CN109802038B - NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法 - Google Patents

NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法 Download PDF

Info

Publication number
CN109802038B
CN109802038B CN201910039045.2A CN201910039045A CN109802038B CN 109802038 B CN109802038 B CN 109802038B CN 201910039045 A CN201910039045 A CN 201910039045A CN 109802038 B CN109802038 B CN 109802038B
Authority
CN
China
Prior art keywords
natao
transport layer
electron transport
perovskite
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910039045.2A
Other languages
English (en)
Other versions
CN109802038A (zh
Inventor
王照奎
廖良生
叶青青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201910039045.2A priority Critical patent/CN109802038B/zh
Publication of CN109802038A publication Critical patent/CN109802038A/zh
Application granted granted Critical
Publication of CN109802038B publication Critical patent/CN109802038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,包括以下步骤:(1)将FTO透明导电玻璃基片清洗烘干后用紫外灯和臭氧处理,再将处理后的FTO透明导电玻璃基片旋涂上NaTaO3电子传输层,放到加热台上进行加热处理;(2)在步骤(1)中NaTaO3电子传输层上制备钙钛矿薄膜层;(3)在步骤(2)制得的钙钛矿薄膜层上制备空穴传输层;(4)制备MoO3和Ag电极。使用NaTaO3作为电子传输层,提高光电转换效率;薄膜表面更加光滑,使钙钛矿薄膜结晶更加均匀致密;减缓钙钛矿层的降解过程,提高器件稳定性;减少钙钛矿太阳能电池内部缺陷。因此,NaTaO3是一种良好的电子传输层材料。

Description

NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法
技术领域
本发明属于光伏器件领域,具体涉及一种NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法。
背景技术
有机-无机杂化钙钛矿太阳能电池以其独特的光学特性以及简单的制备工艺被认为是可以与无机硅太阳能电池相媲美的一种能源形式。经过几年的发展,尽管其光电转换效率已超过22%,但是制造高效率和长期稳定的钙钛矿太阳能电池是实现其商业化的必要条件。钙钛矿太阳能电池有平面型和多孔型两种器件结构,近来,各种新型电子传输层已被用于平面结构PSC中,以防止水分、氧气和紫外光进入钙钛矿层,目的在于提高电池的稳定性。目前报道的最先进的钙钛矿太阳能电池采用二氧化钛(TiO2)作为电子传输层(ETL)的结构。虽然TiO2具有良好的电子选择性,但对氧气和紫外线的表面吸附可能限制钙钛矿太阳能电池的效率和稳定性的进一步提高。已经尝试各种方法去提高钙钛矿太阳能电池的稳定性和效率。例如,在ETL和钙钛矿层之间插入界面层,掺杂TiO2,或者直接替代TiO2,其中通过选择优于TiO2的新型电子传输层,直接替代TiO2是最简单,最有效的方法。
发明内容
为了解决以上现有技术存在的问题,本发明采用溶液处理的NaTaO3薄膜作为电子传输层制备钙钛矿太阳能电池,以制备高效且稳定的钙钛矿太阳能电池。
为了实现上述目的,本发明提供以下技术方案:
NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,包括以下步骤:
(1)FTO透明导电玻璃基片清洗和NaTaO3薄膜制备:将FTO透明导电玻璃基片清洗烘干后用紫外灯和臭氧处理,再将处理后的FTO透明导电玻璃基片旋涂上NaTaO3电子传输层,放到加热台上进行加热处理;
(2)钙钛矿薄膜的制备:将碘化甲铵和碘化铅溶于由二甲基亚砜和γ-丁内酯组成的混合溶液中,搅拌混合均匀后制得钙钛矿溶液,旋涂于步骤(1)中NaTaO3电子传输层上制得钙钛矿薄膜层;
(3)Spiro-OMeTAD薄膜制备:将2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴Spiro-OMeTAD溶于氯苯中,搅拌混合得到Spiro-OMeTAD溶液,将其旋涂于步骤(2)制得的钙钛矿薄膜层上,即得均匀的空穴传输层;
(4)MoO3和Ag电极制备:采用蒸镀方法在空穴传输层上蒸镀MoO3和Ag电极。
优选的,所述步骤(1)中NaTaO3电子传输层的热处理温度为100℃,加热时间为30min。
优选的,所述步骤(2)中碘化甲铵和碘化铅的摩尔比为1:1.2,二甲基亚砜和γ-丁内酯的体积比为3:7。
优选的,所述步骤(2)中的旋涂操作采用低速和高速的方式,速度分别为低速2000r/min,时间20s,高速4000 r/min,时间40s,在高速阶段的第20s滴加氯苯作为反溶剂,旋涂后进行退火处理,退火温度为100℃,时间为10min。
优选的,所述步骤(3)中的旋涂速度为4000 r/min,旋涂时间为40s。
优选的,所述步骤(4)中MoO3的厚度为10nm,Ag电极的厚度为100nm。
以上所述的制备方法制得的钙钛矿太阳能电池。
优选的,本发明所述的钙钛矿太阳能电池的器件结构为:NaTaO3/钙钛矿薄膜/Spiro-OMeTAD/MoO3/Ag。
有益效果:本发明提供了一种NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,具有以下优势:(1)使用NaTaO3作为电子传输层,获得了更高的光电转换效率,其PCE达到18.82%;(2)使用NaTaO3作为电子传输层,薄膜表面更加光滑,可作为后续钙钛矿层沉积和生长的良好衬底,使钙钛矿薄膜结晶更加均匀致密;(3)使用NaTaO3作为电子传输层,可以减缓钙钛矿层的降解过程,提高器件的稳定性;(4)使用NaTaO3作为电子传输层,减少钙钛矿太阳能电池内部缺陷,制备了高效且稳定的钙钛矿太阳能电池。本发明制备方法新颖,制作工艺简单便捷,制备难度低,器件性能稳定。
附图说明
图1为本发明钙钛矿太阳能电池的结构示意图。
图2为旋涂在NaTaO3电子传输层上的钙钛矿膜(b)和旋涂在TiO2电子传输层上的钙钛矿膜(a)的扫描电子显微镜图。
图3为旋涂在NaTaO3电子传输层上的钙钛矿膜(b)和旋涂在TiO2电子传输层上钙钛矿膜(a)的x射线衍射图谱。
图4为不同厚度的NaTaO3作为电子传输层的钙钛矿太阳能电池器件的光电特性曲线图。
图5为相同储存条件下,未封装的NaTaO3和TiO2分别作为电子传输层的钙钛矿太阳能电池的标准化功率转换效率对应于时间的函数图。
图6为NaTaO3和TiO2分别作为电子传输层制备的钙钛矿太阳能电池的缺陷态分布对比图。
具体实施方式
下面结合具体实施例来进一步描述本发明,但实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例1
NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,包括以下步骤:
(1)FTO透明导电玻璃基片清洗和NaTaO3薄膜制备:将FTO透明导电玻璃基片用去离子水、丙酮、乙醇反复超声清洗3次,然后在100℃下干燥至完全去除溶剂和水分,将处理后的FTO透明导电玻璃基片用紫外灯和臭氧处理25 min,将10mg的NaTaO3分散于1mL去离子水里备用再把处理后的FTO透明导电玻璃基片旋涂上电子传输层NaTaO3,放到加热台上100℃加热30min,厚度70 nm。
(2)钙钛矿薄膜的制备:将180mg碘化甲铵、553mg碘化铅溶于1mL 二甲基亚砜和γ-丁内酯的混合溶液中,二甲基亚砜和γ-丁内酯的体积比为3:7,搅拌5h,得钙钛矿溶液,旋涂于步骤(1)中的电子传输层上,旋涂速度分别为低速2000r/min,时间20s,高速4000 r/min,时间40s,在高速阶段的第20s滴加氯苯作为反溶剂,旋涂后进行退火处理,退火温度为100℃,时间为10min,厚度300 nm。
(3)Spiro-OMeTAD薄膜制备:将90mg Spiro-OMeTAD溶于1mL氯苯中,搅拌3h得Spiro-OMeTAD溶液,将其旋涂于步骤(2)中钙钛矿薄膜上,旋涂速度为4000 r/min,旋涂时间为40s,即得均匀的空穴传输层,厚度为170 nm。
(4) MoO3和Ag电极制备:采用蒸镀方法在Spiro-OMeTAD薄膜上蒸镀MoO3和Ag电极,所述MoO3的厚度为10nm,Ag电极厚度为100nm。
该制备方法制得的钙钛矿太阳能电池的器件结构为:NaTaO3/钙钛矿薄膜/Spiro-OMeTAD/MoO3/Ag,如图1所示。
对比例1
对比例1与实施例1的区别在于,将电子传输层的旋涂原料由NaTaO3替换为TiO2,其他步骤相同。
所制得的钙钛矿太阳能电池的器件结构为:FTO/TiO2/钙钛矿薄膜/Spiro-OMeTAD/MoO3/Ag。
将实施例1和对比例1制得的钙钛矿太阳能电池进行以下性能分析:
钙钛矿薄膜层性能分析:将旋涂在NaTaO3电子传输层上的钙钛矿薄膜和旋涂在TiO2电子传输层上的钙钛矿薄膜分别用扫描电子显微镜进行扫描,结果如图2所示,从图中可以看到,采用NaTaO3作为电子传输层(图2b)有助于钙钛矿薄膜的生长,使得钙钛矿晶粒尺寸变大;
将两种钙钛矿薄膜进行X射线衍射分析,得到的图谱如图3所示,从图中可以看出,NaTaO3电子传输层上的钙钛矿薄膜(图3b)具有更高的衍射强度,从而进一步证明采用NaTaO3作为电子传输层有助于钙钛矿的结晶。
光电特性分析:将以不同厚度的NaTaO3(40nm、60nm、80nm)作为电子传输层制得的钙钛矿太阳能电池器件进行光电特性分析,得到的光电特性曲线如图4所示,从图中可以看到,当厚度为60nm时,钙钛矿器件性能达到最高,其PCE为18.82%,电压1.09 V,电流达到24.10 mA/cm2,填充因子达到73%。
标准化功率转换效率分析:在相同的储存条件下,将没有封装的分别以NaTaO3和TiO2作为电子传输层的钙钛矿太阳能电池进行标准化功率转换效率分析,得到的标准化功率转换效率对应于时间的函数图如图5所示,从图中可以看到,采用NaTaO3作为电子传输层制备的太阳能电池稳定性明显高于传统的TiO2作为电子传输层的太阳能电池,在空气中存放近1000小时后,效率还保持初始效率的61%。
缺陷态分析:将以NaTaO3和TiO2分别作为电子传输层制备的钙钛矿太阳能电池进行缺陷态分析,图6为得到的缺陷态分布对比图,从图中可以看出NaTaO3作为电子传输层制备的钙钛矿太阳能电池的缺陷态远远低于TiO2作为电子传输层制备的钙钛矿太阳能电池的缺陷态。

Claims (8)

1.NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,其特征在于,包括以下步骤:
(1) FTO透明导电玻璃基片清洗和NaTaO3薄膜制备:将FTO透明导电玻璃基片清洗烘干后用紫外灯和臭氧处理,再将处理后的FTO透明导电玻璃基片旋涂上NaTaO3电子传输层,放到加热台上进行加热处理;
(2)钙钛矿薄膜的制备:将碘化甲铵和碘化铅溶于由二甲基亚砜和γ-丁内酯组成的混合溶液中,搅拌混合均匀后制得钙钛矿溶液,旋涂于步骤(1)中NaTaO3电子传输层上制得钙钛矿薄膜层;
(3)Spiro-OMeTAD薄膜制备:将2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴Spiro-OMeTAD溶于氯苯中,搅拌混合得到Spiro-OMeTAD溶液,将其旋涂于步骤(2)制得的钙钛矿薄膜层上,即得均匀的空穴传输层;
(4)MoO3和Ag电极制备:采用蒸镀方法在空穴传输层上蒸镀MoO3和Ag电极。
2.根据权利要求1所述的NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,其特征在于,所述步骤(1)中NaTaO3电子传输层的热处理温度为100℃,加热时间为30min。
3.根据权利要求1所述的NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,其特征在于,所述步骤(2)中碘化甲铵和碘化铅的摩尔比为1:1.2,二甲基亚砜和γ-丁内酯的体积比为3:7。
4.根据权利要求1所述的NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,其特征在于,所述步骤(2)中的旋涂操作采用低速和高速的方式,速度分别为低速2000r/min,时间20s,高速4000 r/min,时间40s,在高速阶段的第20s滴加氯苯作为反溶剂,旋涂后进行退火处理,退火温度为100℃,时间为10min。
5.根据权利要求1所述的NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,其特征在于,所述步骤(3)中的旋涂速度为4000 r/min,旋涂时间为40s。
6.根据权利要求1所述的NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法,其特征在于:所述步骤(4)中MoO3的厚度为10nm,Ag电极的厚度为100nm。
7.权利要求1-6任意一项所述的NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法制得的钙钛矿太阳能电池。
8.根据权利要求7所述的钙钛矿太阳能电池,其特征在于,器件结构为:NaTaO3/钙钛矿薄膜/Spiro-OMeTAD/MoO3/Ag。
CN201910039045.2A 2019-01-16 2019-01-16 NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法 Active CN109802038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910039045.2A CN109802038B (zh) 2019-01-16 2019-01-16 NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910039045.2A CN109802038B (zh) 2019-01-16 2019-01-16 NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法

Publications (2)

Publication Number Publication Date
CN109802038A CN109802038A (zh) 2019-05-24
CN109802038B true CN109802038B (zh) 2021-08-06

Family

ID=66559471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910039045.2A Active CN109802038B (zh) 2019-01-16 2019-01-16 NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法

Country Status (1)

Country Link
CN (1) CN109802038B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717133B (zh) * 2019-12-06 2021-01-21 財團法人工業技術研究院 鈣鈦礦層的形成方法以及包含鈣鈦礦層的結構的形成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084513A (zh) * 2008-07-08 2011-06-01 住友化学株式会社 光电转换元件
CN103682103A (zh) * 2013-12-13 2014-03-26 浙江大学 有机-无机复合日盲型紫外光探测器
CN104091887A (zh) * 2014-04-30 2014-10-08 上海北京大学微电子研究院 基于全溶胶凝胶工艺的钙钛矿太阳能电池及其制备方法
CN104944369A (zh) * 2014-12-03 2015-09-30 江苏大学 一种银修饰钽酸钠等离子催化剂分解水制氢的方法
WO2016022820A2 (en) * 2014-08-08 2016-02-11 Massachusetts Institute Of Technology Recycling car batteries for perovskite solar cells
US9748425B2 (en) * 2013-03-11 2017-08-29 Seiko Epson Corporation Photoelectric conversion element and photovoltaic cell
CN107887511A (zh) * 2017-11-22 2018-04-06 苏州大学 一种基于二维材料石墨烯相氮化碳制备钙钛矿太阳能电池的方法
CN108091766A (zh) * 2017-12-01 2018-05-29 苏州大学 一种n型掺杂电子传输层和TiO2层的钙钛矿电池的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084513A (zh) * 2008-07-08 2011-06-01 住友化学株式会社 光电转换元件
US9748425B2 (en) * 2013-03-11 2017-08-29 Seiko Epson Corporation Photoelectric conversion element and photovoltaic cell
CN103682103A (zh) * 2013-12-13 2014-03-26 浙江大学 有机-无机复合日盲型紫外光探测器
CN104091887A (zh) * 2014-04-30 2014-10-08 上海北京大学微电子研究院 基于全溶胶凝胶工艺的钙钛矿太阳能电池及其制备方法
WO2016022820A2 (en) * 2014-08-08 2016-02-11 Massachusetts Institute Of Technology Recycling car batteries for perovskite solar cells
CN104944369A (zh) * 2014-12-03 2015-09-30 江苏大学 一种银修饰钽酸钠等离子催化剂分解水制氢的方法
CN107887511A (zh) * 2017-11-22 2018-04-06 苏州大学 一种基于二维材料石墨烯相氮化碳制备钙钛矿太阳能电池的方法
CN108091766A (zh) * 2017-12-01 2018-05-29 苏州大学 一种n型掺杂电子传输层和TiO2层的钙钛矿电池的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N-type metal-oxide electron transport layer for mesoscopic perovskite solar cells;Yuli Xiong等;《SCIENCE CHINA Materials》;20160930;第59卷(第9期);全文 *
Two-step hydrothermal synthesis of sodium tantalite nanoparticles with deep ultraviolet sensitivity;Bing Guo等;《J. Mater. Chem. C》;20150810;第3卷;全文 *

Also Published As

Publication number Publication date
CN109802038A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
CN108091766B (zh) 一种n型掺杂电子传输层和TiO2层的钙钛矿电池的制备方法
CN109216557B (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN109980092B (zh) 一种钙钛矿量子点太阳能电池及其制备方法
CN109873082B (zh) 一种基于界面改性剂的钙钛矿太阳电池及其制备方法
CN108807694B (zh) 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法
CN109786555B (zh) 一种钙钛矿太阳能电池及制备方法
CN109728169B (zh) 一种掺杂有功能添加剂的钙钛矿太阳电池及其制备方法
CN106384785A (zh) 一种锡掺杂甲基铵基碘化铅钙钛矿太阳能电池
CN111129318A (zh) 钨掺杂氧化物钙钛矿太阳能电池及其制备方法
CN108649124B (zh) 一种高效率无机钙钛矿太阳电池及其制备方法
CN109742246A (zh) 可控混合溶剂体系及其在制备钙钛矿材料中的用途
CN114284439A (zh) 一种在高湿度环境下制备CsPbI3钙钛矿薄膜及其高效太阳能电池的方法及应用
CN114914363A (zh) 一种高效稳定钙钛矿太阳能电池及其制备方法
CN110518130B (zh) 一种电场调控钙钛矿晶粒二次生长的方法
KR101819954B1 (ko) 페로브스카이트 광흡수층의 제조방법 및 이에 의해 제조된 광흡수층을 포함하는 태양전지
CN113421974B (zh) 一种钙钛矿太阳能电池及其制备方法
CN113540362B (zh) 一种无电子传输层的钙钛矿太阳能电池及其制备方法
CN113471366B (zh) 基于环己甲胺碘盐的2d/3d钙钛矿太阳能电池的制备方法
CN109244171B (zh) 一种宽光谱无机钙钛矿太阳能电池结构及其制备方法
CN114678472A (zh) 一种FAPbI3钙钛矿薄膜及其高效的钙钛矿太阳能电池的方法
CN109802038B (zh) NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法
CN113416213A (zh) 有机鏻鎓盐分子在钙钛矿太阳能电池中的应用及其器件的制备方法
CN109935695B (zh) 一种SrGeO3作为电子传输层制备钙钛矿太阳能电池的方法
CN109802045B (zh) NaTaO3和PCBM作为双电子传输层制备钙钛矿太阳能电池的方法
CN111403606A (zh) 一种掺杂番茄红素的钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant