CN109704966A - 一种超临界萃取技术分离甜菊叶中组份的方法 - Google Patents

一种超临界萃取技术分离甜菊叶中组份的方法 Download PDF

Info

Publication number
CN109704966A
CN109704966A CN201811588453.5A CN201811588453A CN109704966A CN 109704966 A CN109704966 A CN 109704966A CN 201811588453 A CN201811588453 A CN 201811588453A CN 109704966 A CN109704966 A CN 109704966A
Authority
CN
China
Prior art keywords
extraction
rebaudian leaf
stevia rebaudian
supercritical
chlorogenic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811588453.5A
Other languages
English (en)
Other versions
CN109704966B (zh
Inventor
李欣
汪振洋
王洪庆
来庆英
龙惊惊
宋会平
王远
李小明
孙慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Research Institute of Chemical Industry Co Ltd
Sinochem Health Co Ltd
Original Assignee
Shenyang Research Institute of Chemical Industry Co Ltd
Sinochem Health Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Research Institute of Chemical Industry Co Ltd, Sinochem Health Co Ltd filed Critical Shenyang Research Institute of Chemical Industry Co Ltd
Priority to CN201811588453.5A priority Critical patent/CN109704966B/zh
Publication of CN109704966A publication Critical patent/CN109704966A/zh
Application granted granted Critical
Publication of CN109704966B publication Critical patent/CN109704966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Seasonings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及甜菊叶成分的提取,具体的说一种超临界萃取技术分离甜菊叶中组份的方法。将甜菊叶粉碎后加入至萃取釜中,以CO2作为萃取剂进行超临界萃取,依次萃取获得挥发性油产品、绿原酸、甜菊糖。本发明通过使用超临界萃取技术,先实现甜菊中挥发性成分的萃取,随后通过不同夹带剂萃取方式分步提取甜菊糖苷和绿原酸,实现了甜菊原料的工业化综合分类提取,避免了后期纯化过程中交差影响,而且萃取过程隔绝氧气,萃取时间短,避免了绿原酸的损失,萃取率高;与传统工艺相比,大大减少了饮用水的使用,降低了后期废水处理成本,避免了絮凝环节,工艺绿色环保无毒无害。

Description

一种超临界萃取技术分离甜菊叶中组份的方法
技术领域
本发明涉及甜菊叶成分的提取,具体的说一种超临界萃取技术分离甜菊叶中组份的方法。
背景技术
目前现有分离甜菊叶中组份的技术多采用以下路线:
甜菊叶—浸泡提取—过滤—化学絮凝—板框过滤—大孔树脂吸附—洗脱—阴阳离子树脂脱盐脱色—浓缩—粗品甜菊糖—精制—甜菊糖产品。
上述路线中首先将甜菊叶使用水或者极性溶剂多次浸泡提取甜菊糖,过滤除去叶渣后,滤液使用二价或三价铁盐在碱性条件下进行化学絮凝,板框过滤除去絮凝固体,絮凝液再经过大孔树脂吸附、解析、脱盐、脱色、浓缩、精制等步骤最终得到甜菊糖产品。但所有的提取均针对的是从甜菊叶提取获得甜菊糖和绿原酸组份,而对于甜菊叶中含有的挥发性组份并无提取分离;同时现阶段甜菊糖大规模生产厂商使用的工艺路线多以水提取技术为主,需要占用大量的饮用水资源,每生产1吨粗品甜菊糖需要消耗约700吨水,而且多次水提取过程耗时长达数十小时,萃取效率低,在萃取过程中为了避免霉变,需要加入杀菌剂进行除菌,增加了甜菊糖的提取成本。另外在除杂过程中需要经过絮凝工艺过程,在絮凝过程中加入大量的金属盐,如三氯化铁,氢氧化钙,硫酸亚铁,三氯化铝等,提取之后产生的大量有机含盐废水,不仅为企业增加运营成本,还会对自然环境造成严重污染;并且作为甜菊糖提取过程的副产品,绿原酸也应用相同的提取路线,而绿原酸由于其特殊的不饱和双键和多酚羟基结构,决定其本身性质的不稳定,提取时不能高温、强光及长时间加热。而现有工艺为了增加甜菊糖的提取效率,往往需要高温加热提取,这也使得在提取过程中甜菊叶中的绿原酸产生损失。另外,专利CN105418703A,CN106146574A,CN106046075A等文献中介绍的甜菊糖萃取方法也提及使用超临界萃取技术,但整个甜菊糖萃取过程繁琐,需要经过乙醇浸泡、过滤、酶解、超声萃取等多个环节,总工艺耗时较长;并在提取过程中使用了大量的无机盐,如三氯化铁、氢氧化钙、氢氧化钠、硫酸铝、碳酸钙、聚丙烯酰胺等物质,产生的废水废固对环境污染严重;而且萃取剂均使用上一环节步骤配置好的萃取体系进行超临界萃取,并没有使用可循环的惰性超临界二氧化碳流体,其萃取过程使用的压力以及温度也未达到超临界二氧化碳临界点的临界压力要求(临界温度Tc=31.1℃,临界压力Pc=7.38MPa),无法实现超临界流体扩散性好,萃取能力强的优点。
发明内容
本发明目的在于提供一种超临界萃取技术分离甜菊叶中组份的方法。
为实现上述目的,本发明采用技术方案为:
一种超临界萃取技术分离甜菊叶中组份的方法,将甜菊叶粉碎后加入至萃取釜中,以CO2作为萃取剂进行超临界萃取,依次萃取获得挥发性油产品、绿原酸、甜菊糖。
进一步的说,
1)将甜菊叶粉碎后加入至萃取釜中,以CO2作为萃取剂进行超临界萃取,萃取时间10-50分钟,即可萃取分离获得挥发性油产品;
2)提取挥发性油产品后的甜菊叶粉碎残渣在萃取釜中添加夹带剂A,再继续进行CO2作为萃取剂的超临界萃取,萃取时间0.5-1小时,收集绿原酸萃取液,收集沉淀再以CO2作为萃取剂,并添加夹带剂B进行超临界萃取,萃取时间1-2小时获得甜菊糖。
所述提取挥发性油产品时萃取温度为35℃-60℃,压力为8MPa-30MPa;所述提取绿原酸时萃取温度为40℃-60℃,压力为10MPa-30MPa;所述提取甜菊糖时萃取温度为60℃-90℃,压力为20MPa-40MPa。
所述提取绿原酸时夹带剂A为丙酮,夹带剂A加入量为萃取剂总量的0-20%;优选为夹带剂A加入量为萃取剂总量的5-20%。进一步优选为夹带剂A加入量为萃取剂总量的10-20%。
所述提取甜菊糖时夹带剂B为乙醇或水,夹带剂B加入量为萃取剂总量的0-20%。优选为夹带剂B加入量为萃取剂总量的5-20%。进一步优选为夹带剂B加入量为萃取剂总量的10-20%。
所述收集到的挥发性油产品为混合物,主要成分为石竹烯、α-香柠檬烯、(E)-β-金合欢烯。
所述收集的RD甜菊糖包括Reb A、Reb D、Stev及其它甜菊糖苷或其组合物,其他甜菊糖苷范围包括Rebaudioside B、Rebaudioside C、Rebaudioside E,Rebaudioside F、Rebaudioside M、Dulcoside A和Steviobioside。
所述绿原酸包括3-咖啡酰奎宁酸、4-咖啡酰奎宁酸、5-咖啡酰奎宁酸、3,5-二咖啡酰奎宁酸、3,4-二咖啡酰奎宁酸、4,5-二咖啡酰奎宁酸其中的1种或多种。
所述步骤1)中粉碎甜菊叶为选取甜菊叶于40℃-60℃下真空干燥至含水量低于10%,而后粉碎至30-60目。
所述提取获得绿原酸萃取液或甜菊糖萃取液经进行减压蒸馏浓缩,浓缩物溶解后经大孔树脂吸附解吸,喷雾干燥塔干燥,获得粗品,而后重结晶得绿原酸或甜菊糖。
所述提取获得绿原酸萃取液经进行减压蒸馏浓缩,浓缩物溶解后经大孔树脂吸附解吸,喷雾干燥塔干燥,获得粗品,而后重结晶得总酚酸含量95%以上的绿原酸。
所述提取获得甜菊糖萃取液经进行减压蒸馏浓缩,浓缩物溶解后经大孔树脂吸附解吸,喷雾干燥塔干燥,获得粗品,而后重结晶得纯度为95%以上的RA甜菊糖和90%以上的RD甜菊糖。
上述提取后的各萃取液浓缩物经醇类物质溶解,溶解后经打孔树脂柱吸附,吸附后与溶解时采用的溶剂进行解吸,干燥后获得粗品;粗品经醇或醇-水体系重结晶获得纯化后绿原酸或甜菊糖。
所述醇为甲醇、乙醇、丙醇、异丙醇、正丁醇等中的一种或几种;所述醇-水体系为一种或几种醇类物质与水按任意比例混合。
本发明所具有的优点:
本发明通过使用超临界萃取技术,先实现甜菊中挥发性成分的萃取,随后通过不同夹带剂萃取方式分步提取甜菊糖苷和绿原酸,实现了甜菊原料的工业化综合分类提取,避免了后期纯化过程中交差影响,而且萃取过程隔绝氧气,萃取时间短,避免了绿原酸的损失,萃取率高;与传统工艺相比,大大减少了饮用水的使用,降低了后期废水处理成本,避免了絮凝环节,工艺绿色环保无毒无害;具体为:
(1)本发明通过使用惰性的超临界二氧化碳流体进行萃取,超临界萃取过程使用的压力以及温度达到超临界二氧化碳临界点,先实现甜菊中挥发性成分的萃取,随后通过夹带剂萃取方式分别提取甜菊糖苷和绿原酸,实现了甜菊原料的综合利用。
(2)本发明采用超临界CO2萃取技术,由于二氧化碳的特殊性质,整个萃取过程中隔绝氧气,有效防止绿原酸多酚结构的氧化变质,避免了绿原酸的损失。
(3)本发明超临界萃取方法生产周期短,萃取效率高,能萃取10-9级痕量物质,有效的提取甜菊叶中的各种所需成分,包括Reb A、Reb D、Stev、绿原酸以及多种挥发性化合物。
(4)本发明超临界萃取使用的主要萃取溶剂是二氧化碳,易得且无毒无害,萃取过程中几乎不使用水,相比传统工艺大大节省了饮用水的使用,减少后期废水,极大的减少了建厂选址对水资源的依赖。
(5)本发明超临界萃取方法去掉了现有工艺中的絮凝的工艺环节,缩减了工艺步骤,并大量减少了工业废水的产生,绿色、节能环保。
(6)本发明超临界萃取完成后,超临界流体由于状态的改变,很容易从分离的组分中彻底的脱除,不对产品产生污染。
附图说明
图1为本发明实施例提供的提取获得的挥发油总离子流图。
图2为本发明实施例提供的提取获得的β-金合欢烯GC-MS质谱图。
图3为本发明实施例提供的提取获得的α-香柠檬烯GC-MS质谱图。
图4为本发明实施例提供的提取获得的绿原酸总离子流图。
图5为本发明实施例提供的提取获得的3-咖啡酰奎宁酸HPLC-MS质谱图。
图6为本发明实施例提供的提取获得的4-咖啡酰奎宁酸HPLC-MS质谱图。
图7为本发明实施例提供的提取获得的3,5-咖啡酰奎宁酸GC-MS质谱图。
图8为本发明实施例提供的提取获得的4,5-咖啡酰奎宁酸GC-MS质谱图。
图9为本发明实施例提供的提取获得的RD甜菊糖HPLC液相图。
具体实施方式
以下结合实例对本发明的具体实施方式做进一步说明,应当指出的是,此处所描述的具体实施方式只是为了说明和解释本发明,并不局限于本发明。
实施例1
一种超临界萃取技术分离甜菊叶中组份的方法,具体包括以下步骤:
选取完整、洗净的甜菊叶置于真空干燥箱中,40℃真空干燥至甜菊叶中含水量低于10%。测定含水量后,降温至室温,使用粉碎机进行粉碎,粉碎过程中确保温度不高于50℃。粉碎后过30-60目筛。将过筛后的甜菊叶粉末,加入萃取釜,进行超临界CO2萃取,萃取温度40℃,萃取压力10MPa,萃取时间10分钟,收集挥发性油产品,油产品中石竹烯占比24.77%,α-香柠檬烯占比31.72%,(E)-β-金合欢烯占比21.64%。收集产品总质量占甜菊叶质量的1.2%(参见图1-3)。
实施例2
选取甜菊叶洗净后置于真空干燥箱中,60℃真空干燥至甜菊叶中含水量低于10%。测定含水量后,降温至室温,使用粉碎机进行粉碎,粉碎过程中确保温度不高于50℃。粉碎后过15-60目筛。将过筛后的甜菊叶粉末,加入萃取釜,进行超临界CO2萃取,萃取温度60℃,萃取压力30MPa,萃取时间50分钟,收集挥发性油产品,油产品中石竹烯占比27.31%,α-香柠檬烯占比29.54%,(E)-β-金合欢烯占比25.44%。收集产品总质量占甜菊叶质量的2.2%。
实施例3
将上述实施例提取完挥发性油状物后的甜菊叶物料,再进一步进行提取绿原酸:
将上述实施例提取完挥发性油状物后的甜菊叶物料,再置于萃取釜内,加入作为夹带剂的丙酮,在CO2流体萃取剂的条件下进行超临界萃取,萃取温度40℃,萃取压力10MPa,萃取时间30分钟,收集绿原酸提取液,取样HPLC-MS检测,主要成分为3-咖啡酰奎宁酸、3,5-二咖啡酰奎宁酸、4,5-二咖啡酰奎宁酸,萃取液总酚酸含量83.10%。
上述,夹带剂的添加量为总流体萃取剂质量的10%(参见图4-8)。
实施例4
将上述实施例提取完挥发性油状物后的甜菊叶物料,再进一步进行提取绿原酸:
将上述实施例提取完挥发性油状物后的甜菊叶物料,再置于萃取釜内,加入作为夹带剂的丙酮,在CO2流体萃取剂的条件下进行超临界萃取,萃取温度40℃,萃取压力20MPa,萃取时间30分钟,收集绿原酸提取液,取样HPLC-MS检测,主要成分为3-咖啡酰奎宁酸、3,5-二咖啡酰奎宁酸,萃取液总酚酸含量72.18%。
上述,夹带剂的添加量为总流体萃取剂质量的15%。
实施例5
将上述实施例提取完挥发性油状物后的甜菊叶物料,再进一步进行提取绿原酸:
将上述实施例提取完挥发性油状物后的甜菊叶物料,再置于萃取釜内,加入作为夹带剂的丙酮,在CO2流体萃取剂的条件下进行超临界萃取,萃取温度40℃,萃取压力20MPa,萃取时间30分钟,收集绿原酸提取液,取样HPLC-MS检测,主要成分为4-咖啡酰奎宁酸、4,5-二咖啡酰奎宁酸,萃取液总酚酸含量74.46%。
上述,夹带剂的添加量为总流体萃取剂质量的20%。
实施例6
将上述收集到的绿原酸提取液经0.05atm压力下减压蒸馏除去有机溶剂,而后加1升水溶解,溶解后加至预先处理好的LK-2M9大孔树脂柱,使用浓度10-20wt%的乙醇溶液冲洗除去杂质,再使用90wt%的乙醇溶液进行解吸附,得到绿原酸粗品溶液。将绿原酸粗品溶液加入喷雾干燥塔喷干,得到绿原酸的粗品,粗品经85%的甲醇溶液重结晶,得到总酚酸含量95.47%的绿原酸。
实施例7
将上述实施例提取完绿原酸后的甜菊叶物料,再进一步进行提取甜菊糖:
将上述实施例提取完绿原酸后的甜菊叶物料置于萃取釜内,加入作为夹带剂的70%乙醇,在CO2流体萃取剂的条件下进行超临界萃取,萃取温度70℃,萃取压力20MPa,萃取时间1小时,收集甜菊糖提取液。
上述夹带剂的添加量为总流体萃取剂质量的15%。
实施例8
将上述实施例提取完绿原酸后的甜菊叶物料,再进一步进行提取甜菊糖:
使用收集完绿原酸后的甜菊叶物料,在加入CO2流体萃取剂的同时,加入夹带剂70%乙醇,夹带剂比例为总萃取溶剂量的20%,萃取温度80℃,萃取压力30MPa,萃取时间2小时,收集甜菊糖提取液。
实施例9
将上述实施例提取完绿原酸后的甜菊叶物料,再进一步进行提取甜菊糖:
使用收集完绿原酸后的甜菊叶物料,在加入CO2流体萃取剂的同时,加入夹带剂80%乙醇,夹带剂比例为总萃取溶剂量的20%,萃取温度90℃,萃取压力40MPa,萃取时间2小时,收集甜菊糖提取液。
实施例10
将上述收集到的甜菊糖提取液0.05atm压力下减压蒸馏除去有机溶剂,而后加1升水溶解,溶解后加至预先处理好的TJ-1大孔树脂,使用浓度10-15wt%的乙醇溶液冲洗除去杂质,再使用70wt%的乙醇溶液进行解吸附,得到甜菊糖粗品溶液。将甜菊糖粗品溶液加入喷雾干燥塔喷干,得到甜菊糖的粗品,粗品经95wt%的乙醇溶液重结晶,得到含量97.12%的Red A。
或,粗品经甲醇溶液重结晶,得到含量92.61%的Stev。
实施例11
将上述收集到的甜菊糖提取液减压蒸馏除去有机溶剂,而后加水溶解,溶解后加至预先处理好的TJ-2大孔树脂柱,使用浓度低于15%的乙醇溶液冲洗除去杂质,再使用50%的乙醇溶液进行解吸附,得到甜菊糖粗品溶液。将甜菊糖粗品溶液加入喷雾干燥塔喷干,得到甜菊糖的粗品,粗品经乙醇、甲醇和水的混合液重结晶得到含量94.61%的Red D,重结晶所采用的混合物中按质量比乙醇:甲醇:水=3:2:1。
综上可见本发明通过使用惰性的超临界二氧化碳流体进行萃取,超临界萃取过程使用的压力以及温度达到超临界二氧化碳临界点,先实现甜菊中挥发性成分的萃取,随后通过夹带剂萃取方式分别提取甜菊糖苷和绿原酸,并且超临界方法具有生产周期短,萃取效率高,能萃取10-9级痕量物质,有效的提取甜菊叶中的各种所需成分,包括Reb A、Reb D、Stev、绿原酸以及多种挥发性化合物,进一步能够实现了甜菊原料的综合利用。

Claims (8)

1.一种超临界萃取技术分离甜菊叶中组份的方法,其特征在于:将甜菊叶粉碎后加入至萃取釜中,以CO2作为萃取剂进行超临界萃取,依次萃取获得挥发性油产品、绿原酸、甜菊糖。
2.按权利要求1所述的超临界萃取技术分离甜菊叶中组份的方法,其特征在于:
1)将甜菊叶粉碎后加入至萃取釜中,以CO2作为萃取剂进行超临界萃取,萃取时间10-50分钟,即可萃取分离获得挥发性油产品;
2)提取挥发性油产品后的甜菊叶粉碎残渣在萃取釜中添加夹带剂A,再继续进行CO2作为萃取剂的超临界萃取,萃取时间0.5-1小时,收集绿原酸萃取液,收集沉淀再以CO2作为萃取剂,并添加夹带剂B进行超临界萃取,萃取时间1-2小时获得甜菊糖。
3.按权利要求1或2所述的超临界萃取技术分离甜菊叶中组份的方法,其特征在于:所述提取挥发性油产品时萃取温度为35℃-60℃,压力为8MPa-30MPa;所述提取绿原酸时萃取温度为40℃-60℃,压力为10MPa-30MPa;所述提取甜菊糖时萃取温度为60℃-90℃,压力为20MPa-40MPa。
4.按权利要求2所述的超临界萃取技术分离甜菊叶中组份的方法,其特征在于:所述提取绿原酸时夹带剂A为丙酮,夹带剂A加入量为萃取剂总量的0-20%;
所述提取甜菊糖时夹带剂B为乙醇或水,夹带剂B加入量为萃取剂总量的0-20%。
5.按权利要求1所述的超临界萃取技术分离甜菊叶中组份的方法,其特征在于:所述步骤1)中粉碎甜菊叶为将甜菊叶于40℃-60℃下真空干燥至含水量低于10%,而后粉碎至30-60目。
6.按权利要求1所述的超临界萃取技术分离甜菊叶中组份的方法,其特征在于:所述提取获得绿原酸萃取液或甜菊糖萃取液经进行减压蒸馏浓缩,浓缩物溶解后经大孔树脂吸附解吸,喷雾干燥塔干燥,获得粗品,而后重结晶得绿原酸或甜菊糖。
7.按权利要求6所述的超临界萃取技术分离甜菊叶中组份的方法,其特征在于:所述提取获得绿原酸萃取液经进行减压蒸馏浓缩,浓缩物溶解后经大孔树脂吸附解吸,喷雾干燥塔干燥,获得粗品,而后重结晶得总酚酸含量95%以上的绿原酸。
8.按权利要求6所述的超临界萃取技术分离甜菊叶中组份的方法,其特征在于:所述提取获得甜菊糖萃取液经进行减压蒸馏浓缩,浓缩物溶解后经大孔树脂吸附解吸,喷雾干燥塔干燥,获得粗品,而后重结晶得纯度为95%以上的RA甜菊糖和90%以上的RD甜菊糖。
CN201811588453.5A 2018-12-25 2018-12-25 一种超临界萃取技术分离甜菊叶中组份的方法 Active CN109704966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811588453.5A CN109704966B (zh) 2018-12-25 2018-12-25 一种超临界萃取技术分离甜菊叶中组份的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811588453.5A CN109704966B (zh) 2018-12-25 2018-12-25 一种超临界萃取技术分离甜菊叶中组份的方法

Publications (2)

Publication Number Publication Date
CN109704966A true CN109704966A (zh) 2019-05-03
CN109704966B CN109704966B (zh) 2021-08-20

Family

ID=66257320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811588453.5A Active CN109704966B (zh) 2018-12-25 2018-12-25 一种超临界萃取技术分离甜菊叶中组份的方法

Country Status (1)

Country Link
CN (1) CN109704966B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349127A (zh) * 2020-03-28 2020-06-30 蚌埠市华东生物科技有限公司 一种甜菊糖苷的生产方法
CN114391654A (zh) * 2021-12-31 2022-04-26 恩施徕福硒业有限公司 一种富硒茶提取物的生产方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112610A (en) * 1988-03-29 1992-05-12 Udo Kienle Method of making a natural sweetener based on Stevia rebaudiana, and use thereof
CN102924544A (zh) * 2012-10-30 2013-02-13 晨光生物科技集团股份有限公司 从甜菊叶中分步制备甜菊糖和绿原酸的方法
WO2016049315A1 (en) * 2014-09-26 2016-03-31 Purecircle Usa Inc. Stevia composition, production method and uses
CN105732739A (zh) * 2016-01-29 2016-07-06 滁州润海甜叶菊高科有限公司 一种甜菊中提取纯化甜菊糖工艺
CN108064226A (zh) * 2013-07-31 2018-05-22 帝斯曼知识产权资产管理有限公司 甜菊糖苷的回收
CN108690101A (zh) * 2010-11-19 2018-10-23 嘉吉公司 用于富集衍生自甜叶菊的糖苷组合物中的新蛇菊苷b和/或新蛇菊苷d的方法
CN108864223A (zh) * 2018-09-05 2018-11-23 安徽龙津生物科技有限公司 一种从甜菊叶中分离甜菊糖苷并联产绿原酸的工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112610A (en) * 1988-03-29 1992-05-12 Udo Kienle Method of making a natural sweetener based on Stevia rebaudiana, and use thereof
CN108690101A (zh) * 2010-11-19 2018-10-23 嘉吉公司 用于富集衍生自甜叶菊的糖苷组合物中的新蛇菊苷b和/或新蛇菊苷d的方法
CN102924544A (zh) * 2012-10-30 2013-02-13 晨光生物科技集团股份有限公司 从甜菊叶中分步制备甜菊糖和绿原酸的方法
CN108064226A (zh) * 2013-07-31 2018-05-22 帝斯曼知识产权资产管理有限公司 甜菊糖苷的回收
WO2016049315A1 (en) * 2014-09-26 2016-03-31 Purecircle Usa Inc. Stevia composition, production method and uses
CN105732739A (zh) * 2016-01-29 2016-07-06 滁州润海甜叶菊高科有限公司 一种甜菊中提取纯化甜菊糖工艺
CN108864223A (zh) * 2018-09-05 2018-11-23 安徽龙津生物科技有限公司 一种从甜菊叶中分离甜菊糖苷并联产绿原酸的工艺

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. ERKUCUK ET AL.: "Supercritical CO2 extraction of glycosides from Stevia rebaudiana leaves:Identification and optimization", 《THE JOURNAL OF SUPERCRITICAL FLUIDS》 *
KASHIF AMEER ET AL.: "Optimization of supercritical fluid extraction of steviol glycosides and total phenolic content from Stevia rebaudiana (Bertoni) leaves using response surface methodology and artificial neural network modeling", 《INDUSTRIAL CROPS & PRODUCTS》 *
SIMONE K. YODA ET AL.: "Supercritical fluid extraction from Stevia rebaudiana Bertoni using CO2 and CO2 + water: extraction kinetics and identification of extracted components", 《JOURNAL OF FOOD ENGINEERING》 *
URSULA WÖLWER-RIECK: "The Leaves of Stevia rebaudiana (Bertoni), Their Constituents and the Analyses Thereof: A Review", 《JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY》 *
彭特立: "超临界二氧化碳萃取技术的开发应用", 《应用技术研究》 *
葛发欢: "《中药超临界二氧化碳萃取技术研究》", 31 March 2014, 北京:中国医药科技出版社 *
詹家芬等: "GC-MS分析甜菊叶的挥发性成分", 《热带亚热带植物学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349127A (zh) * 2020-03-28 2020-06-30 蚌埠市华东生物科技有限公司 一种甜菊糖苷的生产方法
CN114391654A (zh) * 2021-12-31 2022-04-26 恩施徕福硒业有限公司 一种富硒茶提取物的生产方法及装置

Also Published As

Publication number Publication date
CN109704966B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN104530173B (zh) 一种提取油茶饼粕中茶皂素的工艺
CN101525327B (zh) 一种从越橘中提取花青素的方法
CN109704966A (zh) 一种超临界萃取技术分离甜菊叶中组份的方法
CN102924544B (zh) 从甜菊叶中分步制备甜菊糖和绿原酸的方法
CN102161689A (zh) 一种从油茶饼粕中提取茶皂素的方法
CN102701914A (zh) 从橄榄叶中提取羟基酪醇的方法
CN103980121A (zh) 一种以杜仲鲜叶生产绿原酸的方法
CN102220387B (zh) 一种从新鲜虎杖中提取纯化白藜芦醇和大黄素的方法
CN103360359B (zh) 一种从落叶松中精制二氢槲皮素的方法
CN102442889A (zh) 2,3-二羟基萘的精制方法
CN105315704A (zh) 一种从玫瑰茄提取色素后的废液中回收有机酸的方法
CN110818762B (zh) 一种回收甾醇并精制钾盐的渣油处理方法
CN102558254B (zh) 柳皮或柳枝的提取物及水杨苷的制备方法
CN105688742B (zh) 一种n‑辛烷基山竹果皮多酚表面活性剂的制备方法
CN104825548A (zh) 一种荷叶总生物碱提取工艺
CN103628086A (zh) 一种成对电解同时合成苯甲醛和山梨醇、甘露醇的方法
CN101805344A (zh) 白鲜皮中单体化合物的提纯方法
CN101838003A (zh) 一种以粉煤灰为原料制备低铁结晶氯化铝的方法
CN101525326A (zh) 一种提取花青素的方法
CN102382044A (zh) 一种2、3-二甲基吡啶的提纯方法
CN102675091A (zh) 一种从植物中提取分离制备没食子酸的方法
CN103012071A (zh) 一种从花生粕中提取纯化白藜芦醇的方法
CN107474100A (zh) 从川楝树中提取川楝素的方法
CN103864868A (zh) 一种天然活性黄酮-芦丁的绿色提取工艺
CN108191762B (zh) 一种无重金属千层塔提取物的提取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant