℃之间。
本发明还提供一种气敏传感器,所述气敏传感器包括上述的金属有机框架薄膜包覆的金属氧化物纳米晶。
优选地,所述气敏传感器包括上述的金属有机框架薄膜包覆的金负载/修饰的金属氧化物纳米晶。
根据本发明,所述气敏传感器为中温气敏传感器,所述中温是指温度介于150-600℃之间。
本发明的有益效果:
本发明提供了一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途。所述方法是在金属氧化物(MOX)纳米晶表面可控生长金属有机框架(MOFs)薄膜,其具有普适性。所述金属有机框架薄膜包覆的金属氧化物纳米晶具有核鞘结构,其中,所述金属有机框架薄膜为至少两层结构,且多层的金属有机框架薄膜的种类和厚度也是可控的,每层厚度在1-100nm之间。所述金属有机框架薄膜包覆的金属氧化物纳米晶可以用于气敏传感器、锂硫电池、燃料电池等薄膜电学器件。
附图说明
图1为本发明的一个优选实施方式制备得到的金属有机框架薄膜包覆的金属氧化物纳米晶的流程图。
图2为实施例1的ZnO@Au@ZIF-8的透射电镜图;
其中,(a)低倍图(插图为选区电子衍射),(b)高倍图,和(c)金纳米晶的高分辨晶格图和元素面扫图。
图3为实施例1制备的ZnO@Au@ZIF-8@ZIF-DMBIM对不同湿度的100ppm丙酮气体的响应-恢复电流曲线图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。此外,应理解,在阅读了本发明所公开的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的保护范围之内。
实施例1
(1)金修饰的氧化锌纳米晶的制备
首先在蓝宝石基底上通过350摄氏度煅烧Zn(Ac)2乙醇溶液的方法制备ZnO籽晶。然后将基底面朝下浸入8ml 0.02M ZnAc2·2H2O和8ml 0.02M六次亚甲基四胺(HMT)的混合水溶液中,95℃下反应16h。取出后用去离子水洗涤三次,然后在550℃下煅烧2h。将长有ZnO纳米线的基底浸入到39ml的去离子水中,然后加入0.5ml 0.02M柠檬酸钠,0.2ml 25.4mMHAuCl4·4H2O and 0.6ml 0.095M NaBH4,室温下搅拌30min后用去离子水充分洗涤,制备得到金修饰的氧化锌纳米晶。该步所得样品命名为ZnO@Au。
(2)金属有机框架薄膜包覆的氧化锌纳米晶的制备
(2.1)采用液相外延生长的方法,将上述制备得到的氧化锌纳米晶浸入到10ml2.5mM Zn(NO3)2和10ml 5mM的2-甲基咪唑的混合溶液中室温下浸泡30min,制备得到一层金属有机框架薄膜包覆的氧化锌纳米晶,其中金属框架薄膜中的金属为锌,有机配体为2-甲基咪唑。
该步所得样品命名为ZnO@Au@ZIF-8。
可以通过改变不同的反应物浓度来调控金属有机框架薄膜的厚度。
(2.2)采用配体交换的方法,将上述的一层金属有机框架薄膜包覆的氧化锌纳米晶浸入到16ml含0.034M的5,6-二甲基苯并咪唑和0.08mL三乙胺的甲醇溶液中60℃下反应15h后用甲醇洗涤3次,干燥,制备得到两层金属有机框架薄膜包覆的氧化锌纳米晶,其中最外层的金属框架薄膜中的金属为锌,有机配体为5,6-二甲基苯并咪唑。
该步所得样品命名为ZnO@Au@ZIF-8@ZIF-DMBIM。
图2为ZnO@Au@ZIF-8的透射电镜图;其中,(a)低倍图(插图为选区电子衍射),(b)高倍图,和(c)金纳米晶的高分辨晶格图和元素面扫图。
由图2可以看出,实施例1制备的第一层金属有机框架薄膜的厚度为5-20nm;第二层金属有机框架薄膜的厚度为1-5nm(结合核磁分析和拉曼结果)。
实施例2
(1)金修饰的氧化锌纳米晶的制备
ZnO纳米颗粒直接采购自国药集团(99%),涂于氧化铝基片上后,于550℃煅烧2h。将涂有ZnO纳米颗粒的基底浸入到39ml的去离子水中,然后加入0.5ml 0.02M柠檬酸钠,0.2ml 25.4mM HAuCl4·4H2O and 0.6ml 0.095M NaBH4,室温下搅拌30min后用去离子水充分洗涤,制备得到金修饰的氧化锌纳米晶。
(2)金属有机框架薄膜包覆的氧化锌纳米晶的制备
(2.1)采用液相外延生长的方法,将金修饰的氧化锌纳米晶浸入到10ml2.5mM Co(NO3)2和10ml 5mM的2-甲基咪唑的混合溶液中室温下浸泡30min,制备得到一层金属有机框架薄膜包覆的氧化锌纳米晶,其中金属框架薄膜中的金属为钴,有机配体为2-甲基咪唑。
可以通过改变不同的反应物浓度来调控金属有机框架薄膜的厚度。
(2.2)采用配体交换的方法,将上述的一层金属有机框架薄膜包覆的氧化锌纳米晶浸入到16ml含0.034M的5,6-二甲基苯并咪唑和0.08mL三乙胺的甲醇溶液中60℃下反应15h后用甲醇洗涤3次,干燥,制备得到两层金属有机框架薄膜包覆的氧化锌纳米晶,其中最外层的金属框架薄膜中的金属为钴,有机配体为5,6-二甲基苯并咪唑。
(2.3)采用液相外延生长的方法,将上述的两层金属有机框架薄膜包覆的氧化锌纳米晶浸入到10ml 2.5mM Co(NO3)2和10ml 5mM的4-甲基咪唑的混合溶液中室温下浸泡30min,制备得到三层金属有机框架薄膜包覆的氧化锌纳米晶,其中最外层的金属框架薄膜中的金属为钴,有机配体为4-甲基咪唑。
实施例2制备的第一层金属有机框架薄膜的厚度为5-10nm;第二层金属有机框架薄膜的厚度为1-2.5nm;第三层金属有机框架薄膜的厚度为5-20nm。
实施例3
(1)氧化锌纳米晶的制备
ZnO纳米片合成参考王中林团队工作(Angew.Chem.Int.Ed.2004,43,5238–5242),即二(2-乙基)己基磺基琥珀酸钠(0.10M)正丁醇溶液和硝酸锌(0.025M)水溶液按体积比1:10混合,然后滴加入4倍锌盐摩尔比的浓氨水(17.65M)形成混合溶液室温搅拌3h后,90℃反应5天后,离心并用乙醇多次洗涤,70℃真空干燥后待用,将制备的ZnO纳米片涂于氧化铝基片上后,于550℃煅烧2h。
(2)金属有机框架薄膜包覆的氧化锌纳米晶的制备
(2.1)采用液相外延生长的方法,将氧化锌纳米晶浸入到10ml 2.5mM Zn(NO3)2和10ml 5mM的2-甲基咪唑的混合溶液中室温下浸泡30min,制备得到一层金属有机框架薄膜包覆的氧化锌纳米晶,其中金属框架薄膜中的金属为锌,有机配体为2-甲基咪唑。
可以通过改变不同的反应物浓度来调控金属有机框架薄膜的厚度。
(2.2)采用配体交换的方法,将上述的一层金属有机框架薄膜包覆的氧化锌纳米晶浸入到16ml含0.034M的5,6-二甲基苯并咪唑和0.08mL三乙胺的甲醇溶液中60℃下反应15h后用甲醇洗涤3次,干燥,制备得到两层金属有机框架薄膜包覆的氧化锌纳米晶,其中最外层的金属框架薄膜中的金属为锌,有机配体为5,6-二甲基苯并咪唑。
实施例3制备的第一层金属有机框架薄膜的厚度为5-20nm;第二层金属有机框架薄膜的厚度为1-5nm。
实施例4
(1)氧化锌纳米晶包覆的二氧化锡纳米颗粒薄膜的制备
二氧化锡纳米颗粒直接采购自国药集团(99%),涂于氧化铝基片上后,于550℃煅烧2h。将涂有二氧化锡纳米颗粒的基底浸入到20mL含有0.005M醋酸锌的乙醇溶液中,10min后取出烘干,此为一个循环。循环五次后,将基片置于350℃煅烧0.5h即得到氧化锌纳米晶包覆的二氧化锡纳米颗粒薄膜。
(2)金属有机框架薄膜包覆的氧化锌纳米晶包覆的二氧化锡纳米晶的制备
(2.1)采用液相外延生长的方法,将氧化锌纳米晶包覆的二氧化锡纳米颗粒薄膜浸入到10ml 2.5mM Zn(NO3)2和10ml 5mM的2-甲基咪唑的混合溶液中室温下浸泡30min,制备得到一层金属有机框架薄膜包覆的氧化锌纳米晶包覆的二氧化锡纳米晶,其中金属框架薄膜中的金属为锌,有机配体为2-甲基咪唑。
可以通过改变不同的反应物浓度来调控金属有机框架薄膜的厚度。
(2.2)采用配体交换的方法,将上述的一层金属有机框架薄膜包覆的氧化锌纳米晶包覆的二氧化锡纳米晶浸入到16ml含0.034M的5,6-二甲基苯并咪唑和0.08mL三乙胺的甲醇溶液中60℃下反应15h后用甲醇洗涤3次,干燥,制备得到两层金属有机框架薄膜包覆的氧化锌纳米晶包覆的二氧化锡纳米晶,其中最外层的金属框架薄膜中的金属为锌,有机配体为5,6-二甲基苯并咪唑。
实施例4制备的第一层金属有机框架薄膜的厚度为5-20nm;第二层金属有机框架薄膜的厚度为1-5nm。
实施例5
将实施例1制备的两层金属有机框架薄膜包覆的氧化锌纳米晶作为独立气敏元件直接进行测试,采用通用动态气敏测试法测试。气敏传感器制备完成后,放入管式炉石英管中待测。管式炉为气敏传感器提供恒定的工作温度,特定浓度的气体则是通过质量流量计控制标准气(如丙酮、苯、甲苯、乙苯和间二甲苯,不确定度3%,合成空气分散)和合成空气的比例来实现。进气流量恒定为600mL/min,工作电压为1V,电流收集由数字源表完成。响应值(R,response)定义为空气中传感器电阻(Rair)与检测气中电阻(Rgas)之比,即R=Rair/Rgas–1。选择性定义为丙酮的响应值与目标气体响应值的比值R丙酮/R目标气体。响应/恢复时间分别定义为传感器电阻到达/恢复至90%/10%各自在被检测气和合成空气中饱和电阻值的时间。
表1不同样品对丙酮及苯系物响应值和选择性总结表
表1列举了所涉及的ZnO@Au(实施例1中间步骤制备的未生长金属有机框架薄膜的产品)、ZnO@Au@ZIF-8(实施例1中间步骤制备的生长一层金属有机框架薄膜的产品)、ZnO@Au@ZIF-8@ZIF-DMBIM(实施例1制备的生长两层金属有机框架薄膜的产品)的在275℃时的响应值和选择性对比数据。
实验结果表明,实施例1制备的ZnO@Au@ZIF-8@ZIF-DMBIM对气体的多重尺寸筛选,丙酮与苯,甲苯,间二甲苯,乙苯这四种气体的选择性(定义为丙酮的响应值与分析气体的响应值之比)比只有金修饰的ZnO,即ZnO@Au依次提高189.2%,337.5%,197.6%,341.5%。
图3为实施例1制备的ZnO@Au@ZIF-8@ZIF-DMBIM对不同湿度的100ppm丙酮气体的响应-恢复电流曲线图。
由图3可知,当100ppm丙酮时,ZnO@Au@ZIF-8@ZIF-DMBIM的电阻变化20倍,响应恢复时间分别是3.73min和1.27min。同时,样品由于含有疏水的金属有机框架薄膜层,275℃下对不同湿度的100ppm丙酮响应值波动小,变异系数(CV)低于10%,表明样品保持了良好的抗湿度干扰能力。
其中,所述变异系数(coefficient of variation,CV)的计算方法为:
CV=RSD/Raverage×100%;RSD和Raverage分别代表了在响应值的标准偏差和平均值。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种金属有机框架薄膜包覆的金属氧化物纳米晶,其特征在于,所述金属有机框架薄膜包覆的金属氧化物纳米晶具有核鞘结构,其中,所述金属氧化物纳米晶作为内核,所述金属有机框架薄膜作为外壳,所述金属有机框架薄膜包覆在金属氧化物纳米晶外表面,且作为外壳的金属有机框架薄膜为至少两层薄膜结构。
2.根据权利要求1所述的金属氧化物纳米晶,其特征在于,所述纳米晶选自纳米颗粒、纳米线、纳米片中的至少一种;
优选地,所述纳米晶的尺寸优选为至少一维尺寸小于100nm,优选为30-80nm,例如50-80nm;
优选地,所述纳米晶为三个维度上小于100nm的纳米颗粒,或为两个维度上小于100nm的一维纳米线,或为一个维度上小于100nm的二维纳米片;
优选地,所述金属氧化物纳米晶优选为纯氧化锌,或者贵金属负载/修饰的氧化锌纳米晶,或者表面负载氧化锌籽晶的其他金属氧化物纳米晶;
优选地,所述贵金属选自金、银、铂中的至少一种;
优选地,所述的其他金属氧化物选自二氧化锡、二氧化钛、三氧化钨、三氧化钼、四氧化三钴、氧化钴、氧化亚钴中的至少一种;
优选地,所述金属有机框架薄膜为至少两层薄膜结构,例如为两层薄膜结构、三层薄膜结构或四层薄膜结构。
3.根据权利要求1或2所述的金属氧化物纳米晶,其特征在于,所述多层金属有机框架薄膜的厚度相同或不同,且所述每层金属有机框架薄膜的厚度为1-100nm,优选为1-50nm,例如为1nm,5nm,10nm,15nm,20nm,25nm,35nm,50nm;
优选地,所述多层金属有机框架薄膜中相邻层的金属有机框架薄膜的有机配体不同,和/或相邻层的金属有机框架薄膜的金属不同;
优选地,所述有机配体选自取代或未取代的咪唑;还优选地,所述有机配体选自咪唑,2-甲基咪唑,2-乙基咪唑,4-甲基咪唑,4,5-二甲基咪唑,2,4,5-三甲基咪唑,苯并咪唑,2-甲基苯并咪唑,2-乙基苯并咪唑,5,6-二甲基苯并咪唑,2,5,6-三甲基苯并咪唑,2-乙基-5,6-二甲基苯并咪唑中的至少一种。
4.权利要求1-3中任一项所述的金属有机框架薄膜包覆的金属氧化物纳米晶的制备方法,所述方法包括如下步骤:
1)采用液相外延生长法,将金属氧化物纳米晶浸入到金属盐和有机配体的混合溶液中,反应,制备得到一层金属有机框架薄膜包覆的金属氧化物纳米晶;
2)采用液相外延生长法,将步骤1)的一层金属有机框架薄膜包覆的金属氧化物纳米晶浸入到金属盐和有机配体的混合溶液中,反应,制备得到两层金属有机框架薄膜包覆的金属氧化物纳米晶,其中,所述金属盐和有机配体中的至少一种不同于步骤1)中的金属盐和有机配体;或者,
2’)采用配体交换法,将步骤1)的一层金属有机框架薄膜包覆的金属氧化物纳米晶浸入到不同于步骤1)的有机配体溶液中,反应,制备得到两层金属有机框架薄膜包覆的金属氧化物纳米晶。
5.根据权利要求4所述的金属氧化物纳米晶的制备方法,其特征在于,所述方法还包括如下步骤:
1)采用液相外延生长法,将金属氧化物纳米晶浸入到金属盐和有机配体的混合溶液中,反应,制备得到一层金属有机框架薄膜包覆的金属氧化物纳米晶;
2)采用液相外延生长法,将步骤1)的一层金属有机框架薄膜包覆的金属氧化物纳米晶浸入到金属盐和不同于步骤1)的有机配体的混合溶液中,反应,制备得到两层金属有机框架薄膜包覆的金属氧化物纳米晶;或者,
2’)采用配体交换法,将步骤1)的一层金属有机框架薄膜包覆的金属氧化物纳米晶浸入到不同于步骤1)的有机配体溶液中,反应,制备得到两层金属有机框架薄膜包覆的金属氧化物纳米晶。
6.根据权利要求4或5所述的金属氧化物纳米晶的制备方法,其特征在于,所述方法还包括如下步骤:
3)重复步骤2),区别在于使用的有机配体不同于步骤2)和步骤2’)的有机配体,和/或使用的金属盐不同于步骤2)和步骤2’)的金属盐,制备得到多层金属有机框架薄膜包覆的金属氧化物纳米晶;或者,
3’)重复步骤2’),区别在于使用的有机配体不同于步骤2)和步骤2’)的有机配体,制备得到多层金属有机框架薄膜包覆的金属氧化物纳米晶。
7.根据权利要求4-6中任一项所述的金属氧化物纳米晶的制备方法,其特征在于,步骤1)中,所述金属氧化物纳米晶选自金属氧化物纳米颗粒、金属氧化物纳米线、金属氧化物纳米片中的至少一种;
优选地,步骤1)中,所述金属氧化物纳米晶优选为纯氧化锌,或者贵金属负载/修饰的氧化锌纳米晶,或者表面负载氧化锌籽晶的其他金属氧化物纳米晶;优选地,所述贵金属选自金、银、铂中的至少一种;优选地,所述的其他金属氧化物选自二氧化锡、二氧化钛、三氧化钨、三氧化钼、四氧化三钴、氧化钴、氧化亚钴中的至少一种;
优选地,步骤1)中,所述金属盐选自锌盐或钴盐;
优选地,所述锌盐选自硝酸锌、乙酸锌、氯化锌、硫酸锌中的至少一种;
优选地,所述钴盐选自硝酸钴、乙酸钴、氯化钴、硫酸钴中的至少一种;
优选地,所述金属盐和有机配体的摩尔比为1:(1.8-2.2),例如为1:2;
优选地,所述金属盐溶液的浓度为1-20mmol/L,优选为1-5mmol/L,例如为2.5mmol/L;
优选地,所述金属盐在混合溶液中的浓度为0.5-10mmol/L;
优选地,所述金属盐溶液中的溶剂为甲醇,或二甲基甲酰胺与水的混合溶液,进一步优选地,所述二甲基甲酰胺与水的体积比为1:9-9:1;
优选地,所述有机配体溶液中的溶剂为甲醇,或二甲基甲酰胺与水的混合溶液,进一步优选地,所述二甲基甲酰胺与水的体积比为1:9-9:1;
优选地,所述有机配体溶液中还可以加入三乙胺。
8.根据权利要求4-7中任一项所述的金属氧化物纳米晶的制备方法,其特征在于,步骤1)和步骤2)中,所述反应的温度为0-100℃,优选为20-50℃,例如为25℃;所述反应的时间为1-300min,优选为10-100min,例如为30min;
优选地,步骤2’)中,所述有机配体溶液中的摩尔浓度为0.01-0.5mol/L,优选为0.02-0.1mol/L,例如为0.034mol/L;
优选地,步骤2’)中,所述反应的温度为50-150℃,优选为55-100℃,例如为60℃;所述反应的时间为0.5-100h,优选为5-30h,例如为15h;
优选地,步骤2)和步骤2’)中的有机配体相同或不同;
优选地,所述有机配体选自取代或未取代的咪唑;
优选地,所述有机配体选自咪唑,2-甲基咪唑,2-乙基咪唑,4-甲基咪唑,4,5-二甲基咪唑,2,4,5-三甲基咪唑,苯并咪唑,2-甲基苯并咪唑,2-乙基苯并咪唑,5,6-二甲基苯并咪唑,2,5,6-三甲基苯并咪唑,2-乙基-5,6-二甲基苯并咪唑中的至少一种;
优选地,所述每层金属有机框架薄膜的厚度为1-100nm。
9.权利要求1-3中任一项所述的金属有机框架薄膜包覆的金属氧化物纳米晶的用途,其用于气敏传感器、锂硫电池、燃料电池等薄膜电学器件;
优选地,用于中温气敏传感器,所述中温是指温度介于150-600℃之间。
10.一种气敏传感器,所述气敏传感器包括权利要求1-3中任一项所述的金属有机框架薄膜包覆的金属氧化物纳米晶;
优选地,所述气敏传感器包括权利要求1-3中任一项所述的金属有机框架薄膜包覆的金负载/修饰的金属氧化物纳米晶;
优选地,所述气敏传感器为中温气敏传感器,所述中温是指温度介于150-600℃之间。
CN201711243362.3A 2017-11-30 2017-11-30 一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途 Active CN109853030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711243362.3A CN109853030B (zh) 2017-11-30 2017-11-30 一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711243362.3A CN109853030B (zh) 2017-11-30 2017-11-30 一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN109853030A true CN109853030A (zh) 2019-06-07
CN109853030B CN109853030B (zh) 2020-11-20

Family

ID=66888758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711243362.3A Active CN109853030B (zh) 2017-11-30 2017-11-30 一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN109853030B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396006A (zh) * 2019-07-16 2019-11-01 济南大学 一种ZIF-8膜包覆SnO2复合气敏材料及其制备方法和应用
CN112295866A (zh) * 2019-07-26 2021-02-02 中国科学院福建物质结构研究所 一种全金属有机框架范德华异质结层薄膜的制备方法及其所制备的薄膜和用途
CN112397690A (zh) * 2019-08-12 2021-02-23 中国科学院化学研究所 一种基于金属-有机骨架材料原位构筑表面包覆层的方法
CN112635755A (zh) * 2020-12-22 2021-04-09 江西理工大学 一种原位生长的表面配位聚合反应制备空心Co3O4纳米球的方法
CN112876690A (zh) * 2021-02-04 2021-06-01 四川大学 一种高强度自修复水性聚氨酯复合材料及其制备方法
CN113670993A (zh) * 2021-09-08 2021-11-19 大连理工大学 一种具有分等级结构的复合气敏材料及其制备方法与应用
CN113668246A (zh) * 2021-09-08 2021-11-19 青岛大学 一种在生物质纤维表面构筑金属有机框架材料的方法及其应用
CN114561666A (zh) * 2022-03-25 2022-05-31 中山大学 表面修饰的金属有机框架纳米阵列电极及制备方法与应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872728A (zh) * 2012-10-11 2013-01-16 浙江大学 氢氧化物纳米线和有机配体制备金属有机框架物薄膜的方法
CN103059066A (zh) * 2012-12-06 2013-04-24 浙江大学 氢氧化物纳米线和有机配体在常温下快速制备金属有机框架物薄膜的方法
CN103364446A (zh) * 2013-06-28 2013-10-23 上海纳米技术及应用国家工程研究中心有限公司 一种用于气敏传感器的稀土掺杂氧化锌纳米线的制备方法
CN103879066A (zh) * 2014-03-13 2014-06-25 浙江大学 一种金属有机框架物薄膜的制备方法及其产品和应用
CN104084238A (zh) * 2014-07-08 2014-10-08 大连理工大学 一种ZIF-8膜包覆Pd/ZnO核壳催化剂及其制备方法
CN105148882A (zh) * 2015-06-30 2015-12-16 河北大学 一种金属有机骨架材料为壳的核壳型亲水色谱固定相及其制备方法与应用
CN105510395A (zh) * 2015-12-13 2016-04-20 中国科学院福建物质结构研究所 金属氧化物-金属有机框架纳米核壳结构一维阵列及其制备方法和用途
CN105797594A (zh) * 2016-05-11 2016-07-27 大连理工大学 一种简单溶剂热生长法制备取向生长的金属有机骨架纳米片式膜
CN105833915A (zh) * 2015-01-14 2016-08-10 同济大学 一种核壳型铁基金属有机骨架光Fenton催化剂及其制备与应用
CN106929912A (zh) * 2017-03-02 2017-07-07 山东师范大学 一种具有多层次结构金属有机框架纳米晶体及制备方法
CN107151331A (zh) * 2017-06-05 2017-09-12 北京化工大学 一种电化学方法快速制备结构可控金属有机骨架化合物的方法
CN107316987A (zh) * 2017-05-04 2017-11-03 南京邮电大学 一种氧化物纳米线/ZIF系MOFs糖葫芦状复合材料及其制备方法
CN107316986A (zh) * 2017-05-04 2017-11-03 南京邮电大学 一种氧化物纳米线‑mof衍生物/s复合正极材料及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872728A (zh) * 2012-10-11 2013-01-16 浙江大学 氢氧化物纳米线和有机配体制备金属有机框架物薄膜的方法
CN103059066A (zh) * 2012-12-06 2013-04-24 浙江大学 氢氧化物纳米线和有机配体在常温下快速制备金属有机框架物薄膜的方法
CN103364446A (zh) * 2013-06-28 2013-10-23 上海纳米技术及应用国家工程研究中心有限公司 一种用于气敏传感器的稀土掺杂氧化锌纳米线的制备方法
CN103879066A (zh) * 2014-03-13 2014-06-25 浙江大学 一种金属有机框架物薄膜的制备方法及其产品和应用
CN104084238A (zh) * 2014-07-08 2014-10-08 大连理工大学 一种ZIF-8膜包覆Pd/ZnO核壳催化剂及其制备方法
CN105833915A (zh) * 2015-01-14 2016-08-10 同济大学 一种核壳型铁基金属有机骨架光Fenton催化剂及其制备与应用
CN105148882A (zh) * 2015-06-30 2015-12-16 河北大学 一种金属有机骨架材料为壳的核壳型亲水色谱固定相及其制备方法与应用
CN105510395A (zh) * 2015-12-13 2016-04-20 中国科学院福建物质结构研究所 金属氧化物-金属有机框架纳米核壳结构一维阵列及其制备方法和用途
CN105797594A (zh) * 2016-05-11 2016-07-27 大连理工大学 一种简单溶剂热生长法制备取向生长的金属有机骨架纳米片式膜
CN106929912A (zh) * 2017-03-02 2017-07-07 山东师范大学 一种具有多层次结构金属有机框架纳米晶体及制备方法
CN107316987A (zh) * 2017-05-04 2017-11-03 南京邮电大学 一种氧化物纳米线/ZIF系MOFs糖葫芦状复合材料及其制备方法
CN107316986A (zh) * 2017-05-04 2017-11-03 南京邮电大学 一种氧化物纳米线‑mof衍生物/s复合正极材料及其制备方法
CN107151331A (zh) * 2017-06-05 2017-09-12 北京化工大学 一种电化学方法快速制备结构可控金属有机骨架化合物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MING-SHUI YAO ET AL.: ""Layer-by-Layer Assembled Conductive Metal–Organic Framework Nanofilms for Room-Temperature Chemiresistive Sensing"", 《ANGEWANDTE COMMUNICATIONS》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396006A (zh) * 2019-07-16 2019-11-01 济南大学 一种ZIF-8膜包覆SnO2复合气敏材料及其制备方法和应用
CN110396006B (zh) * 2019-07-16 2021-11-09 济南大学 一种ZIF-8膜包覆SnO2复合气敏材料及其制备方法和应用
CN112295866A (zh) * 2019-07-26 2021-02-02 中国科学院福建物质结构研究所 一种全金属有机框架范德华异质结层薄膜的制备方法及其所制备的薄膜和用途
CN112397690A (zh) * 2019-08-12 2021-02-23 中国科学院化学研究所 一种基于金属-有机骨架材料原位构筑表面包覆层的方法
CN112635755A (zh) * 2020-12-22 2021-04-09 江西理工大学 一种原位生长的表面配位聚合反应制备空心Co3O4纳米球的方法
CN112635755B (zh) * 2020-12-22 2021-12-07 江西理工大学 一种原位生长的表面配位聚合反应制备空心Co3O4纳米球的方法
CN112876690A (zh) * 2021-02-04 2021-06-01 四川大学 一种高强度自修复水性聚氨酯复合材料及其制备方法
CN112876690B (zh) * 2021-02-04 2022-04-22 四川大学 一种高强度自修复水性聚氨酯复合材料及其制备方法
CN113670993A (zh) * 2021-09-08 2021-11-19 大连理工大学 一种具有分等级结构的复合气敏材料及其制备方法与应用
CN113668246A (zh) * 2021-09-08 2021-11-19 青岛大学 一种在生物质纤维表面构筑金属有机框架材料的方法及其应用
CN114561666A (zh) * 2022-03-25 2022-05-31 中山大学 表面修饰的金属有机框架纳米阵列电极及制备方法与应用
CN114561666B (zh) * 2022-03-25 2023-05-26 中山大学 表面修饰的金属有机框架纳米阵列电极及制备方法与应用

Also Published As

Publication number Publication date
CN109853030B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
CN109853030A (zh) 一种金属有机框架薄膜包覆的金属氧化物纳米晶及其制备方法和用途
Liu et al. Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres
Zhang et al. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles
Zhang et al. Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles
Sun et al. Pyrolyzing Co/Zn bimetallic organic framework to form pn heterojunction of Co3O4/ZnO for detection of formaldehyde
Gui et al. P-type Co3O4 nanoarrays decorated on the surface of n-type flower-like WO3 nanosheets for high-performance gas sensing
CN105588860B (zh) 过渡金属氧化物表面异质外延金属有机框架壳层及其制备方法和用途
CN105510395B (zh) 金属氧化物-金属有机框架纳米核壳结构一维阵列及其制备方法和用途
Zhang et al. A room-temperature aniline sensor based on Ce doped ZnO porous nanosheets with abundant oxygen vacancies
CN106596656B (zh) 一种基于mof模板法合成的二氧化钛负载三氧化二铁纳米异质结构的气敏元件
Cai et al. Multishell SnO2 hollow microspheres loaded with bimetal PdPt nanoparticles for ultrasensitive and rapid formaldehyde MEMS sensors
Wang et al. 3D porous flower-like ZnO microstructures loaded by large-size Ag and their ultrahigh sensitivity to ethanol
Xue et al. ZnO branched p-CuxO@ n-ZnO heterojunction nanowires for improving acetone gas sensing performance
Zhang et al. Construction and DFT study of Pd decorated WSe2 nanosheets for highly sensitive CO detection at room temperature
Liu et al. Electrochemical sensor to environmental pollutant of acetone based on Pd-loaded on mesoporous In2O3 architecture
Wang et al. Co-PBA MOF-derived hierarchical hollow Co3O4@ NiO microcubes functionalized with Pt for superior H2S sensing
Zu et al. In situ synergistic crystallization-induced synthesis of novel Au nanostar-encrusted ZnO mesocrystals with high-quality heterojunctions for high-performance gas sensors
Chang et al. Heterostructural (Sr0. 6Bi0. 305) 2Bi2O7/ZnO for novel high-performance H2S sensor operating at low temperature
CN104849324A (zh) 一种基于石墨烯/多壁碳纳米管/氧化锌复合材料的电阻型气体传感器及制作方法
Li et al. A novel mixed-potential type NH3 sensor based on Ag nanoparticles decorated AgNbO3 sensing electrode synthesized by demixing method
Tan et al. Co3O4 nanoboxes with abundant porestructure boosted ultrasensitive toluene gas sensors
Sun et al. MOF-derived one-dimensional Ru/Mo co-doped Co3O4 hollow microtubes for high-performance triethylamine sensing
Chen et al. High-response of NiO-modified self-assembled nanosheets formed with ZnO nanoparticles for n-butanol detection
Zhao et al. Preparation and gas-sensitive properties of litchi shell-like NiO film modified porous ZnO composite by electrodeposition method
Zhang et al. A mixed-potential type NH3 sensors based on spinel Zn2SnO4 sensing electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant