CN104944369A - 一种银修饰钽酸钠等离子催化剂分解水制氢的方法 - Google Patents

一种银修饰钽酸钠等离子催化剂分解水制氢的方法 Download PDF

Info

Publication number
CN104944369A
CN104944369A CN201410722439.5A CN201410722439A CN104944369A CN 104944369 A CN104944369 A CN 104944369A CN 201410722439 A CN201410722439 A CN 201410722439A CN 104944369 A CN104944369 A CN 104944369A
Authority
CN
China
Prior art keywords
silver
sodium tantalate
modified
water
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410722439.5A
Other languages
English (en)
Other versions
CN104944369B (zh
Inventor
施伟东
徐东波
罗必富
李萍
陈敏
范伟强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201410722439.5A priority Critical patent/CN104944369B/zh
Publication of CN104944369A publication Critical patent/CN104944369A/zh
Application granted granted Critical
Publication of CN104944369B publication Critical patent/CN104944369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种以硝酸银和钽酸钠为原料制备银修饰钽酸钠等离子体催化剂分解水制氢的方法。取钽酸钠和硝酸银加入到水和甲醇的混合溶剂中,硝酸银与钽酸钠质量之比为0.0008-0.0032:1,然后放到氙灯下面,磁力搅拌使反应液混合均匀,打开光源分解水制氢,反应结束后,将沉淀过滤,洗涤,烘干得到所述的等离子体催化剂。

Description

一种银修饰钽酸钠等离子催化剂分解水制氢的方法
技术领域
本发明涉及一种以硝酸银和钽酸钠为原料制备银修饰钽酸钠等离子体催化剂分解水制氢的方法,尤其是一种制备工艺简单,具有良好光催化活性分解水制氢的纳米复合光催化剂。
技术背景
纳米粒子由于特殊的物理和化学性质,在物理、化学、材料科学以及生物医学领域受到了广泛的关注,其中研究最为广泛的就是银纳米粒子;银纳米粒子具有独特的光学和催化性质,而且无毒性,具有生物亲和性,使其在生物传感、化学催化、电子元件以及生物医药等领域都有广泛的应用前景,因而,一些研究者利用金属银负载在纳米半导体化合物表面,构筑出具有等离子体共振效应的复合体系,这一体系具有高效利用可见光的作用;Jun Fang等人(International journal of hydrogen energy 2012, 37, 17853.)制备出金负载在纳米二氧化钛表面,Nelson, J. A.等人(J. Am. Chem. Soc. 2003, 125, 332.)制备出银负载在氯化银表面,这种利用等离子体构筑复合光催化剂应用很广。
碱土金属钽酸钠(NaTaO3)的导带由Ta5d轨道构成,远远高于Ti3d轨道,因此与二氧化钛(TiO2)相比,光激发钽酸钠产生的电子具有更强的还原能力,更有利于实现高效光催化分解有机物;目前,Xia Li 等人(J. Phys. Chem. C 2009,113,19411–19418.)研究了利用水热法合成钽酸钠在不同时间和温度、不同氢氧化钠与五氧化二钽配比的情况下的形貌变化,最后制备出立方体的钽酸钠,并验证在紫外光下分解亚甲基蓝的效果,因而,我们构筑一种银修饰钽酸钠等离子体催化剂在分解水制氢方面的应用。
发明内容
本发明目的是提供一种以硝酸银和钽酸钠为原料,合成具有良好光催化活性的纳米复合等离子体光催化剂分解水制氢的方法。
本发明通过以下步骤实现:
(1)取钽酸钠和硝酸银加入到水和甲醇的混合溶剂中,硝酸银与钽酸钠质量之比为0.0008-0.0032:1,然后放到氙灯下面,磁力搅拌使反应液混合均匀,打开光源分解水制氢,反应结束后,将沉淀过滤,洗涤,烘干得到所述的等离子体催化剂。
所述水和甲醇的混合溶剂中,水和甲醇的体积比为3:1。
本发明中所使用的氙灯为 300 W。
本发明中所使用氙灯照射时间为 5 h。
本发明所得银修饰钽酸钠等离子体复合光催化剂,晶化完全,银微粒粒径小于10 nm,形貌规则,分散性良好。
利用透射电子显微镜(TEM)、高分辨投射电子显微镜(HRTEM)、X光电子能谱仪等仪器对产物进行形貌结构分析。
在分解水制氢过程中,银离子首先受到光照被还原成银纳米粒子附着在钽酸钠表面,继续光照,银纳米粒子上的电子被激发与水中的氢离子结合生成氢气,钽酸钠上的电子传输到银纳米粒子表面,剩下空穴,氧化甲醇,从而形成一个持续的氧化还原过程,银纳米粒子的存在加速了电子的转移,因而产氢速率相比纯钽酸钠有所提高。
附图说明
图1为所制备不同质量的银修饰钽酸钠等离子体复合光催化剂的透射电镜照片;其中钽酸钠200mg,a为0.16mg的硝酸银,b为0.32mg的硝酸银,c为0.64mg的硝酸银。
图2为所制备银修饰钽酸钠等离子体复合光催化剂的能量色散X射线谱图。
图3为所制备银修饰钽酸钠等离子体复合光催化剂的高分辨透射电镜照片。
图4为所制备银修饰钽酸钠等离子体复合光催化剂的高分辨透射电镜mapping照片。
图5为在合成不同质量的银修饰钽酸钠等离子体复合光催化剂的过程中分解水制氢的时间-速率柱状图;其中钽酸钠200mg,a为不加硝酸银,b为0.16mg的硝酸银,c为0.32mg的硝酸银,d为0.64mg的硝酸银。
具体实施方式
实施例1 不同质量的银修饰钽酸钠等离子体复合光催化剂的分解水制氢实验
(1)将150mL去离子水和50mL甲醇配成溶液。
(2)分别称取硝酸银0.16mg(0.08wt%),0.32mg(0.16wt%),0.64mg(0.32wt%)和200mg钽酸钠,分别置于含有上述溶液的光催化反应器中,磁力搅拌,待复合光催化剂分散均匀后,打开水源,光源,进行光催化分解水制氢实验。
(3)每5 h测量氢气的产量。
(4)由图5可见银修饰钽酸钠等离子体复合光催化剂具有优异的光催化分解水制氢活性,尤其是硝酸银的质量为0.32 mg(0.16wt%)的样品,比纯的钽酸钠分解水制氢活性大约高2倍。
实施例2 银修饰钽酸钠等离子体复合光催化剂获得
分解水制氢测试反应结束后,过滤得产物用去离子水洗净,恒温干燥箱中60 ℃烘干,即为银修饰钽酸钠等离子体复合催化剂。
实施例3 银修饰钽酸钠等离子体复合光催化剂表征分析
如图1所示,图中可以清楚看到银原子的存在。
如图2所示,图谱中显示出银的特征峰。
如图3所示,图中可以清楚看到银纳米粒子小于10nm。
如图4所示,图中可以清楚看到银纳米粒子均匀的分布。

Claims (6)

1.一种银修饰钽酸钠等离子催化剂分解水制氢的方法,其特征在于:取钽酸钠和硝酸银加入到水和甲醇的混合溶剂中,硝酸银与钽酸钠质量之比为0.0008-0.0032:1,然后放到氙灯下面,磁力搅拌使反应液混合均匀,打开光源分解水制氢,反应结束后,将沉淀过滤,洗涤,烘干得到银修饰钽酸钠等离子体复合光催化剂。
2.如权利要求1所述的一种银修饰钽酸钠等离子催化剂分解水制氢的方法,其特征在于:所述水和甲醇的混合溶剂中,水和甲醇的体积比为3:1。
3.如权利要求1所述的一种银修饰钽酸钠等离子催化剂分解水制氢的方法,其特征在于:所使用的氙灯为 300 W。
4.如权利要求1所述的一种银修饰钽酸钠等离子催化剂分解水制氢的方法,其特征在于:所述氙灯照射时间为 5 h。
5.如权利要求1所述的一种银修饰钽酸钠等离子催化剂分解水制氢的方法,其特征在于:所述银修饰钽酸钠等离子体复合光催化剂,晶化完全,银微粒粒径小于10 nm,形貌规则,分散性良好。
6.如权利要求1所述的一种银修饰钽酸钠等离子催化剂分解水制氢的方法,其特征在于:所述硝酸银与钽酸钠质量之比为0.0016:1。
CN201410722439.5A 2014-12-03 2014-12-03 一种银修饰钽酸钠等离子催化剂分解水制氢的方法 Active CN104944369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410722439.5A CN104944369B (zh) 2014-12-03 2014-12-03 一种银修饰钽酸钠等离子催化剂分解水制氢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410722439.5A CN104944369B (zh) 2014-12-03 2014-12-03 一种银修饰钽酸钠等离子催化剂分解水制氢的方法

Publications (2)

Publication Number Publication Date
CN104944369A true CN104944369A (zh) 2015-09-30
CN104944369B CN104944369B (zh) 2018-04-17

Family

ID=54159515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410722439.5A Active CN104944369B (zh) 2014-12-03 2014-12-03 一种银修饰钽酸钠等离子催化剂分解水制氢的方法

Country Status (1)

Country Link
CN (1) CN104944369B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802045A (zh) * 2019-01-16 2019-05-24 苏州大学 NaTaO3和PCBM作为双电子传输层制备钙钛矿太阳能电池的方法
CN109802038A (zh) * 2019-01-16 2019-05-24 苏州大学 NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106776A2 (en) * 2012-01-12 2013-07-18 Nitto Denko Corporation Transparent photocatalyst coating
CN103706363A (zh) * 2013-12-18 2014-04-09 江苏大学 一种制备银负载在纳米钽酸钠表面复合光催化剂的方法
CN104162426A (zh) * 2014-07-16 2014-11-26 江苏大学 一种制备银负载在纳米钽酸钾表面复合光催化剂的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106776A2 (en) * 2012-01-12 2013-07-18 Nitto Denko Corporation Transparent photocatalyst coating
CN103706363A (zh) * 2013-12-18 2014-04-09 江苏大学 一种制备银负载在纳米钽酸钠表面复合光催化剂的方法
CN104162426A (zh) * 2014-07-16 2014-11-26 江苏大学 一种制备银负载在纳米钽酸钾表面复合光催化剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周国华: "光催化重整甲醇和生物质制氢研究", 《博士后士学位论文》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802045A (zh) * 2019-01-16 2019-05-24 苏州大学 NaTaO3和PCBM作为双电子传输层制备钙钛矿太阳能电池的方法
CN109802038A (zh) * 2019-01-16 2019-05-24 苏州大学 NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法
CN109802045B (zh) * 2019-01-16 2021-08-06 苏州大学 NaTaO3和PCBM作为双电子传输层制备钙钛矿太阳能电池的方法
CN109802038B (zh) * 2019-01-16 2021-08-06 苏州大学 NaTaO3作为电子传输层制备钙钛矿太阳能电池的方法

Also Published As

Publication number Publication date
CN104944369B (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
Bhatia et al. Enhanced photocatalytic degradation of atenolol using graphene TiO2 composite
Huang et al. Controllable synthesis of flower-like MoSe 2 3D microspheres for highly efficient visible-light photocatalytic degradation of nitro-aromatic explosives
Mohamed et al. Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO2 photocatalysts synthesized by hybrid templates
Yao et al. One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants
Wang et al. Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr
Pan et al. Efficient and stable H2O2 production from H2O and O2 on BiPO4 photocatalyst
Suresh et al. Fabrication of graphene nanosheets decorated by nitrogen-doped ZnO nanoparticles with enhanced visible photocatalytic activity for the degradation of Methylene Blue dye
Ghosh et al. The characteristic study and sonocatalytic performance of CdSe–graphene as catalyst in the degradation of azo dyes in aqueous solution under dark conditions
Mu et al. Metal-organic framework-derived rodlike AgCl/Ag/In2O3: A plasmonic Z-scheme visible light photocatalyst
Meng et al. Sonocatalytic degradation and catalytic activities for MB solution of Fe treated fullerene/TiO2 composite with different ultrasonic intensity
Zhang et al. Preparation and photocatalytic activity of hollow ZnO and ZnO–CuO composite spheres
Zhang et al. Preparation and photocatalytic performance of anatase/rutile mixed-phase TiO 2 nanotubes
Guo et al. Controlled synthesis and photocatalytic properties of Ag3PO4 microcrystals
Kowsari Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst
CN103706363A (zh) 一种制备银负载在纳米钽酸钠表面复合光催化剂的方法
CN104162426A (zh) 一种制备银负载在纳米钽酸钾表面复合光催化剂的方法
Chen et al. Large-scale synthesis and enhanced visible-light-driven photocatalytic performance of hierarchical Ag/AgCl nanocrystals derived from freeze-dried PVP–Ag+ hybrid precursors with porosity
Lin et al. Eight crystalline phases of bismuth vanadate by controllable hydrothermal synthesis exhibiting visible-light-driven photocatalytic activity
Lv et al. Cu/Ag/Ag3PO4 ternary composite: a hybrid alloy-semiconductor heterojunction structure with visible light photocatalytic properties
Zhong et al. Synthesis of Bi 2 WO 6 photocatalyst modified by SDBS and photocatalytic performance under visible light
Van Vie et al. The High Photocatalytic Activity of Sn [O. sub. 2] Nanoparticles Synthesized by Hydrothermal Method
He et al. Carbon quantum dots/Bi4O5Br2 photocatalyst with enhanced photodynamic therapy: killing of lung cancer (A549) cells in vitro
Chen et al. Ag 3 PO 4/AgSbO 3 composite as novel photocatalyst with significantly enhanced activity through a Z-scheme degradation mechanism
Binh et al. Study on preparation and properties of a novel photo–catalytic material based on copper–centred metal–organic frameworks (Cu–MOF) and titanium dioxide
Zhang et al. Promoting the Photo-Fenton catalytic activity with carbon dots: Broadening light absorption, higher applicable pH and better reuse performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant