CN109673171A - 改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法 - Google Patents

改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法 Download PDF

Info

Publication number
CN109673171A
CN109673171A CN201780048030.1A CN201780048030A CN109673171A CN 109673171 A CN109673171 A CN 109673171A CN 201780048030 A CN201780048030 A CN 201780048030A CN 109673171 A CN109673171 A CN 109673171A
Authority
CN
China
Prior art keywords
contact
solar cell
silicon solar
lattice
emitter layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780048030.1A
Other languages
English (en)
Other versions
CN109673171B (zh
Inventor
赵宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ce Panel Engineering Co ltd
Original Assignee
Aic Holman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aic Holman Co Ltd filed Critical Aic Holman Co Ltd
Publication of CN109673171A publication Critical patent/CN109673171A/zh
Application granted granted Critical
Publication of CN109673171B publication Critical patent/CN109673171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法。本发明的目的在于,提出一种改善硅太阳能电池的接触格与发射极层之间的接触特性的方法,所述方法是在这些太阳能电池接触后应用,进而减少存在接触缺陷的太阳能电池的报废率。为了达成这个目的,本发明提出一种方法,其具有下列处理步骤。首先提供包含发射极层、接触格(5)和背触点(3)的硅太阳能电池(1)。随后通过与电源的一个电极连接的触针矩阵(8)或者接触板电接触所述接触格(5),并且通过与电源的另一电极连接的接触装置将所述背触点(3)电连接。通过所述电源沿硅太阳能电池(1)的正向感生至少一个脉冲长度为1ms至100ms且电流强度为硅太阳能电池(1)的短路电流强度的10至30倍的电流脉冲。此外还提出两种替代性的方法。

Description

改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性 的方法
技术领域
本发明涉及一种改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法。
背景技术
在晶体硅太阳能电池的制造过程中,以丝网印刷法将金属膏施覆至涂布有介电的氮化硅的、形式为接触格的前端。针对硅太阳能电池的位于氮化硅层下方的发射极层的接触,在施覆金属膏后在800–900℃下实施回火步骤。其中,在金属膏中所含有的玻璃粉的协助下,金属膏的银穿过氮化硅层扩散进入发射极层。其中,回火步骤期间的过程控制对接触形成有决定性影响。在过程控制正确的情况下,接触格与发射极层之间的过渡处具有接触电阻低的特征。在过程控制有缺陷的情况下,通常仅实现较高的接触电阻。如果在回火步骤中例如应用过低的温度,则金属膏无法充分地穿过氮化硅层扩散,故在接触格与发射极层之间仅形成较小的接触面以及较高的接触电阻。高接触电阻又导致太阳能电池的效率大幅降低,使得这些太阳能电池无法装在太阳能组件中,进而报废。
现有技术中已揭示过各种实现太阳能电池之效率稳定化或者性能改善的方法。DE10 2011 056 843 A1描述过一种“对硅太阳能电池的效率进行稳定化”的方法。为了建构太阳能组件,首先将太阳能电池电连接成太阳能电池组,且随后在层压过程中层压在两个玻璃板之间或者一个玻璃板与一个背膜之间。在该案中提出,在层压过程期间将连续的电流注入太阳能电池组,进而产生过剩少数载流子。其中,注入的电流的电流强度低于硅太阳能电池的一倍短路电流强度。借助这种方法大体将硅材料中的硼-氧络合物恢复。该案未描述对接触格与发射极层之间的接触电阻的影响。
在US 4 166 918 A中提出过一种改善太阳能电池的性能的方法,其中,对太阳能电池施加与其正向反向的电压。其中,在太阳能电池内激发沿短路的电流,从而对太阳能电池的这些区域进行加热,进而将短路“烧尽”以及消除。在该方法中亦未描述对接触格与发射极层之间的过渡处的影响。
DD 250 247 A3描述过一种改善经芯片粘合的半导体的欧姆接触特性的方法。这些半导体通过导电的胶粘剂与衬底材料固定在一起,并且通过引线接合进行接触。通过在衬底材料与接合线之间施加电压脉冲,使得半导体负荷定向电气脉冲。其中改善衬底材料与半导体之间的欧姆接触特性,进而减少报废率。该案未详细描述用于改善接触的作用机理。在接触过程中使用的导电胶粘剂大体由导电的粒子构成,其通常为被聚合物基质包围的银珠或者片状银粉。在此情形下,影响接触特性的决定性因素为:有多少粒子与接触的表面发生直接接触。其中,粒子与表面的直接接触可能被由聚合物构成的中间层阻止。可以假定,借助该方法通过施加电流脉冲将这种中间层“烧除”,且使得粒子随后与表面直接接触。但在硅太阳能电池的接触格与发射极层之间的过渡处无这种聚合的中间层。为该方法使用的电流强度处于经芯片粘合的半导体的极限负荷范围内,其中给定约1A的电流强度。在尺寸为15cm x 15cm的硅太阳能电池的工作中,通常实现数量级为5A至10A的且进而高得多的电流强度。该案未描述在这些电流强度下对接触格与发射极层之间的过渡处的影响。
发明内容
本发明的目的在于,提出一种改善硅太阳能电池的接触格与发射极层之间的接触特性的方法,所述方法是在这些太阳能电池接触后应用,进而减少存在接触缺陷的太阳能电池的报废率。
本发明用以达成上述目的的解决方案为,使用特征为下列步骤的方法。首先提供包含发射极层、接触格和背触点的硅太阳能电池。随后通过与电源的一个电极连接的第一接触装置电接触所述接触格,并且通过与电源的另一电极连接的第二接触装置将背触点电连接。其中,通过电源沿硅太阳能电池的正向感生至少一个脉冲长度为1ms至100ms且电流强度为硅太阳能电池的短路电流强度的10至30倍的电流脉冲。
所述第一接触装置优选建构为触针矩阵或者接触板。
作为替代方案,提出一种特征为下列步骤的方法。首先提供包含发射极层、接触格和背触点的硅太阳能电池。随后通过与电源的一个电极连接的接触刷或者接触辊电接触所述接触格的一个分区,并且通过与电源的另一电极连接的接触装置将所述背触点电连接。在此情形下,在接触格的范围内对接触刷或接触辊进行导引,其中通过电源沿硅太阳能电池的正向感生电流,其电流强度为硅太阳能电池的10至30倍短路电流强度依据所述分区与硅太阳能电池的面积比例减小后的电流强度。使得这个电流流经每个分区,持续时间介于1ms与100ms之间。这一点可如下实现:或是通过电源产生具有对应的脉冲长度的电流脉冲,或是如此选择接触辊或接触刷的进给率,使得在采用电源所提供的连续电流的情况下,为时约1ms至100ms地流经每个区域。
另一替代性方法的特征在于下列处理步骤。首先提供包含发射极层、接触格和背触点的硅太阳能电池。随后将接触格与电压源的一个电极电连接,并且通过与电压源的另一电极连接的接触装置将背触点电连接。在此情形下,通过电压源施加与硅太阳能电池的正向反向的电压。在存在这个电压的情况下,在硅太阳能电池的面向太阳的一侧的范围内对点光源进行导引。其中,如此选择施加的电压和点光源,使得在分区内感生电流,其中这个电流为时1ms至100ms地作用于分区,且该电流的电流强度为硅太阳能电池的在标准测试条件下测得的短路电流强度的10至30倍的依据分区与硅太阳能电池的面积比例减小后的电流强度。通过点光源使得太阳能电池的特性曲线局部移动,使得电流能够在硅太阳能电池的经照明的区域内流动。可如下实现1ms至100ms的作用时间:所述点光源产生对应的脉冲式辐射,或者,所述点光源发射连续的辐射并以对应的进给速度在硅太阳能电池的面向太阳的一侧的范围内被导引。
在一个优选技术方案中,所述电光源为激光器。
就接触格与发射极层之间的接触电阻较高的硅太阳能电池而言,通过使用本发明的方法中的一个,能够显著改善欧姆接触特性。通过减小接触格与发射极层之间的起初较高的接触电阻,显著提高这些硅太阳能电池的效率,这样便不必将这些硅太阳能电池作为废品丢弃。因此,所述方法适于按照原本的制造过程提升产率。所述方法可供硅太阳能电池的制造商自身或者第三方使用,该第三方借助本发明的方法改进有缺陷的硅太阳能电池。
但本发明的方法也可以作为制造过程的组成部分。在此情形下产生以下优点:对回火步骤的过程控制的严格程度例如可以放宽,以及,首先容忍因金属膏的扩散程度不足而造成的较高的接触电阻,并且借助本发明的充当下游处理步骤的操作进行修正。这样便能将过程控制和过程调节的难度减小至最低程度。在回火步骤期间同样可以采用较低的温度,进而在接触格与发射极层之间最初仅实现较小的接触面。在此情形下,通过随后应用本发明的方法能够将接触面进一步增大。也可以减小发射极的掺杂来改善光输入耦合,并且仍通过使用本发明的方法实现较小的接触电阻。
通过触针矩阵或者接触板或者经导引的接触刷或接触辊,在硅太阳能电池的面的范围内确保电流脉冲的均匀注入。特别是通过使用局部的光源,不仅能够实现电流的均匀注入,也能够根据预设的图案针对性地控制电流输入。
附图说明
下面结合图式对本发明的实施例进行说明。其中:
图1为硅太阳能电池的示意图,
图2为包含附接在接触格上的触针矩阵的硅太阳能电池,
图3为包含附接在接触格上的接触刷的硅太阳能电池,
图4为包含附接在接触格上的接触辊的硅太阳能电池,
图5为包含接触格和经点光源照明的面向太阳的侧面的硅太阳能电池。
具体实施方式
图1示意性示出硅太阳能电池1的简化结构。这个硅太阳能电池具有吸收层2,其由p掺杂和n掺杂的硅层构成,其中在这两个层之间的过渡处建构有pn结,其通常具有二极管特性。在硅太阳能电池1的背离太阳的一侧上,在p掺杂的硅层上施覆有通常为平面式的背触点3。在硅太阳能电池1的与此相对的面向太阳的一侧上,通常在n掺杂的硅层(发射极层)上设有介电的氮化硅层4。在这个氮化硅层上如上文所述建构有由金属膏构成的接触格5。常见的硅太阳能电池1的接触格5由汇流条6与横向于这些汇流条延伸的接触指7构成。基于所述pn结的二极管特性,硅太阳能电池1具有正向和击穿电压。此外,硅太阳能电池1的特征还在于标准测试条件(照明度:1000W/m2,硅太阳能电池的温度:25℃)下的短路电流强度。这些特性参数以及标准测试条件均为本领域技术人员所知,在此不再赘述。这种硅太阳能电池1是本发明的方法的出发点。
图2示意性示出包含接触格5的硅太阳能电池1,其中图中仅示出汇流条6,未示出接触指7。图中未示出硅太阳能电池1的背离太阳的一侧。在提供硅太阳能电池1后,在接触格5上附接形成触针矩阵8的第一接触装置,其中这个矩阵的所有触针9均电气相连。触针9支撑在接触格5的接触指7上。但原则上也可以仅接触汇流条6,或者既接触汇流条6也接触接触指7。其中,触针9可为弹簧销,从而确保接触格5的可靠接触。在理想情形下,触针9均匀地分布在接触格5的范围内。作为触针矩阵8的替代方案,也可以将接触板附接至接触格5,使得其整面地与该接触板发生接触。
所述方法的下一步骤是将第二接触装置附接至背触点3。图中未示出此第二接触装置。该第二接触装置例如可为由弹簧销构成的矩阵,或者为用于对背触点3作整面式接触的金属板。就流程而言,也可以在附接所述第一接触装置前附接所述第二接触装置。
触针矩阵8是与电源的一个电极连接。在这个电源的另一电极上连接有第二接触装置。图中未示出所述电源。
在将触针矩阵8以及将第二接触装置附接后,由所述电源感生电流脉冲,其中电流沿硅太阳能电池1的正向延伸。所述电流脉冲的脉冲长度为1ms至100ms,且其电流强度处于硅太阳能电池1的10至30倍短路电流强度的范围内。除了注入电流脉冲以外,原则上也可以注入脉冲序列。在此情形下,各电流脉冲可以具有相同的规格。这些脉冲也可以具有不同的规格,使得例如首先注入脉冲长度为50ms且电流强度为短路电流强度的10倍的电流脉冲,随后注入脉冲长度为5ms且电流强度为短路电流密度的30倍的电流脉冲。尺寸为15cm x15cm的硅太阳能电池1通常具有5A至10A的短路电流强度。在此情形下,在本发明的方法中为电流脉冲实现50A至300A的电流强度。通过接触格5与触针矩阵8或者与接触板的接触,确保具有如此高的电流强度的电流脉冲均匀分布至整个硅太阳能电池1,并且确保与横向尺寸相关的沿接触格5的串联电阻可以忽略。
在接触格5与发射极层之间的接触电阻较低的情况下,具有处于述及的数量级的电流强度和脉冲长度的电流脉冲仅导致接触格5与发射极层之间的过渡处的小幅升温。该升温大体归因于通过接触电阻实现的功率下降。小幅的升温对所述过渡处的欧姆接触特性无影响。但若接触格5与发射极层之间的电阻较高,则电流脉冲造成显著增大的功率下降,进而造成过渡处的显著增大的升温。在接触格5与发射极层之间的接触面较小的区域内,假定局部出现处于在回火过程中使用的温度的数量级的温度。这可能触发接触格5或金属膏的局部熔化,这又导致金属膏进一步穿过氮化硅层4扩散,并且就结果而言导致接触格5与发射极层之间的接触面增大,进而导致接触电阻减小。通过电流脉冲的时间限制确保升温的时间限制,使得金属膏不再进一步穿过发射极层扩散并且在此使得吸收层2的构造损毁,但或者扩展至太阳能电池1的背触点3并进而引发这个背触点的短路。
可对本发明的方法进行修改,使得接触格5不与触针矩阵8或者接触板发生接触,而是例如将接触刷10(图3)或者接触辊11(图4)附接在接触格的分区上,并且沿接触格5对这个接触刷或接触辊进行导引。
图3示出硅太阳能电池1,其中接触格5的一个分区与接触刷10发生电接触,该接触刷与电源的一个电极连接。在此仅示出接触格5中的汇流条6,而未示出接触指7。通过与所述电源的另一电极连接的接触装置对背触点3进行电连接,其中在此未示出该接触装置和背触点3。在将接触刷10附接在接触格5上后,沿接触格5对这个接触刷进行导引。其中,通过电源沿硅太阳能电池1的正向感生电流脉冲。其中,所述电流脉冲的脉冲长度为1ms至100ms,且其电流强度为硅太阳能电池1的10至30倍短路电流强度依据分区与硅太阳能电池1的面积比例减小后的电流强度。与接触刷10发生接触的分区例如可包括接触格5的四分之一。在此情形下,注入的电流脉冲的电流强度便处于2.5至7.5倍短路电流强度的范围内。作为脉冲式电流的替代方案,也可以使用连续的电流,其中通过接触刷的进给率对一定时间内的输入量进行调节。
沿接触格5连续地对接触刷10进行导引。但也可以首先将接触刷10置于接触格5的一个分区上并注入至少一个电流脉冲。随后将接触刷10导引至接触格5的另一分区,并再次注入至少一个电流脉冲。根据接触格5的尺寸重复这些步骤。
接触刷10的刷毛是如此设计,使得在对接触刷10进行导引时不会造成硅太阳能电池1的表面的损坏(例如刮痕)。
图4示出图3中的硅太阳能电池1,其中接触格5的分区与接触辊11,而非与接触刷10发生电接触。在此仅示出接触格中的汇流条6。在将接触辊11附接在接触格5上后,沿接触格5对这个接触辊进行导引。其中,通过电源沿硅太阳能电池1的正向感生电流脉冲。其中,所述电流脉冲的脉冲长度为1ms至100ms,且其电流强度为硅太阳能电池1的10至30倍短路电流强度依据分区与硅太阳能电池1的面积比例减小后的电流强度。例如如果接触辊11采用所述分区包括接触格5的约10%的技术方案,则针对所述电流脉冲使用处于一至三倍短路电流强度范围内的电流强度。作为脉冲式电流的替代方案,也可以使用连续的电流,其中通过接触辊的进给率对一定时间内的输入量进行调节。
接触辊11同样如此设计,使得在对接触辊11进行导引时不会引起硅太阳能电池1的表面的损坏(例如刮痕)。
图5示出针对本发明的一种替代性方法的布局。其中,所述替代性方法包括以下处理步骤。首先提供包含发射极层、接触格5和背触点3的硅太阳能电池1。随后将接触格5与电压源的一个电极,以及将背触点3与电压源的另一电极电连接,其中接触格5的逐点接触便已足够。据此,例如将接触片12附接至汇流条6的末端便已足够。在此情形下,通过电压源施加与硅太阳能电池1的正向反向的电压。其中,该电压的大小应低于硅太阳能电池1的击穿电压。在存在这个电压的情况下,在硅太阳能电池1的面向太阳的一侧的范围内对点光源13进行导引。通过对硅太阳能电池1的面向太阳的一侧的分区的逐点照明,产生光诱导电流,其通过施加的电压源增强并且引起接触格5与发射极层之间的过渡处的前述升温。在此情形下,优选必须对接触格5作逐点接触。还可以对硅太阳能电池1的经选取的区域作针对性加工。据此,例如可以借助诸如电致发光或者CoreScan的成像法测定接触电阻增大的区域,并对其进行针对性处理。
点光源13实施为激光器,其中所述方法并不局限于此。其中,所述激光器能够产生脉冲式或者连续的激光辐射。二极管激光器或者CO2激光器例如可以用作低成本的方案。
对于常见的硅太阳能电池而言,例如借助12V的反向电压、0.5W的激光功率、1062nm的激光波长和60μm的激光光斑尺寸来改善接触格与发射极层之间的欧姆接触特性,其中由此产生的电流处于100mA范围内。若在激光器进给率为10m/s的情况下以1mm的线距扫描硅太阳能电池,则处理时间为约3s。
附图标记表
1 硅太阳能电池
2 吸收层
3 背触点
4 氮化硅层
5 接触格
6 汇流条
7 接触指
8 触针矩阵
9 触针
10 接触刷
11 接触辊
12 接触片
13 点光源

Claims (5)

1.一种改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法,其特征在于,首先提供包含发射极层、接触格(5)和背触点(3)的硅太阳能电池(1),以及,通过与电源的一个电极连接的第一接触装置电接触所述接触格(5),以及,通过与所述电源的另一电极连接的第二接触装置将所述背触点(3)电连接,以及,通过所述电源沿硅太阳能电池(1)的正向感生至少一个电流脉冲,其脉冲长度为1ms至100ms,且其电流强度为硅太阳能电池(1)的在标准测试条件下测得的短路电流强度的10至30倍。
2.根据权利要求1所述的方法,其特征在于,所述第一接触装置为触针矩阵(8)或者接触板。
3.一种改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法,其特征在于,首先提供包含发射极层、接触格(5)和背触点(3)的硅太阳能电池(1),以及,通过与电源的一个电极连接的接触刷(10)或者接触辊(11)电接触所述接触格(5)的一个分区,以及,通过与所述电源的另一电极连接的接触装置将所述背触点(3)电连接,以及,在接触格(5)的范围内对接触刷(10)或者接触辊(11)进行导引,以及,通过所述电源沿硅太阳能电池(1)的正向感生电流,以及,这个电流为时1ms至100ms地作用于所述分区,以及,所述电流的电流强度为硅太阳能电池(1)的在标准测试条件下测得的短路电流强度的10至30倍的依据分区与硅太阳能电池(1)的面积比例减小后的电流强度。
4.一种改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法,其特征在于,首先提供包含发射极层、接触格(5)和背触点(3)的硅太阳能电池(1),以及,将所述接触格(5)与电压源的一个电极电连接,以及,将一个与所述电压源的另一电极电连接的接触装置同所述背触点(3)连接,以及,通过所述电压源施加一个与硅太阳能电池(1)的正向反向的小于击穿电压的电压,以及,在存在这个电压的情况下,在硅太阳能电池(1)的面向太阳的一侧的范围内对点光源(13)进行导引,以及,对所述面向太阳的一侧的分区进行逐点照明,以及,借此在所述分区内感生电流,以及,这个电流为时1ms至100ms地作用于所述分区,以及,所述电流的电流强度为硅太阳能电池(1)的在标准测试条件下测得的短路电流强度的10至30倍的依据分区与硅太阳能电池(1)的面积比例减小后的电流强度。
5.根据权利要求4所述的方法,其特征在于,所述点光源(13)为激光器。
CN201780048030.1A 2016-08-02 2017-08-01 改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法 Active CN109673171B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016009560.1A DE102016009560B4 (de) 2016-08-02 2016-08-02 Verfahren zur Verbesserung des ohmschen Kontaktverhaltens zwischen einem Kontaktgitter und einer Emitterschicht einer Siliziumsolarzelle
DE102016009560.1 2016-08-02
PCT/DE2017/000245 WO2018024274A1 (de) 2016-08-02 2017-08-01 Verfahren zur verbesserung des ohmschen kontaktverhaltens zwischen einem kontaktgitter und einer emitterschicht einer siliziumsolarzelle

Publications (2)

Publication Number Publication Date
CN109673171A true CN109673171A (zh) 2019-04-23
CN109673171B CN109673171B (zh) 2022-12-13

Family

ID=59982220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780048030.1A Active CN109673171B (zh) 2016-08-02 2017-08-01 改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法

Country Status (8)

Country Link
US (1) US11393944B2 (zh)
EP (1) EP3494601B1 (zh)
JP (1) JP7039555B2 (zh)
KR (1) KR102480652B1 (zh)
CN (1) CN109673171B (zh)
DE (1) DE102016009560B4 (zh)
ES (1) ES2887333T3 (zh)
WO (1) WO2018024274A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627785A (zh) * 2020-05-11 2020-09-04 中国原子能科学研究院 一种产生脉冲点光源的电极结构
CN117153954A (zh) * 2023-10-31 2023-12-01 杭州晶宝新能源科技有限公司 一种太阳电池电致瞬态烧结设备及生产线
CN117374166A (zh) * 2023-12-06 2024-01-09 武汉帝尔激光科技股份有限公司 一种太阳能电池片激光诱导烧结的加工方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018001057A1 (de) * 2018-02-07 2019-08-08 Aic Hörmann Gmbh & Co. Kg Verfahren zur Verbesserung des ohmschen Kontaktverhaltens zwischen einem Kontaktgitter und einer Ermitterschicht einer Siliziumsolarzelle
DE102020002335B4 (de) 2020-04-17 2022-02-24 Ce Cell Engineering Gmbh Verfahren zur Verbesserung des ohmschen Kontaktverhaltens zwischen einem Kontaktgitter und einer Emitterschicht einer Silizumsolarzelle
DE102021123280B4 (de) 2021-09-08 2023-04-13 Hanwha Q Cells Gmbh Anlage zur elektrischen Kontaktierung von Wafersolarzellen, Inline-Produktionsvorrichtung und Herstellungsverfahren für eine Wafersolarzelle
DE102021127661A1 (de) 2021-10-25 2023-04-27 Hanwha Q Cells Gmbh Verfahren zum Reparieren und/oder Optimieren eines Solarmoduls
DE102021132240A1 (de) 2021-12-08 2023-06-15 Hanwha Q Cells Gmbh Anlage zur Stabilisierung und/oder Verbesserung eines Wirkungsgrads einer Solarzelle und Verfahren zur Stabilisierung und/oder Verbesserung eines Wirkungsgrads einer Solarzelle
WO2023190282A1 (ja) * 2022-03-28 2023-10-05 ナミックス株式会社 導電性ペースト、太陽電池及び太陽電池の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306163A1 (en) * 2010-06-14 2011-12-15 Nam-Kyu Song Method of forming electrode and method of manufacturing solar cell using the same
US20120028396A1 (en) * 2010-07-28 2012-02-02 Alexander Shkolnik Method of manufacturing a silicon-based semiconductor device by essentially electrical means
US20130146576A1 (en) * 2010-03-01 2013-06-13 First Solar, Inc. Method and apparatus for photovoltaic device manufacture
US20140069494A1 (en) * 2012-09-12 2014-03-13 Au Optronics Corporation Method and apparatus for increasing conductivity of solar cell electrode, and solar cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166918A (en) 1978-07-19 1979-09-04 Rca Corporation Method of removing the effects of electrical shorts and shunts created during the fabrication process of a solar cell
JPS58158977A (ja) 1982-02-25 1983-09-21 ユニバ−シテイ・オブ・デラウエア 薄膜太陽電池を製造する方法及び装置
DD250247A3 (de) 1984-04-26 1987-10-08 Fernsehelektronik Verfahren zur Verbesserung des ohmschen Kontaktverhaltens chipgeklebter Halbleiterkörper
DE10046170A1 (de) * 2000-09-19 2002-04-04 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Halbleiter-Metallkontaktes durch eine dielektrische Schicht
WO2010111107A2 (en) * 2009-03-26 2010-09-30 Bp Corporation North America Inc. Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions
CN102472791B (zh) 2009-08-04 2014-09-10 国立大学法人奈良先端科学技术大学院大学 太阳能电池的评价方法、评价装置、维护保养方法、维护保养系统及太阳能电池模块的制造方法
US9202964B2 (en) 2010-03-01 2015-12-01 First Solar, Inc. System and method for photovoltaic device temperature control while conditioning a photovoltaic device
FR2957479B1 (fr) * 2010-03-12 2012-04-27 Commissariat Energie Atomique Procede de traitement d'un contact metallique realise sur un substrat
DE102011056843A1 (de) 2011-12-21 2013-06-27 Centrotherm Photovoltaics Ag Verfahren zur Stabilisierung eines Wirkungsgrades von Siliziumsolarzellen
US20140139249A1 (en) * 2012-11-20 2014-05-22 Primestar Solar, Inc. Apparatus and a method for detecting defects within photovoltaic modules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130146576A1 (en) * 2010-03-01 2013-06-13 First Solar, Inc. Method and apparatus for photovoltaic device manufacture
US20110306163A1 (en) * 2010-06-14 2011-12-15 Nam-Kyu Song Method of forming electrode and method of manufacturing solar cell using the same
US20120028396A1 (en) * 2010-07-28 2012-02-02 Alexander Shkolnik Method of manufacturing a silicon-based semiconductor device by essentially electrical means
US20140069494A1 (en) * 2012-09-12 2014-03-13 Au Optronics Corporation Method and apparatus for increasing conductivity of solar cell electrode, and solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627785A (zh) * 2020-05-11 2020-09-04 中国原子能科学研究院 一种产生脉冲点光源的电极结构
CN117153954A (zh) * 2023-10-31 2023-12-01 杭州晶宝新能源科技有限公司 一种太阳电池电致瞬态烧结设备及生产线
CN117153954B (zh) * 2023-10-31 2024-02-06 杭州晶宝新能源科技有限公司 一种太阳电池电致瞬态烧结设备及生产线
CN117374166A (zh) * 2023-12-06 2024-01-09 武汉帝尔激光科技股份有限公司 一种太阳能电池片激光诱导烧结的加工方法
CN117374166B (zh) * 2023-12-06 2024-04-02 武汉帝尔激光科技股份有限公司 一种太阳能电池片激光诱导烧结的加工方法

Also Published As

Publication number Publication date
JP7039555B2 (ja) 2022-03-22
JP2019525471A (ja) 2019-09-05
KR20190035850A (ko) 2019-04-03
EP3494601A1 (de) 2019-06-12
WO2018024274A1 (de) 2018-02-08
US20210288208A1 (en) 2021-09-16
CN109673171B (zh) 2022-12-13
DE102016009560B4 (de) 2022-09-29
DE102016009560A1 (de) 2018-02-08
EP3494601B1 (de) 2021-05-26
US11393944B2 (en) 2022-07-19
ES2887333T3 (es) 2021-12-22
KR102480652B1 (ko) 2022-12-22

Similar Documents

Publication Publication Date Title
CN109673171A (zh) 改善硅太阳能电池的接触格与发射极层之间的欧姆接触特性的方法
TWI701844B (zh) 用於增進矽太陽能電池之觸點格柵與發射層間之歐姆接觸行為的方法
KR20150100640A (ko) 전기 콘택을 형성하는 방법 및 그 방법에 의해 형성되는 전기 콘택
EP1734589A2 (en) Method for manufacturing photovoltaic module
WO2020082131A1 (en) A method for improving the performance of a heterojunction solar cell
KR101449891B1 (ko) 태양 전지를 위한 자가-활성된 전면 바이어스
JP2013058471A (ja) 導電性組成物および製造法
KR101106759B1 (ko) 태양전지 모듈의 제조 방법
KR102289901B1 (ko) 실리콘에서의 고농도 도핑
CN103811565B (zh) 一种太阳能电池、组件及其制作方法
JP2015165515A (ja) 太陽電池およびその電極
CN114792745B (zh) 一种高效的太阳能发电基片导线区掺杂方法
US20230197881A1 (en) Methods for hardening a conductive paste and making a photovoltaic string and equipment
KR102639167B1 (ko) 과솔더가 방지되는 태양전지 모듈 제조용 태빙 장치
CN117374153B (zh) 一种太阳能电池片激光诱导烧结方法及太阳能电池
CN116825886A (zh) 一种改善晶体硅电池金属化性能的方法
CN117374153A (zh) 一种太阳能电池片激光诱导烧结方法及太阳能电池
CN104517838A (zh) 半导体结构及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190905

Address after: Hanau

Applicant after: HERAEUS DEUTSCHLAND GmbH & Co.KG

Address before: Kissisaon, Germany

Applicant before: AIC Hormann GmbH & Co.KG

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210926

Address after: Cabelsktar, Germany

Applicant after: CE panel Engineering Co.,Ltd.

Address before: Hanau

Applicant before: HERAEUS DEUTSCHLAND GmbH & Co.KG

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant