CN109690917A - 用于磁响应装置、系统和方法的磁性密封件 - Google Patents

用于磁响应装置、系统和方法的磁性密封件 Download PDF

Info

Publication number
CN109690917A
CN109690917A CN201780051867.1A CN201780051867A CN109690917A CN 109690917 A CN109690917 A CN 109690917A CN 201780051867 A CN201780051867 A CN 201780051867A CN 109690917 A CN109690917 A CN 109690917A
Authority
CN
China
Prior art keywords
magnetic
seal
response device
concentrator
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780051867.1A
Other languages
English (en)
Inventor
迈克尔·加祖姆斯基
阿斯卡里·巴德雷-阿拉姆
卢卡·迪德科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lord Corp
Original Assignee
Lord Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lord Corp filed Critical Lord Corp
Publication of CN109690917A publication Critical patent/CN109690917A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/124Sealing of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • F16D57/002Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders comprising a medium with electrically or magnetically controlled internal friction, e.g. electrorheological fluid, magnetic powder
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/20Electric or magnetic using electromagnets

Abstract

提供了一种磁响应装置(100),该磁响应装置(100)具有磁性密封件(160,170),以将磁响应材料保持在限定的空间(150)内。磁响应装置(100)具有轴(110)、转子(130)、磁场发生器(145)、磁响应介质和磁性密封件(160,170)。密封件(160,170)优选地是非接触式密封件(160,170),其不随时间劣化并且几乎不产生阻力。

Description

用于磁响应装置、系统和方法的磁性密封件
相关申请的交叉引用
本申请要求2016年8月23日提交的名称为“用于磁响应装置、系统和方法的磁性密封件(Magnetic Seal for Magnetically-Responsive Devices,Systems,and Methods)”的专利合作条约申请PCT/US16/48137的优先权,该申请的全文以引用的方式并入本文。
技术领域
本文公开的主题一般涉及磁响应系统。更具体地,本文公开的主题涉及与磁响应系统一起使用以防止磁响应材料从系统中迁移出来的密封件。
背景技术
内部包含磁响应(MR)材料的机械系统可以对所施加的力或扭矩提供可控的反馈。这样的系统例如在线控转向系统的触觉反馈装置(其中当附接到轴的转子相对于固定定子剪切MR材料时产生到操作者的扭矩反馈)中可以提供一系列益处。在这样的系统中,触觉反馈装置转向单元可以利用精细的磁响应(MR)材料(铁粉)来提供与电流成比例且与温度无关的平滑扭矩。触觉反馈装置的典型功能包括扭矩反馈、位置(旋转)感测和结构。
为了提供结构和旋转运动,通常使用轴承或衬套来支撑输出轴。然而,传统的轴承和衬套在被MR粉末污染时易粘合失效。当粉末进入轴承时,轴承会在操作界面(operatorinterface)处卡住或提供“刚性转向”。这种失效模式推动了特殊密封件的开发,这种密封件旨在减少导致污染的泄漏路径。例如,目前的解决方案包括压缩毡、迷宫式密封件、径向唇形密封件和轴向唇形密封件。
虽然目前的应用已经过测试并通过了指定的耐久性寿命测试,但间歇性故障和新的设计构造限制了该技术。因此,希望MR系统具有改进的密封结构,以更好地防止MR材料从系统中泄漏,从而为相关轴承提供更强大的保护。
发明内容
根据本发明,提供了用于磁响应装置、系统和方法的磁性密封件。在一个方面,提供了一种包含在壳体内的磁响应装置。该装置包括轴、转子、磁场发生器、磁响应介质和磁性密封件。转子由高磁导材料构成,转子互连到轴上,以限制转子和轴之间的相对旋转。磁场发生器通过空隙与转子分开,磁场发生器具有电磁体定子。磁响应介质被包含在空隙内并至少部分地填充空隙,其中磁场发生器是可控制的,以使磁响应介质沿空隙内的磁通路径对准(align),从而引起转子的扭转阻力的变化。磁性密封件位于轴附近,磁性密封件包括磁性元件,磁性元件构造成产生磁场,以防止磁响应介质从空隙中漏出。
在另一方面,磁响应装置包括磁性密封件,该磁性密封件构造成定位在可旋转轴处或附近。磁性密封件包括磁性元件,该磁性元件构造成产生磁场,以防止磁响应介质沿着可旋转轴漏出。
在又一方面,提供了一种用于防止磁响应介质从磁响应装置中漏出的方法。该方法包括以下步骤:将磁性密封件定位在与磁阻装置相关联的旋转轴处或附近;以及产生磁场,以防止磁响应介质沿着轴漏出而远离磁响应装置。
虽然已在上文中阐述了本文公开的主题的一些方面,并且其全部或部分地由本发明公开的主题来实现,但是当结合如下文最佳描述的附图进行阐述时,其他方面将变得明显。
附图说明
图1是根据本公开主题的实施例的包含磁性密封件的磁响应装置的侧剖视图。
图2A是根据本公开主题的实施例的包含磁性密封件的磁响应装置的局部侧剖视图。
图2B是图2A所示的磁响应装置中的磁通量图案的局部侧剖视图。
图3A是根据本公开主题的实施例的包含磁性密封件的磁响应装置的局部侧剖视图。
图3B是图3A所示的磁响应装置中的磁通量图案的局部侧剖视图。
图4A是根据本公开主题的实施例的与磁响应装置一起使用的磁性密封件的侧剖视图。
图4B是图4A所示的磁性密封件的透视分解图。
图5A是磁性密封件的替代实施例的侧剖视图。
图5B是图5A所示的磁性密封件的一个实施例中的磁通量图案的侧剖视图。
图5C是图5A所示的磁性密封件的一个实施例中的磁通量图案的侧剖视图。
图6A是磁性密封件的替代实施例的侧剖视图。
图6B是图6A所示的磁性密封件的一个实施例中的磁通量图案的侧剖视图。
具体实施方式
本主题提供用于磁响应装置、系统和方法的磁性密封件。本主题提供了这样的磁性密封件:其设计成通过将磁通量集中在将阻止磁响应材料漏出的区域中来防止轴承或衬套的污染。如上所讨论的,典型的密封方法包括轴向/径向弹性体接触密封件,并且这些类型的密封件在干燥污染方面表现不佳并且随着时间的推移会出故障。相反,非接触式磁性密封件即使在固定部件和移动部件之间存在间隙,也可以保持粉末并防止泄漏。
在一个方面,本主题提供了一种磁响应装置以及与磁响应装置一起使用的磁性密封件。如图1所示,通常标记为100的磁响应装置包括轴110和转子130,转子130与轴110互连以限制它们之间的相对旋转。在一些实施例中,转子130包括高磁导材料(例如,诸如AISI-1018等中/低碳钢)。在一些实施例中,壳体140基本上围绕轴110和转子130定位。另外,一个或多个磁极142附接到壳体140或者集成在壳体140内,并且与磁极142相关联的磁场发生器145通过空隙150与转子130间隔开。在一些实施例中,磁场发生器145是固定定子(例如,永磁体和/或电磁线圈),固定定子构造成在转子130处或附近在磁极142的至少一部分中产生磁场。
磁响应介质(例如,诸如铁粉等磁响应粉末)包含在空隙150内并且至少部分地填充空隙150。在这种布置中,磁场发生器145是可控制的,以使磁响应介质沿空隙150内的磁通路径对准,从而引起转子130(和轴110)的扭转阻力的变化。如上所讨论的,为了提供结构和旋转运动,通常使用轴承或衬套来支撑输出轴。在图1所示的构造中,轴承121、122沿轴110定位在转子130的两侧。为了解决MR材料侵入的问题并因此改善磁响应装置100的寿命,提供了用于密封磁响应介质的更好机构。如下面将进一步详细讨论的,磁性密封件提供了这种机构。
在图1所示的实施例中,磁性密封件160与转子130间隔开(即,在轴承121和转子130之间),并且定位在轴110处或附近,磁性密封件170同样与转子130间隔开(即,在轴承122和转子130之间),并且定位在轴110处或附近。在一些实施例中,轴承121和磁性密封件160之间以及轴承122和磁性密封件170之间的间距被设计成使得轴承121、122的座圈不会被磁化,磁化可能导致轴承吸引磁响应介质。
磁性密封件160和磁性密封件170中的每一个包括磁性元件,该磁性元件构造成产生磁场,以限制和/或防止磁响应介质从空隙150沿着轴110朝向轴承121、122漏出。磁性密封件160,170通过间隙161,171与轴110分开,间隙161,171防止轴110与磁性密封件160,170的内径之间的接触。可以利用各种设计来创建理想回路(circuit)。在一些实施例中,磁性元件是环形磁体(例如,具有标准磁极性的钕环形磁体)。参考图2A所示的磁性密封件170的示例性构造,例如,环形磁体172定位在壳体140和轴110之间。在这种构造中,环形磁体172通过磁体保持件174联接到壳体140,磁体保持件174由非磁性材料(例如,6061-T6铝或类似物)构成。在这种布置中,如图2B所示,环形磁体172可以提供其磁性密封功能,而不会干扰磁场发生器145的操作。尽管参考了用于磁性密封件170的示例性构造,但是本领域技术人员应该认识到,本文公开的概念可以类似地应用于磁性密封件160的构造。
除了能够提供粉末屏障173以限制或防止磁响应介质朝向轴承122通过之外,还可以在不接触轴110的情况下使用环形磁体。如图1和图2A所示,在磁性密封件160和轴110之间存在小的第一间隙161,并且在磁性密封件170和轴110之间存在第二间隙171。如图所示,第二间隙171的尺寸大于磁响应介质的分子/颗粒尺寸(例如,大约100微米或更小),但如上所讨论的,密封件被设计成阻止磁响应介质的移动,而不需要抵靠轴110的物理屏障。无论间隙的尺寸如何,即使如此小的间隙(例如,环形磁体172和轴110之间的间隙为0.50mm)造成的免接触也会导致与传统密封件(其通常需要在没有间隙的情况下进行预加载)相比施加在轴110上的扭转阻力的减小。结果,除了提供抵抗磁响应介质的迁移的磁屏障之外,根据本主题的磁性密封件也不会对相关的磁响应系统的操作产生不利影响。
在图3A所示的替代构造中,磁性密封件170构造成使得产生的磁场集中在磁体上方。通过以下方式实现该磁场的集中:将磁通磁芯176与环形磁体172联接来集中磁通量,以使磁响应介质在用作粉末屏障173的区域中对准。在一些实施例中,非磁性间隔件178(例如,尼龙环)定位在环形磁体172和磁通磁芯176之间。该非磁性间隔件178构造成径向扩展磁性密封件170和旋转元件(即,轴110和转子130)之间的空间中产生的磁通“冠部”。参考图3B,尽管其他设计可允许磁通量进入轴110和环形磁体172之间的第二间隙171,但这种构造将磁响应介质从第二间隙171中拉出并使磁通量轴向地远离中心轴线集中。
在图4A和图4B中示出了该构造中的磁性密封件170的示例性构造。如在该布置中所示,环形磁体172基本上同心地嵌套在集中器元件175内,集中器元件175包括磁通磁芯176。参照图4A,磁通磁芯176构造成将由环形磁体172产生的磁场成形为具有如上所讨论的期望路径。如上所讨论的,在一些实施例中,集中器元件175还包括间隔件178,间隔件178构造成定位在环形磁体172和磁通磁芯176之间以防止放空(shorting)。在图4A和图4B所示的实施例中,环形磁体172、磁通磁芯176和间隔件178都嵌套在磁体保持件174内,磁体保持件174构造成用于附接到系统的固定元件(例如,附接到壳体140)。
作为选择,在图5A至图6B所示的其他实施例中,磁性密封件170被构造成使得其配置成与轴110一起旋转,而不是附接到系统的固定元件。如图5A所示,如在上面讨论的实施例中,磁性密封件170与转子130间隔开(即,在轴承121和转子130之间)。在一些实施例中,轴承121和磁性密封件170之间的间距被设计成使得轴承121的座圈不会被磁化,磁化可能导致轴承吸引磁响应介质。另外,类似于前述实施例,磁性密封件170包括磁性元件,该磁性元件构造成产生磁场,以限制和/或防止磁响应介质从空隙150沿着轴110(例如,朝向轴承121、)漏出(例如,进入间隙161)。在一些实施例中,第二下部密封件190(例如,压缩毡或弹性体元件)也定位在转子130和轴承122之间。
在图5A所示的构造中,磁性密封件170附接到转子130(例如,以轴110为中心),并且通过间隙与壳体140分离。可以利用各种设计来创建理想回路(circuit)。在一些实施例中,磁性元件是环形磁体172(例如,具有标准磁极性的钕环形磁体)。在一些实施例中,一个或多个磁集中器元件(例如,一个或多个非磁性间隔件178)被构造为集中磁通量,以使磁响应介质在用作粉末屏障173的区域中对准。在所示实施例中,一对非磁性间隔件178位于环形磁体172的相对两侧(即,一个在第一侧,一个在第二侧),并且用作磁集中器元件。参考图5B和图5C,其示出了由磁性密封件170的实施例产生的磁通量,该构造使磁通量轴向地远离中心轴线集中。在图5B所示的实施例中,轴110由非磁性材料(例如,316SS或304SS不锈钢、铝或铝合金)构成,因此由磁性密封件产生的磁通量和粉末屏障173的尺寸和位置主要由环形磁体172和非磁性间隔件178的构造控制。作为选择,图5C示出了这样的实施例:其中轴110由磁响应介质(例如,诸如AISI-1018或AISI-4140等中/低碳钢)构成。在该实施例中,轴110和/或转子130有效地用作磁性密封件170的磁通磁芯并且闭合磁通回路,因此该回路的扩展有助于集中磁通量,以使磁响应介质在用作粉末屏障173的区域中对准。在任一种构造中,环形磁体172定位在壳体140和转子130之间,以提供粉末屏障173,来限制或防止磁响应介质朝向轴承121漏出。
在图6A所示的构造中,单独的磁通磁芯176与环形磁体172联接并随转子130一起旋转,以使磁通量集中,来将磁响应介质对准在用作粉末屏障173的区域中。以这种方式,即使在轴110由非磁性材料(例如,不锈钢)构成的构造中,如图6B所示,由磁性密封件(例如,环形磁体172和磁通磁芯176的组合)产生的磁通量也被控制在轴110和固定元件之间的区域中,以形成粉末屏障173。在一些实施例中,由非磁性材料(例如,6061-T6铝或类似物)构成的另一屏障元件115与磁性密封件170下方的壳体140联接,并且构造成阻止磁响应介质在磁性密封件170处或附近的积聚。在一些实施例中,屏障元件115固定到壳体140,与壳体140成一体或以其他方式联接到壳体140。
无论具体构造如何,在本文所示和所述的磁性密封件160、170的构造的每一者中,磁通量轴向地远离中心轴线集中,这在一些情况下可导致聚集在磁性密封件160、170周围的粉末的积聚。在一些实施例中,为了阻止磁响应介质在磁性密封件160、170处或附近积聚(即,限制该粉末浓度的大小),并因此防止回路因粉末过度饱和并且变得不太有效,在空隙150中设置非磁性元件,使得在磁性密封件160、170和转子130之间仅留下小间隙(例如,约1mm)。在图2A和图2B所示的构造中,例如,轴110本身成形为具有沿其长度变化的直径。轴110的直径在第二间隙171的区域中相对较窄,但是轴110在磁性密封件170上方的区域中变宽以延伸到空隙150中。以这种方式,在轴110由非磁性材料(例如,316SS或304SS不锈钢)构成的情况下,轴110的直径的这种“台阶变化(step out)”用作非磁性屏障,以仅在磁性密封件170上方提供小间隙,以防止粉末的积聚。作为选择,在例如图3A和图3B所示的构造的一些实施例中,由非磁性材料(例如,6061-T6铝或类似物)构成的单独的屏障元件115与轴110在磁性密封件170上方联接。在一些实施例中,屏障元件115的外径基本上类似于磁通磁芯176的直径,使得形成的整个粉末冠部基本上包含在这些元件之间。
在任何构造中,磁性密封件(诸如上面讨论的那些磁性密封件)提供了不随时间劣化的非接触密封件。典型的密封方法包括轴向/径向弹性接触密封。这些类型的密封件在干燥污染方面表现不佳,随着时间的推移它们会出故障,并且它们通常需要与旋转轴接触,这会产生不希望的扭转阻力。相反,非接触式磁性密封件即使在固定部件和移动部件之间存在间隙,也可以保持粉末并防止泄漏。因此,该解决方案能够完全取代传统的密封特征件。
在替代实施例中,这种磁性密封件是组合密封系统的一部分,该组合密封系统包括磁性元件和传统的密封特征件这两者。参考图2A和图3A,磁性密封件170定位在转子130和磁极142之间的空隙150的端部附近,但是第二下部密封件190也定位在转子130和轴承122之间。在一些实施例中,第二下部密封件190包括压缩毡或弹性体元件,其形成抵靠轴110的接触密封。本领域技术人员将认识到,可以使用各种其他种类的密封元件中的任何一种作为第二密封件,以防止能够通过磁性密封件170的任何磁响应介质的进一步迁移。
除了设置密封件以阻止磁响应介质从空隙150移出之外,在一些实施例中,磁性密封件的使用还能够产生替代产品应用。当上面讨论的系统和装置旨在仅用作将磁响应介质保持在空隙150中的密封件时,希望轴110由非磁响应介质(例如,316SS或304SS不锈钢)构成,和/或希望非磁性屏障元件115位于磁性密封件和旋转元件之间,使得磁性密封件160、170的操作不会混淆转子130和磁场发生器145控制转子130(和轴110)的扭转阻力的量的能力。在一些实施例中,其中轴110由磁响应介质(例如,诸如AISI-1018或AISI-4140等中/低碳钢)构成,磁性密封件160、170的操作也对轴110产生扭矩。该扭矩是穿过粉末介质并返回通过磁轴的磁通路径的函数。以这种方式产生的磁通量使磁响应介质对准,从而产生剪切力。
以这种方式,尽管典型的MR制动器构造包括嵌入壳体中的转子、磁极和线圈,但是可以用磁体替换线圈以在定子、转子和磁响应介质之间产生扭矩。这种替代提供了可靠的设计,但它还包括提供扭矩和结构刚度这两者的多个部件(例如,轴、转子、定子、线圈、两个轴承、壳体、磁响应粉末或其他介质、密封件、盖、线束)。相反,磁性密封件160、170能够用作可以显著简化的磁性制动器。与典型的MR制动器构造相比,环形磁体制动器的最小部件数量仅包括轴、磁体、轴承、磁极、壳体和磁响应粉末或其他材料。当然,由于有限的直径,这种设计可能在扭矩能力方面受到限制。话虽如此,但当前公开的主题的应用在某些情况下提供了低成本的固定阻力制动器。
在不脱离本发明的精神和基本特征的情况下,本主题可以以其他形式体现。因此,所描述的实施例在所有方面都被认为是说明性的而非限制性的。尽管已经根据某些优选实施例描述了本主题,但是对于本领域普通技术人员显而易见的其他实施例也在本主题的范围内。

Claims (24)

1.一种磁响应装置(100),其被包含在壳体(140)中,所述磁响应装置(100)包括:
轴(110);
转子(130),其由高磁导材料构成,所述转子(130)互连到所述轴(110)上,以限制所述转子(130)和所述轴(110)之间的相对旋转;
磁场发生器(145),其通过空隙(150)与所述转子(130)分开,所述磁场发生器(145)具有电磁体定子;
磁响应介质,其被包含在所述空隙(150)内并至少部分地填充所述空隙(150),其中所述磁场发生器(145)是可控制的,以使所述磁响应介质沿所述空隙(150)内的磁通路径对准,从而引起所述转子(130)的扭转阻力的变化;以及
磁性密封件(160,170),其位于所述轴(110)附近,所述磁性密封件(160,170)包括磁性元件,所述磁性元件构造成产生磁场,以防止所述磁响应介质从所述空隙(150)中漏出。
2.根据权利要求1所述的磁响应装置(100),其中,所述轴(110)由非磁性材料构成。
3.根据权利要求1所述的磁响应装置(100),其中,所述轴(110)由磁性材料构成。
4.根据权利要求1所述的磁响应装置(100),其中,所述磁性密封件(160,170)固定到所述轴(110),并且与非磁性屏障(115)轴向间隔开。
5.根据权利要求1所述的磁响应装置(100),其中,所述磁性密封件(160,170)包括磁集中器(175),所述磁集中器(175)构造成集中磁通量,以使磁响应介质在用作粉末屏障(173)的区域中对准。
6.根据权利要求5所述的磁响应装置(100),其中,所述磁集中器(175)包括位于所述磁性元件周围的磁通磁芯(176)。
7.根据权利要求6所述的磁响应装置(100),其中,所述转子(130)用作所述磁通磁芯(176)。
8.根据权利要求5所述的磁响应装置(100),其中,所述磁集中器(175)包括位于所述磁性元件的第一侧和第二侧的一对非磁性间隔件(178)。
9.根据权利要求1所述的磁响应装置(100),其中,所述磁性密封件(160,170)包括磁集中器(175),所述磁集中器(175)构造成集中磁通量,以使磁响应介质在用作粉末屏障(173)的区域中对准,其中所述转子(130)是所述磁集中器(175)的一部分。
10.根据权利要求8所述的磁响应装置(100),其中,所述磁集中器(175)包括位于所述磁性元件的第一侧和第二侧的一对非磁性间隔件(178)。
11.根据权利要求1所述的磁响应装置(100),还包括固定到所述壳体(140)的非磁性屏障元件,其中,所述非磁性屏障元件构造成阻止所述磁响应介质在所述磁性密封件(160,170)处或附近的积聚。
12.根据权利要求1所述的磁响应装置(100),还包括与所述壳体(140)成一体的非磁性屏障元件,其中,所述非磁性屏障元件构造成阻止所述磁响应介质在所述磁性密封件(160,170)处或附近的积聚。
13.一种磁响应装置(100),包括磁性密封件(160,170),所述磁性密封件(160,170)构造成定位在可旋转轴(110)处或附近,所述磁性密封件(160,170)包括磁性元件,所述磁性元件构造成产生磁场,以防止磁响应介质沿着可旋转轴(110)漏出。
14.根据权利要求13所述的磁响应装置(100),其中,所述磁性密封件(160,170)构造成与所述轴(110)一起旋转。
15.根据权利要求13所述的磁响应装置(100),其中,所述磁性密封件(160,170)包括磁集中器,所述磁集中器构造成集中磁通量,以使磁响应介质在用作粉末屏障(173)的区域中对准。
16.根据权利要求15所述的磁响应装置(100),其中,所述磁集中器包括位于所述磁性元件周围的磁通磁芯,所述磁通磁芯由磁性材料构成。
17.根据权利要求16所述的磁响应装置(100),其中,所述磁集中器(175)包括位于所述磁性元件的第一侧和第二侧的非磁性间隔件(178)。
18.根据权利要求13所述的磁响应装置(100),其中,所述磁集中器(175)包括位于所述磁性元件周围的磁通磁芯(176),所述磁通磁芯(176)由磁性材料构成,其中所述转子(130)是所述磁集中器(175)的一部分。
19.根据权利要求18所述的磁响应装置(100),其中,所述磁集中器(175)包括位于所述磁性元件的第一侧和第二侧的非磁性间隔件(178)。
20.一种用于防止磁响应介质从磁响应装置漏出的方法,所述方法包括:
将磁性密封件(160,170)定位在与所述磁响应装置相关的旋转轴(110)处或附近;
产生磁场,以防止所述磁响应介质沿着所述轴(110)漏出而远离所述磁响应装置。
21.根据权利要求20所述的方法,其中将磁性密封件(160,170)定位在旋转轴(110)附近包括:定位磁性密封件(160,170),所述磁性密封件(160,170)构造成与所述旋转轴(110)一起旋转。
22.根据权利要求20所述的方法,还包括将磁集中器(175)联接到所述磁性密封件(160,170),所述磁集中器(175)构造成集中磁通量,以使磁响应介质在用作粉末屏障(173)的区域中对准。
23.根据权利要求22所述的方法,其中,将磁集中器(175)联接到所述磁性密封件(160,170)包括:定位位于所述磁性密封件(160,170)的磁性元件周围的磁通磁芯(176),所述磁通磁芯(176)由磁性材料构成。
24.根据权利要求23所述的方法,其中,将磁集中器(175)联接到所述磁性密封件(160,170)包括:将非磁性间隔件(178)定位在所述磁性元件的第一侧和第二侧。
CN201780051867.1A 2016-08-23 2017-08-23 用于磁响应装置、系统和方法的磁性密封件 Pending CN109690917A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/US2016/048137 WO2018038708A1 (en) 2016-08-23 2016-08-23 Magnetic seal for magnetically-responsive devices, systems, and methods
USPCT/US2016/048137 2016-08-23
PCT/US2017/048132 WO2018039301A1 (en) 2016-08-23 2017-08-23 Magnetic seal for magnetically-responsive devices, systems, and methods

Publications (1)

Publication Number Publication Date
CN109690917A true CN109690917A (zh) 2019-04-26

Family

ID=56990947

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680088659.4A Pending CN109643930A (zh) 2016-08-23 2016-08-23 用于磁响应装置、系统和方法的磁性密封件
CN201780051867.1A Pending CN109690917A (zh) 2016-08-23 2017-08-23 用于磁响应装置、系统和方法的磁性密封件

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680088659.4A Pending CN109643930A (zh) 2016-08-23 2016-08-23 用于磁响应装置、系统和方法的磁性密封件

Country Status (4)

Country Link
US (2) US11095184B2 (zh)
EP (3) EP3504775A1 (zh)
CN (2) CN109643930A (zh)
WO (2) WO2018038708A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11095184B2 (en) 2016-08-23 2021-08-17 Lord Corporation Magnetic seal for magnetically-responsive devices, systems, and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019135760A1 (de) * 2019-12-18 2021-06-24 Inventus Engineering Gmbh Magnetorheologische Bremseinrichtung
DE102021111973A1 (de) 2021-05-06 2022-11-10 Inventus Engineering Gmbh Magnetorheologische Bremsvorrichtung, insbesondere Bedieneinrichtung
DE102021111965A1 (de) 2021-05-06 2022-11-10 Inventus Engineering Gmbh Magnetorheologische Bremsvorrichtung, insbesondere Bedieneinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469008A (en) * 1992-12-11 1995-11-21 Hitachi, Ltd. Motor with a bearing lubricated by magnetic fluid
CN100534726C (zh) * 2004-12-28 2009-09-02 日立工机株式会社 脉冲扭矩发生装置和具有其的动力工具
CN103051151A (zh) * 2012-12-12 2013-04-17 海安县兰菱机电设备有限公司 立式磁粉制动器
CN104242597A (zh) * 2014-09-23 2014-12-24 东莞市科特机电有限公司 制动器磁性粉末密封结构
WO2015113564A1 (de) * 2014-02-03 2015-08-06 Schaeffler Technologies AG & Co. KG Magnetorheologischer aktor mit rotatorisch angetriebener gewindespindel und kupplung mit aktor

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2824460A (en) 1954-11-24 1958-02-25 Foxboro Co Magnetic reversible nut
US3254745A (en) 1963-01-21 1966-06-07 Isakov Vladimir Olimpijevich Seal to protect the bearings of powder magnetic clutches or of similar devices against the ferromagnetic powder
US3788275A (en) 1972-06-28 1974-01-29 Xerox Corp Magnetic shielding apparatus
US4239092A (en) 1978-08-28 1980-12-16 Dana Corporation Adjustable tensioner
US5173814A (en) 1981-09-07 1992-12-22 Papst-Motoren Gmbh & Co. Kg Disk storage drive having internal electrical connection passages and contamination seals at ends of the motor
US4575103A (en) 1984-04-09 1986-03-11 Pedu Alexander A Magnetic seal for magnetic particle clutches and brakes
US4681197A (en) 1984-09-19 1987-07-21 Placid Industries, Inc. Electromagnetic clutches and brakes
DE3775577D1 (de) 1986-02-26 1992-02-13 Shinko Electric Co Ltd Drehmomentbegrenzer.
JPS6418636U (zh) 1987-07-24 1989-01-30
NL8902086A (nl) 1989-08-17 1991-03-18 Skf Ind Trading & Dev Afdicht- en glijlagersamenstel met een magnetische vloeistof.
US5816372A (en) 1994-09-09 1998-10-06 Lord Corporation Magnetorheological fluid devices and process of controlling force in exercise equipment utilizing same
JPH0979263A (ja) 1995-09-20 1997-03-25 Hitachi Ltd 軸受装置及びこれを備えたスピンドルモ−タ
JP3768571B2 (ja) 1995-10-06 2006-04-19 日本電産株式会社 スピンドルモータ
US5969589A (en) 1996-08-28 1999-10-19 Ferrofluidics Corporation Quiet ferrofluid solenoid
US6466119B1 (en) 1996-09-06 2002-10-15 Chester Drew Magnetic circuit
US6029978A (en) * 1996-09-17 2000-02-29 Seagate Technology, Inc. Grounding and conductivity improvement for ferrofluid seals
JP2000088004A (ja) * 1998-09-11 2000-03-28 Shinko Electric Co Ltd 磁性流体シール付きパウダブレーキ・クラッチ
WO2000045498A2 (en) 1999-01-29 2000-08-03 Seagate Technology Llc Particle free shield assembly for spindle motor
DE10044106C2 (de) 1999-09-30 2002-02-28 Prec Motors Deutsche Minebea G Spindelmotor mit Magnetfluiddichtung
JP4705714B2 (ja) 2000-10-20 2011-06-22 オリエンタルモーター株式会社 簡易負荷装置
JP2003013955A (ja) 2001-07-02 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd 磁気軸受用ステータコア
JP2005513387A (ja) 2001-12-31 2005-05-12 ナサン ニレコ カンパニー, リミテッド 磁性粒子式制動装置
US6725990B2 (en) 2002-02-19 2004-04-27 New Venture Gear, Inc. Torque transfer clutch with magnetorheological actuator and ball screw operator
US7113365B1 (en) 2002-12-24 2006-09-26 Western Digital Technologies, Inc. Disk drive comprising a spindle motor having a windings shield for reduced disk voltage coupling
US6755290B1 (en) 2003-02-03 2004-06-29 New Venture Gear, Inc. Power transmission device for a four-wheel drive vehicle
DE10333733A1 (de) 2003-07-23 2005-02-24 Forschungszentrum Jülich GmbH Magnetisches Lagerelement
US6942081B2 (en) 2003-11-03 2005-09-13 China Patent Investment Limited Electrorheological clutch
US7671582B2 (en) 2005-05-10 2010-03-02 Nsk Ltd. Magnetic encoder and roller bearing unit having magnetic encoder
US7208854B1 (en) * 2006-03-09 2007-04-24 Hamilton Sundstrand Corporation Rotor cooling system for synchronous machines with conductive sleeve
DE102006037992A1 (de) 2006-08-14 2008-02-21 Magna Powertrain Ag & Co Kg Bauteil mit Haltefunktion, Aufhaltesystem und Verfahren zu deren Betrieb
EP2085630A4 (en) 2006-11-16 2012-04-25 Jtekt Corp SEALING DEVICE EQUIPPED WITH A SENSOR AND A BEARING DEVICE APPLICABLE TO THE SEALING DEVICE AND FOR USE IN A VEHICLE
US20080116757A1 (en) 2006-11-17 2008-05-22 Sean Chang Motor having magnetic fluid bearing structure
US8215467B2 (en) 2008-10-21 2012-07-10 GM Global Technology Operations LLC Multi-gap magnetorheological fluid clutch
WO2010102575A1 (en) 2009-03-11 2010-09-16 The Chinese University Of Hong Kong Magnetorheological actuator with multiple functions
DE102010064067A1 (de) 2010-12-23 2012-06-28 Siemens Aktiengesellschaft Radialmagnetlager zur magnetischen Lagerung eines Rotors
US9453386B2 (en) 2013-12-31 2016-09-27 Cameron International Corporation Magnetorheological fluid locking system
CN109643930A (zh) 2016-08-23 2019-04-16 洛德公司 用于磁响应装置、系统和方法的磁性密封件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469008A (en) * 1992-12-11 1995-11-21 Hitachi, Ltd. Motor with a bearing lubricated by magnetic fluid
CN100534726C (zh) * 2004-12-28 2009-09-02 日立工机株式会社 脉冲扭矩发生装置和具有其的动力工具
CN103051151A (zh) * 2012-12-12 2013-04-17 海安县兰菱机电设备有限公司 立式磁粉制动器
WO2015113564A1 (de) * 2014-02-03 2015-08-06 Schaeffler Technologies AG & Co. KG Magnetorheologischer aktor mit rotatorisch angetriebener gewindespindel und kupplung mit aktor
CN104242597A (zh) * 2014-09-23 2014-12-24 东莞市科特机电有限公司 制动器磁性粉末密封结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11095184B2 (en) 2016-08-23 2021-08-17 Lord Corporation Magnetic seal for magnetically-responsive devices, systems, and methods

Also Published As

Publication number Publication date
WO2018039301A1 (en) 2018-03-01
CN109643930A (zh) 2019-04-16
EP4156472A1 (en) 2023-03-29
US11081928B2 (en) 2021-08-03
US11095184B2 (en) 2021-08-17
US20190178316A1 (en) 2019-06-13
EP3504776A1 (en) 2019-07-03
US20190181716A1 (en) 2019-06-13
EP3504775A1 (en) 2019-07-03
EP3504776B1 (en) 2022-11-02
WO2018038708A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
CN109690917A (zh) 用于磁响应装置、系统和方法的磁性密封件
US8378543B2 (en) Generating electromagnetic forces in large air gaps
JP2014126177A5 (zh)
JP2017184610A (ja) アクチュエータとアクチュエータのヨーク内に埋め込まれたセンサとを備えた小型位置決めアセンブリ
KR102338654B1 (ko) 자성 유체 시일이 구비된 베어링 및 그 베어링을 구비하는 낚시용 릴
EP3290730B1 (en) Magnet fluid sealed bearing unit and drive motor having the bearing unit
JPWO2002095271A1 (ja) 磁性流体シール装置
JP5527766B2 (ja) 磁気粘性流体を用いた回転制動装置
JP5527765B2 (ja) 磁気粘性流体を用いた回転制動装置
JP2018179228A (ja) 発電機能付きダンパ
GB2297361A (en) Active magnetic bearing system
JP2022140801A (ja) 磁気粘性流体装置
TWI531734B (zh) 轉動向阻力器
US6700264B2 (en) Pump driving system of induction type
JP6963874B2 (ja) 磁気粘性流体装置
JP2018179227A (ja) ダンパ
JP3873780B2 (ja) 磁性流体シール装置
EP3255641A1 (en) Solenoid
WO2024063097A1 (ja) 回転機用ダンパおよびそれを備える回転機
WO2011074549A1 (ja) 磁気粘性流体を使用したシール手段を有する回転装置
CN116085418A (zh) 一种自传感磁流变旋转阻尼器
JP2016031114A (ja) 磁性流体シール付き軸受
JPS59217030A (ja) 回転体用制振装置
JP2018028331A (ja) 電磁クラッチ
JPH05340487A (ja) 流体用バルブ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190426

RJ01 Rejection of invention patent application after publication