CN109772146B - 空气净化材料及其制备方法和应用 - Google Patents

空气净化材料及其制备方法和应用 Download PDF

Info

Publication number
CN109772146B
CN109772146B CN201910186666.3A CN201910186666A CN109772146B CN 109772146 B CN109772146 B CN 109772146B CN 201910186666 A CN201910186666 A CN 201910186666A CN 109772146 B CN109772146 B CN 109772146B
Authority
CN
China
Prior art keywords
air purification
molecules
purification material
microporous ceramic
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910186666.3A
Other languages
English (en)
Other versions
CN109772146A (zh
Inventor
任运涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Shunde Youli Technology Co.,Ltd.
Wang Yuliang
Original Assignee
Guangdong Shunde Youli Electric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Shunde Youli Electric Technology Co ltd filed Critical Guangdong Shunde Youli Electric Technology Co ltd
Priority to CN201910186666.3A priority Critical patent/CN109772146B/zh
Publication of CN109772146A publication Critical patent/CN109772146A/zh
Application granted granted Critical
Publication of CN109772146B publication Critical patent/CN109772146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种空气净化材料及其制备方法和应用,涉及净化材料技术领域,上述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;所述净化分子包括氧化还原降解分子,所述氧化还原降解分子为磷酸二氧化钛。本发明使用微孔陶瓷颗粒作为载体与磷酸二氧化钛结合克服了两者单独使用时的技术性缺点,提高了反应速率,达到更理想的污染物去除效果,同时在本发明空气净化材料的工作过程中,不产生对人体有害的物质,也不消耗空气中的氧气等,对空气中有害物质包裹、沉降至最终分解成为水、二氧化碳、氮化物等大气组成成分。

Description

空气净化材料及其制备方法和应用
技术领域
本发明涉及净化材料技术领域,尤其是涉及一种空气净化材料及其制备方法和应用。
背景技术
室内空气污染是指由于人类的活动造成住宅、学校、办公室、商场、宾馆、各类饭店、咖啡馆、酒吧、公共建筑物以及各种公众聚集场所等场所,由于各种原因导致的室内空气中有害物质超标,进而影响人体健康的室内环境污染行为。所述有害物包括甲醛、苯系物、氨气、TVOC等,随着这些有害物质污染程度的加剧,人体会产生亚健康反应甚至威胁到生命安全。因此,近年来室内空气污染日益受到人们的重视。
微孔陶瓷颗粒其内部或表面含有大量的开口或闭口微小气孔,这种多孔的固体表面特性,使其具有很大的内表面积(1g微孔陶瓷球的表面积展开约为700m2),即很大的表面能,从而具有很强的吸附能力。现阶段微孔陶瓷球被广泛应用于水污染治理与工业污水处理领域,使用微孔陶瓷球的滤阻性与吸附性可去除污水中微米级以上的所有固体。而在空气处理领域中,由于活性炭的表面微孔尺寸比微孔陶瓷球的孔隙要小50~100倍,也就是说活性炭的表比面积比微孔陶瓷球要大50~100倍,因此活性炭的表面积更大,吸附能力更强,同时微孔陶瓷球的价格比活性炭高5~10倍,经济性上不及活性炭,所以现阶段微孔陶瓷颗粒在空气处理领域的应用并不广泛。
但是正是由于活性炭的表面微孔尺寸过小的原因,导致其很难负载其他的空气净化分子,只能起到表面吸附的作用,吸附能力有限,实际应用的效果并不理想。因此,是否可以将微孔陶瓷颗粒微孔尺寸大的特征与其他空气净化分子结合起来,以克服传统的活性炭单一使用时只能起到表面吸附的作用,且吸附能力有限的缺陷,大大提高空气净化的效果呢?这是目前非常值得研究的一个课题。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;所述净化分子包括磷酸二氧化钛。本发明使用微孔陶瓷颗粒作为载体与磷酸二氧化钛结合克服了两者单独使用时两者的技术性缺点,提高了反应速率,达到更理想的污染物去除效果,同时在本发明空气净化材料的工作过程中,不产生对人体有害的物质,也不消耗空气中的氧气等,可以对空气中有害物质包裹、沉降至最终分解成为水、二氧化碳、氮化物等大气组成成分。
本发明的第二目的在于提供一种所述空气净化材料的制备方法,该方法采用水溶剂的方法进行净化分子吸附,相较于传统的溶胶包覆的方法,有效避免了溶胶制备过程中有机化合物的添加,制得的空气净化材料不包括任何辅料,具有更好的环境友好性,同时水溶剂浸泡的方法还可以使净化分子充分均匀的吸附于微孔陶瓷颗粒的内部和表面,从而达到长效净化空气的效果。
本发明提供的一种空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;
所述净化分子包括磷酸二氧化钛。
进一步的,所述微孔陶瓷颗粒的孔径为5~100μm。
进一步的,所述磷酸二氧化钛为粒径2~50nm的超纳米颗粒。
进一步的,所述净化分子还包括电气石粉和/或Ag纳米颗粒;
优选地,电气石粉的粒径为5~10nm;
优选地,Ag纳米颗粒的粒径为5~10nm。
更进一步的,按重量百分数计,所述净化分子主要由以下原料组成:磷酸二氧化钛70~90wt%、电气石粉10~20wt%和Ag纳米颗粒0~10wt%。
本发明提供的一种上述空气净化材料的制备方法,所述制备方法包括以下步骤:
首先将净化分子充分溶解于水中得到净化分子溶剂,然后将微孔陶瓷颗粒浸入溶剂中充分吸附净化分子,随后将吸附有净化分子的微孔陶瓷颗粒干燥,得到所述空气净化材料。
进一步的,所述净化分子溶剂的固含量为8~10%。
进一步的,所述微孔陶瓷颗粒浸入溶剂中的时间为60~120min。
进一步的,所述干燥为微波干燥。
优选的,所述微波干燥的微波频率为2400~2500MHz,微波输出功率为100~120KW。
本发明提供的一种上述空气净化材料在住宅、车内或办公室的室内空气净化处理领域中的应用。
与现有技术相比,本发明的有益效果为:
本发明提供的空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;所述净化分子包括氧化还原降解分子,所述氧化还原降解分子为磷酸二氧化钛。磷酸二氧化钛自发产生激励生成电子(e-)和空穴(h+),这些电子和空穴具有很强的还原和氧化能力,能与水反应产生氢氧根自由基和超级阴氧离子。这些空穴和氢氧根自由基的氧化能大于120Kcal/mol,具有很强的氧化能力,几乎能将所有构成有机物分子的化学键切断分解,因此能有效地分解空气中甲醛、苯、氨等各种有害气体和致病菌,强大的微观电场可电离空气中的水分子产生大量羟基负离子,对有害物质进行包裹沉降,达到彻底净化空气的目的。但由于磷酸二氧化钛表面积有限,所以处理的效率不高。本发明使用微孔陶瓷颗粒作为载体与磷酸二氧化钛结合克服了两者单独使用时的技术性缺点,提高了反应速率,达到更理想的污染物去除效果,同时在空气净化材料的工作过程中,不产生对人体有害的物质,也不消耗空气中的氧气等,对空气中有害物质包裹、沉降至最终分解成为水、二氧化碳、氮化物等大气组成成分。
本发明提供的空气净化材料的制备方法,所述方法首先将净化分子充分溶解于水中得到净化分子溶剂,然后将微孔陶瓷颗粒浸入溶剂中充分吸附净化分子,随后将吸附有净化分子的微孔陶瓷颗粒干燥,得到所述空气净化材料。本发明采用水溶剂的方法进行净化分子吸附,相较于传统的溶胶包覆的方法,有效避免了溶胶制备过程中有机化合物的添加,制得的空气净化材料不包括任何辅料,具有更好的环境友好性,同时水溶剂浸泡的方法还可以使净化分子充分均匀的吸附于微孔陶瓷颗粒的内部和表面,从而达到长效净化空气的效果。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的空气净化材料的实物照片图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的一个方面,一种空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;
所述净化分子包括氧化还原降解分子,所述氧化还原降解分子为磷酸二氧化钛。
本发明提供的空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;所述净化分子包括氧化还原降解分子,所述氧化还原降解分子为磷酸二氧化钛。磷酸二氧化钛自发产生激励生成电子(e-)和空穴(h+),这些电子和空穴具有很强的还原和氧化能力,能与水反应产生氢氧根自由基和超级阴氧离子。这些空穴和氢氧根自由基的氧化能大于120Kcal/mol,具有很强的氧化能力,几乎能将所有构成有机物分子的化学键切断分解,因此能有效地分解空气中甲醛、苯、氨等各种有害气体和致病菌,强大的微观电场可电离空气中的水分子产生大量羟基负离子,对有害物质进行包裹沉降,达到彻底净化空气的目的。但由于磷酸二氧化钛表面积有限,所以处理的效率不高。本发明使用微孔陶瓷颗粒作为载体与磷酸二氧化钛结合克服了两者单独使用时的技术性缺点,提高了反应速率,达到更理想的污染物去除效果,同时在空气净化材料的工作过程中,不产生对人体有害的物质,也不消耗空气中的氧气等,对空气中有害物质包裹、沉降至最终分解成为水、二氧化碳、氮化物等大气组成成分。
在本发明的一种优选实施方式中,所述微孔陶瓷颗粒的孔径为5~100μm。
作为一种优选的实施方式,上述微孔陶瓷颗粒的粒径典型但非限制性的优选实施方案为:5μm、10μm、20μm、40μm、60μm、80μm和100μm。
在本发明的一种优选实施方式中,所述磷酸二氧化钛为粒径2~50nm的超纳米颗粒。
作为一种优选的实施方式,上述磷酸二氧化钛的粒径典型但非限制性的优选实施方案为:2μm、5μm、10μm、20μm、30μm、40μm和50μm。
在本发明的一种优选实施方式中,所述净化分子还包括电气石粉和/或Ag纳米颗粒。
作为一种优选的实施方式,所述电气石粉的粒径为5~10nm,电气石粉是一种难得的保健、环境、声电、电磁等多功能材料。电气石化学成分复杂,是以含硼为特征的铝、钠、铁、镁、锂的环状结构硅酸盐矿物,在环境治理方面,电气石粉对空气粉尘的吸附和有害气体的吸附降解,可以在空气中产生空气负离子。电气石粉不仅具有消除室内空气污染和有益人体健康功能,还可用于住宅室内装修材料和室内用品,由于电气石不断释放负离子,能起到改善室内空气质量的效果。
作为一种优选的实施方式,所述Ag纳米颗粒的粒径为5~10nm,Ag纳米颗粒主要用于杀灭空气中的霉菌等。
在上述优选实施方式中,按重量百分数计,所述净化分子主要由以下原料组成:磷酸二氧化钛70~90wt%、电气石粉10~20wt%和Ag纳米颗粒0~10wt%。
优选的,按重量百分数计,所述净化分子主要由以下原料组成:磷酸二氧化钛75~85wt%、电气石粉12~18wt%、Ag纳米颗粒2~8wt%。
更优选的,按重量百分数计,所述净化分子主要由以下原料组成:磷酸二氧化钛80wt%、电气石粉15wt%、Ag纳米颗粒5wt%。
根据本发明的一个方面,一种上述空气净化材料的制备方法,所述制备方法包括以下步骤:
首先将净化分子充分溶解于水中得到净化分子溶剂,然后将微孔陶瓷颗粒浸入溶剂中充分吸附净化分子,随后将吸附有净化分子的微孔陶瓷颗粒干燥,得到所述空气净化材料。
优选的,所述水为去离子水。
本发明提供的空气净化材料的制备方法,所述方法首先将净化分子充分溶解于水中得到净化分子溶剂,然后将微孔陶瓷颗粒浸入溶剂中充分吸附净化分子,随后将吸附有净化分子的微孔陶瓷颗粒干燥,得到所述空气净化材料。本发明采用水溶剂的方法进行净化分子吸附,相较于传统的溶胶包覆的方法,有效避免了溶胶制备过程中有机化合物的添加,制得的空气净化材料不包括任何辅料,具有更好的环境友好性,同时水溶剂浸泡的方法还可以使净化分子充分均匀的吸附于微孔陶瓷颗粒的内部和表面,从而达到长效净化空气的效果。
在本发明的一种优选实施方式中,所述净化分子溶剂的固含量为8~10%。
作为一种优选的实施方式,上述净化分子溶剂的固含量为8~10%,通过控制净化分子溶剂的固含量,可以使溶剂中的净化分子具有合适的尺寸,并制得符合要求的空气净化材料。
在本发明的一种优选实施方式中,所述微孔陶瓷颗粒浸入溶剂中的时间为60~120min。
作为一种优选的实施方式,上述微孔陶瓷颗粒浸入溶剂中的时间为60~120min。充分的浸泡时间和溶剂固含量,可以使净化分子充分的分布于微孔陶瓷颗粒的内部和表面。
在本发明的一种优选实施方式中,所述干燥为微波干燥。微波干燥的优势是直接使溶剂中的水分子快速摩擦、震动,并产生高热使得水分子能快速的从微孔陶瓷的微孔中逃逸出来,进而使磷酸二氧化钛等有效成分能有效的附着在微孔陶瓷的微孔中。比采用高温烤箱来挥发溶剂中的水分子的方式要快速,并且节能。
在上述优选实施方式中,所述微波干燥的微波频率为2400~2500MHz,微波输出功率为100~120KW。
作为一种优选的实施方式,上述微波干燥的步骤对于产物的性能有着至关重要的影响,微波频率为2400~2500MHz,微波输出功率为100~120KW的加工参数可以使制得材料的孔径比较均一,终温及保温时间则可以使制得材料的表面积最大化,也可保证了有效吸附面积最大。
根据本发明的一个方面,一种上述空气净化材料在住宅、车内和办公室空气净化处理领域中的应用。
本发明提供的一种空气净化材料,所述空气净化材料可以广泛的应用于住宅、车内和办公室的室内空气净化处理领域中。
下面将结合实施例和对比例对本发明的技术方案进行进一步地说明。
实施例1
如图1所示,一种空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;
所述净化分子,按重量百分数计,主要由以下原料组成:磷酸二氧化钛70wt%、电气石粉20wt%和Ag纳米颗粒10wt%。
上述磷酸二氧化钛的粒径为2nm,电气石粉的粒径为5nm,Ag纳米颗粒的粒径为10nm。
上述空气净化材料的制备方法,包括以下步骤:
首先将净化分子充分溶解于去离子水中得到固含量为8%的净化分子溶剂,然后将粒径为5μm的微孔陶瓷颗粒浸入上述溶剂中充分吸附净化分子,随后将吸附有净化分子的微孔陶瓷颗粒微波干燥,所述微波干燥的微波频率为2400MHz,微波输出功率为100KW,得到所述空气净化材料。
实施例2
一种空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;
所述净化分子,按重量百分数计,主要由以下原料组成:磷酸二氧化钛85wt%、电气石粉10wt%和Ag纳米颗粒5wt%。
上述磷酸二氧化钛的粒径为50nm,电气石粉的粒径为10nm,Ag纳米颗粒的粒径为5nm。
上述空气净化材料的制备方法,包括以下步骤:
首先将净化分子充分溶解于去离子水中得到固含量为10%的净化分子溶剂,然后将粒径为100μm的微孔陶瓷颗粒浸入上述溶剂中充分吸附净化分子,随后将吸附有净化分子的微孔陶瓷颗粒微波干燥,所述微波干燥的微波频率为2500MHz,微波输出功率为120KW,得到所述空气净化材料。
实施例3
一种空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;
所述净化分子,按重量百分数计,主要由以下原料组成:磷酸二氧化钛80wt%和电气石粉20wt%。
上述磷酸二氧化钛的粒径为20nm,电气石粉的粒径为7nm。
上述空气净化材料的制备方法,包括以下步骤:
首先将净化分子充分溶解于去离子水中得到固含量为9%的净化分子溶剂,然后将粒径为60μm的微孔陶瓷颗粒浸入上述溶剂中充分吸附净化分子,随后将吸附有净化分子的微孔陶瓷颗粒微波干燥,所述微波干燥的微波频率为2450MHz,微波输出功率为110KW,得到所述空气净化材料。
实施例4
一种空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;
所述净化分子,按重量百分数计,主要由以下原料组成:磷酸二氧化钛80wt%、电气石粉15wt%和Ag纳米颗粒5wt%。
上述磷酸二氧化钛的粒径为10nm,电气石粉的粒径为8nm,Ag纳米颗粒的粒径为8nm。
上述空气净化材料的制备方法,包括以下步骤:
首先将净化分子充分溶解于去离子水中得到固含量为10%的净化分子溶剂,然后将粒径为50μm的微孔陶瓷颗粒浸入上述溶剂中充分吸附净化分子,随后将吸附有净化分子的微孔陶瓷颗粒微波干燥,所述微波干燥的微波频率为2450MHz,微波输出功率为100KW,得到所述空气净化材料。
对比例1
本对比例除将微孔陶瓷颗粒替换为比表面积为1500M2/g的活性炭外,其余同实施例4。
对比例2
本对比例除将粒径为10nm的磷酸二氧化钛替换为10nm的二氧化钛光催化剂外,其余同实施例4。
对比例3
本对比例除制备方法中将吸附有净化分子的微孔陶瓷颗粒用马弗炉进行干燥外,其余同实施例4。
对比例4
一种空气净化材料,所述空气净化材料采用溶胶包覆法进行制备,所述制备方法包括以下步骤:
1)将钛酸丁酯溶于无水乙醇中,加入乙酰丙酮;其中,钛酸丁酯和乙酰丙酮的质量比为5:1,钛酸丁酯和无水乙醇的质量体积比为20g/L;
2)搅拌下,加入硝酸水溶液和无水乙醇的混合溶液中得到二氧化钛的溶胶;硝酸水溶液的质量分数为15%,硝酸水溶液与无水乙醇的体积比为4:1,硝酸水溶液中的硝酸和钛酸丁酯的质量比为0.1:1;
3)搅拌下将电气石粉和Ag纳米颗粒加入步骤2)所得溶胶中;
4)将粒径为50μm的微孔陶瓷颗粒浸入步骤3)所得溶胶中;
5)将浸过溶胶的无机材料烘干;其中,烘干温度为80℃,烘干的时间为2h;
6)将步骤5)所得材料放入马弗炉中,以5℃/min的升温速率升温至200℃,保温5h,烧结得到空气净化材料。
实验例1
为表明本发明空气净化材料具有很好的清洁室内空气中的甲醛、苯系物、氨气、TVOC等有害物质的技术效果,现特将实施例4以及对比例1~4制备得到的空气净化材料在同样条件下(空白试验舱浓度值相同)对室内空气进行吸附试验,检测时间为24h,其结果如下表1和表2所示:
表1:实施例4制备得到的空气净化材料室内分析检测结果
Figure BDA0001991614560000111
表2:对比例1~4制备得到的空气净化材料室内分析检测结果
污染物 对比例1 对比例2 对比例3 对比例4
甲醛 57.8% 37.3% 62.3% 74.2%
59.2% 39.8% 63.7% 69.4%
47.6% 19.2% 56.6% 57.8%
TVOC 42.4% 24.2% 43.7% 64.7%
综上所述,本发明提供的空气净化材料,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;所述净化分子包括氧化还原降解分子,所述氧化还原降解分子为磷酸二氧化钛。本发明使用微孔陶瓷颗粒作为载体与磷酸二氧化钛结合克服了两者单独使用时的技术性缺点,提高了反应速率,达到更理想的污染物去除效果,同时在空气净化材料的工作过程中,不产生对人体有害的物质,也不消耗空气中的氧气等,对空气中有害物质包裹、沉降至最终分解成为水、二氧化碳、氮化物等大气组成成分。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (6)

1.一种空气净化材料,其特征在于,所述空气净化材料为孔隙中附着有净化分子的微孔陶瓷颗粒;所述净化分子包括磷酸二氧化钛;
所述微孔陶瓷颗粒的孔径为5~100μm,所述磷酸二氧化钛为粒径2~50nm的超纳米颗粒;
所述空气净化材料的制备方法,包括以下步骤:
首先将净化分子充分溶解于水中得到净化分子溶剂,然后将微孔陶瓷颗粒浸入溶剂中充分吸附净化分子,随后将吸附有净化分子的微孔陶瓷颗粒干燥,得到所述空气净化材料;
所述干燥为微波干燥,所述微波干燥的微波频率为2400~2500MHz,微波输出功率为100~120KW。
2.根据权利要求1所述的空气净化材料,其特征在于,所述净化分子还包括电气石粉和/或Ag纳米颗粒;
所述电气石粉的粒径为5~10nm,Ag纳米颗粒的粒径为5~10nm。
3.根据权利要求2所述的空气净化材料,其特征在于,按重量百分数计,所述净化分子主要由以下原料组成:磷酸二氧化钛70~90wt%、电气石粉10~20wt%和Ag纳米颗粒0~10wt%。
4.根据权利要求1所述的空气净化材料,其特征在于,所述净化分子溶剂的固含量为8~10%。
5.根据权利要求1所述的空气净化材料,其特征在于,所述微孔陶瓷颗粒浸入溶剂中的时间为60~120min。
6.一种根据权利要求1~5任一项所述的空气净化材料在住宅、车内或办公室的室内空气净化处理领域中的应用。
CN201910186666.3A 2019-03-11 2019-03-11 空气净化材料及其制备方法和应用 Active CN109772146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910186666.3A CN109772146B (zh) 2019-03-11 2019-03-11 空气净化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910186666.3A CN109772146B (zh) 2019-03-11 2019-03-11 空气净化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109772146A CN109772146A (zh) 2019-05-21
CN109772146B true CN109772146B (zh) 2021-09-03

Family

ID=66489124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910186666.3A Active CN109772146B (zh) 2019-03-11 2019-03-11 空气净化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109772146B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110102223A (zh) * 2019-05-22 2019-08-09 四川高赛禾科技有限公司 一种具有祛除甲醛功能的颗粒物及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891497A (zh) * 2010-07-02 2010-11-24 华北水利水电学院 硅藻土基多孔陶瓷及其负载银掺杂纳米二氧化钛的方法
CN102872892A (zh) * 2012-10-24 2013-01-16 浙江大学苏州工业技术研究院 一种泡沫陶瓷基光催化组件及其制备方法
CN103623696A (zh) * 2012-08-24 2014-03-12 申晓卫 一种吸附分解型空气净化材料
CN104117371A (zh) * 2014-07-23 2014-10-29 姚将安 碳基高效吸附并分解有害物质的催化净化材料及其应用
CN105967750A (zh) * 2016-05-06 2016-09-28 郑伟阳 一种高吸附性的陶瓷及其制备方法
CN107096559A (zh) * 2017-05-05 2017-08-29 湖南银和瓷业有限公司 多功能微孔陶瓷催化剂及其在空气净化方面的应用
CN107282033A (zh) * 2017-06-28 2017-10-24 郑善 一种用于空气voc处理的光催化剂及其制备方法
WO2018006745A1 (zh) * 2016-07-08 2018-01-11 张麟德 一种基于石墨烯材料涂层的空气过滤装置及系统
CN108201889A (zh) * 2016-12-17 2018-06-26 天津发洋环保科技有限公司 一种以多孔陶瓷为载体的光触媒空气净化材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891497A (zh) * 2010-07-02 2010-11-24 华北水利水电学院 硅藻土基多孔陶瓷及其负载银掺杂纳米二氧化钛的方法
CN103623696A (zh) * 2012-08-24 2014-03-12 申晓卫 一种吸附分解型空气净化材料
CN102872892A (zh) * 2012-10-24 2013-01-16 浙江大学苏州工业技术研究院 一种泡沫陶瓷基光催化组件及其制备方法
CN104117371A (zh) * 2014-07-23 2014-10-29 姚将安 碳基高效吸附并分解有害物质的催化净化材料及其应用
CN105967750A (zh) * 2016-05-06 2016-09-28 郑伟阳 一种高吸附性的陶瓷及其制备方法
WO2018006745A1 (zh) * 2016-07-08 2018-01-11 张麟德 一种基于石墨烯材料涂层的空气过滤装置及系统
CN108201889A (zh) * 2016-12-17 2018-06-26 天津发洋环保科技有限公司 一种以多孔陶瓷为载体的光触媒空气净化材料
CN107096559A (zh) * 2017-05-05 2017-08-29 湖南银和瓷业有限公司 多功能微孔陶瓷催化剂及其在空气净化方面的应用
CN107282033A (zh) * 2017-06-28 2017-10-24 郑善 一种用于空气voc处理的光催化剂及其制备方法

Also Published As

Publication number Publication date
CN109772146A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN102198405B (zh) 一种净化室内甲醛用的复合催化剂及其制备方法
JP2775399B2 (ja) 多孔質光触媒及びその製造方法
CN101298024A (zh) 常温下净化空气中挥发性有机污染物和臭氧的催化剂及其制备方法与应用
JPH0899041A (ja) 酸化チタン多孔質薄膜光触媒及びその製造方法
CN113164867B (zh) 富勒烯及其衍生物复合材料在降解甲醛、室内VOCs或抑菌中的应用
CN110652974A (zh) 一种具有光催化功能的吸附型复合纳米纤维膜及制备方法
CN107511130B (zh) 一种沸石负载纳米电气石材料及其制备方法和应用
CN105327699A (zh) 一种空气净化材料
CN110538553B (zh) 一种电气石基负离子空气净化功能性复合滤材的制备方法
CN110813241A (zh) 一种氮氧共掺杂多孔碳材料及其制备方法和应用
CN109772146B (zh) 空气净化材料及其制备方法和应用
CN110038645B (zh) 一种复合型催化剂及其制备方法与应用
CN114835477B (zh) 一种多功能净水陶瓷材料
KR20160039135A (ko) 혼합 가스에 대한 제거 성능이 우수한 광촉매 필터 및 그 제조 방법
CN110559992B (zh) 常温去除空气中甲醛的无机强酸铵盐改性椰壳活性炭的制备工艺及其产品和应用
CN108704389B (zh) 一种石墨烯改性活性炭复合滤芯及其制备方法和应用
CN110935441A (zh) 一种高效降解甲醛的钛基复合催化网及其制备方法
KR101925430B1 (ko) 이온에 의해 활성화되는 악취 제거용 이온 촉매 및 그 제조 방법
CN105457593A (zh) 一种空气净化材料
CN114082412B (zh) 一种利用脉冲激光提高钛酸钙光催化活性的办法
CN114522741B (zh) 增强去除甲醛效率和寿命的氨基修饰的锰氧化物的制备方法
CN114870876B (zh) 一种催化剂及其制备方法和应用
CN114682222B (zh) 用于处理含砷、锑和钼废水的吸附材料及其制备方法和使用其处理含砷、锑和钼废水的方法
CN117531504B (zh) 一种抗菌除甲醛复合型光触媒及其制备方法和应用
CN111632590B (zh) 负载ZnSn(OH)6的玻璃珠光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 528000 1109, block 5, Huicong home appliance city, No. 1, Guangjiao Road, Guangjiao community neighborhood committee, Beijiao Town, Shunde District, Foshan City, Guangdong Province (residence declaration)

Patentee after: Guangdong Shunde Youli Technology Co.,Ltd.

Address before: 528000 1109, block 5, Huicong home appliance city, No. 1, Guangjiao Road, Guangjiao community neighborhood committee, Beijiao Town, Shunde District, Foshan City, Guangdong Province (residence declaration)

Patentee before: GUANGDONG SHUNDE YOULI ELECTRIC TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20221008

Address after: 473000 No. 106, Dudong Village, Dushu Town, Fangcheng County, Nanyang City, Henan Province

Patentee after: Wang Yuliang

Address before: 528000 1109, block 5, Huicong home appliance city, No. 1, Guangjiao Road, Guangjiao community neighborhood committee, Beijiao Town, Shunde District, Foshan City, Guangdong Province (residence declaration)

Patentee before: Guangdong Shunde Youli Technology Co.,Ltd.

TR01 Transfer of patent right