CN109669501B - 电压调节器 - Google Patents

电压调节器 Download PDF

Info

Publication number
CN109669501B
CN109669501B CN201811189526.3A CN201811189526A CN109669501B CN 109669501 B CN109669501 B CN 109669501B CN 201811189526 A CN201811189526 A CN 201811189526A CN 109669501 B CN109669501 B CN 109669501B
Authority
CN
China
Prior art keywords
voltage
circuit
source
temperature coefficient
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811189526.3A
Other languages
English (en)
Other versions
CN109669501A (zh
Inventor
富冈勉
杉浦正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Publication of CN109669501A publication Critical patent/CN109669501A/zh
Application granted granted Critical
Publication of CN109669501B publication Critical patent/CN109669501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/461Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Control Of Eletrric Generators (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

本发明涉及电压调节器。采用以下结构:具备:源极接地放大电路,被输入误差放大电路的信号;以及输出晶体管,被输入源极接地放大电路的控制电压,源极接地放大电路具备电流限制电路,所述电流限制电路由在信号路径中被具有正的温度系数的电压控制的共源共栅电路构成。提供能够在不超过输出晶体管的栅极耐压的情况下使输出电压的下降电压变小的电压调节器。

Description

电压调节器
技术领域
本发明涉及电压调节器。
背景技术
已知以往的电压调节器:在电压调节器中,为了限制为输出晶体管的栅极电压不超过栅极耐压,在第二级放大电路的晶体管的漏极与输出晶体管的栅极之间设置有被向栅极施加恒定电压的电压控制晶体管,所述电压调节器具备:将基准电压与输出电压比较的误差放大电路、由电阻和晶体管构成且对误差放大电路输出的电压进行放大的第二级放大电路、以及被第二级放大电路输出的电压控制而输出输出电压的输出晶体管(例如,参照专利文献1美国专利第7633280号)。
现有技术文献
专利文献
专利文献1:美国专利第7633280号说明书。
发明要解决的课题
在设置有电压控制晶体管的以往的电压调节器中,被向栅极施加了比阈值电压充分大的恒定电压的电压控制晶体管的漏极电流具有负的温度系数,因此,在低温时输出晶体管的栅极电压降低。因此,当考虑低温时,向电压控制晶体管的栅极施加的恒定电压不能变大。因此,难以使输出电压的下降电压变小。
发明内容
本发明是鉴于上述困难而完成的,提供能够在不超过输出晶体管的栅极耐压的情况下使输出电压的下降电压变小的电压调节器。
用于解决课题的方案
为了解决以往的课题,本发明的一个实施方式的电压调节器的特征在于,具备:误差放大电路,输出将基于输出电压的电压与基准电压的差放大后的信号;源极接地放大电路,被输入误差放大电路的信号,输出控制电压;以及输出晶体管,被向栅极输入源极接地放大电路的控制电压,输出输出电压,源极接地放大电路具备电流限制电路,所述电流限制电路由在信号路径中被具有正的温度系数的电压控制的共源共栅电路构成。
发明效果
根据本发明的电压调节器,能够防止输出晶体管的破坏,使输出电压的下降电压变小。
附图说明
图1是示出本发明的实施方式的电压调节器(voltage regulator)的结构的电路图。
图2是示出具有正的温度系数的电压源的一个例子的电路图。
图3是示出具有正的温度系数的电压源的另一例子的电路图。
图4是示出具有正的温度系数的电流源的一个例子的电路图。
图5是示出具有正的温度系数的电压源的另一例子的电路图。
图6是示出本发明的实施方式的电压调节器的另一结构的电路图。
具体实施方式
以下,参照附图来对本发明的实施方式进行说明。
图1是本实施方式的电压调节器的电路图。
本实施方式的电压调节器具备:误差放大电路106、基准电压电路103、作为输出晶体管的PMOS晶体管105、NMOS晶体管107、108、电压源109、I/V变换电路110、接地端子100、电源端子101、以及输出端子102。
I/V变换电路110例如由PMOS晶体管和电阻构成。此外,电压源109、NMOS晶体管107、108和I/V变换电路110构成源极接地放大电路。NMOS晶体管108为在源极接地放大电路的信号路径中设置的共源共栅(cascode)电路。而且,源极接地放大电路和PMOS晶体管105构成了输出级。电压源109具有正的温度系数。
关于误差放大电路106,非反相输入端子连接于基准电压电路103,反相输入端子连接于输出端子102。关于NMOS晶体管107,栅极连接于误差放大电路106的输出端子,源极连接于接地端子100,漏极连接于NMOS晶体管108的源极。关于NMOS晶体管108,栅极连接于电压源109,漏极连接于PMOS晶体管105的栅极和I/V变换电路110的一个端子。I/V变换电路110的另一个端子连接于电源端子101。关于PMOS晶体管105,源极连接于电源端子101,漏极连接于输出端子102。I/V变换电路110由源极连接于电源端子101且将栅极和漏极经由电阻连接后的PMOS晶体管构成。
接着,对本实施方式的电压调节器的工作进行说明。
当向电源端子101输入电源电压VDD时,电压调节器向输出端子102输出输出电压Vout。误差放大电路106向NMOS晶体管107的栅极输出将基准电压电路103的基准电压Vref与输出电压Vout比较后的结果的电压。NMOS晶体管107将从误差放大电路106接收的电压变换为漏极电流,将其经由NMOS晶体管108向I/V变换电路110输入。I/V变换电路110将输入的电流变换为电源电压VDD基准的电压V1,将其向PMOS晶体管105的栅极输入。误差放大电路106和输出级对PMOS晶体管105的栅极电压进行控制,以使输出电压Vout接近基准电压Vref。
当输出电压Vout比基准电压Vref高时,误差放大电路106的输出电压变低,NMOS晶体管107的漏极电流变小。因此,I/V变换电路110的电压降变小,电压V1变高,因此,PMOS晶体管105截止,由此,输出电压Vout变低。
此外,当输出电压Vout比基准电压Vref低时,进行与上述相反的工作,输出电压Vout变高。像这样,电压调节器进行工作,以使输出电压Vout与基准电压Vref相等。
在此,考虑PMOS晶体管105的栅极耐压比电源端子101的电源电压VDD低的情况下的、由PMOS晶体管105的栅极电压即电压V1的过剩的降低造成的破坏和下降电压(dropoutvoltage)的平衡(trade-off)。当将I/V变换电路110的阻抗设为Z110并且将NMOS晶体管108的漏极电流设为I108时,电压V1由式(1)表示。
Figure DEST_PATH_IMAGE002
NMOS晶体管108的漏极电流I108由式(2)表示。
Figure DEST_PATH_IMAGE004
在此,μn108为NMOS晶体管108的迁移率,Cox108为NMOS晶体管108的每单位面积的栅极氧化膜电容、K108为NMOS晶体管108的纵横比(aspect ratio),VGS108为NMOS晶体管108的栅极·源极间电压,VTH108为NMOS晶体管108的阈值电压。
NMOS晶体管108的栅极·源极间电压在NMOS晶体管108的源极电压接近接地端子100的电压时为最大。此时,NMOS晶体管108的栅极·源极间电压VGS108为由电压源109提供的电压V2,因此,代入到式(2)中变为式(3)。
Figure DEST_PATH_IMAGE006
迁移率通常具有负的温度系数,因此,当电压V2具有正的温度系数时,根据式(3),将电压V2提供得比阈值电压VTH108充分大,NMOS晶体管108的迁移率μn108的负的温度系数与电压V2的正的温度系数似乎能够抵消。由此,能够使漏极电流I108相对于温度而接近固定的电流。因此,能够使电压V1根据式(1)相对于温度接近固定的电压。
也就是说,能够使电压V1的最低电压低到PMOS晶体管105的栅极耐压附近。
图2是示出具有正的温度系数的电压源109的一个例子的电路图。电压源109具备:电流源201、由PMOS晶体管202、203构成的电流镜电路、电阻204、以及输出端子205。
将电流源201的电流在电流镜电路中折回而向电阻204流动,由此,在输出端子205产生电压V2。例如,只要电阻204的电阻值的温度依赖性小且电流源201的电流具有正的温度系数,则电压V2为具有正的温度系数的电压。
图3是示出具有正的温度系数的电压源109的另一例子的电路图。关于图3的电压源109,在图2的电压源109中追加了电阻206。当像这样构成时,由于电阻204与电阻206的电阻值的温度系数被抵消,所以,能够忽视电阻值的温度系数来设定电流源201的温度系数,因此,能够增加设计的自由度。
图4是示出图2、3的电压源109的具有正的温度系数的电流源201的一个例子的电路图。电流源201具备:基准电压电路401、误差放大电路402、NMOS晶体管403、以及电阻404。利用负反馈电路的作用,在电阻404产生与基准电压电路401的电压相等的电压。只要基准电压电路401的电压的温度依赖性小且电阻404的电阻值具有负的温度系数,则在电阻404中流动的电流具有正的温度系数。
此外,作为具有正的温度系数的电流源201,也可以使用生成PTAT电流的电路,所述PTAT电流通常被使用在带隙基准电路(bandgap reference circuit)中。
图5是示出具有正的温度系数的电压源109的另一例子的电路图。
图5的电压源109具备:基准电压电路501、NMOS晶体管502、以及负载503。图5的电压源109被称为源极跟随器(source follower),向输出端子205输出从基准电压电路501的电压减去NMOS晶体管502的阈值电压后的电压V2。负载503也可以为电阻,也可以为电流源。
通常,NMOS晶体管的阈值电压具有负的温度系数,当使基准电压电路501的电压的温度依赖性变小时,电压V2为具有正的温度系数的电压。
如以上说明那样,本实施方式的电压调节器将具有正的温度系数的电压V2施加到在源极接地放大电路的信号路径中设置的电流限制电路即PMOS晶体管108的栅极,由此,能够使电压V1的最低电压低到PMOS晶体管105的栅极耐压附近,因此,能够使输出电压Vout的下降电压变小。
再有,本实施方式的电压调节器将输出端子102连接于误差放大电路106的反相输入端子,但是,如图6所示那样,在输出端子102与接地端子100之间设置电阻电路111并且将电阻电路111的输出连接于误差放大电路106的反相输入端子也可。
此外,I/V变换电路110并不限定于图的电路,只有电阻也可,只有将栅极和漏极连接后的PMOS晶体管也可,由与将栅极和漏极连接后的PMOS晶体管串联连接的电阻构成也可。
附图标记的说明
103、401、501 基准电压电路
106、402 误差放大电路
109 电压源
110 I/V变换元件
111 电阻电路
201 电流源
503 负载。

Claims (4)

1.一种电压调节器,其特征在于,具备:
误差放大电路,输出将基于输出电压的电压与基准电压的差放大后的信号;
源极接地放大电路,被输入所述误差放大电路的信号,输出控制电压;以及
输出晶体管,被向栅极输入所述源极接地放大电路的控制电压,输出所述输出电压,
所述源极接地放大电路具备电流限制电路,所述电流限制电路由在信号路径中被具有正的温度系数的电压控制的共源共栅电路构成。
2.根据权利要求1所述的电压调节器,其特征在于,
所述源极接地放大电路具备:
I/V变换电路,一端连接于电源端子;
所述电流限制电路,一端连接于所述I/V变换电路的另一端;
第一晶体管,连接于所述电流限制电路的另一端与接地端子之间,被向栅极输入所述误差放大电路的信号;以及
输出端子,连接于所述I/V变换电路的另一端,
所述电流限制电路具备:
电压源,输出所述具有正的温度系数的电压;以及
第二晶体管,被向栅极输入所述具有正的温度系数的电压。
3.根据权利要求2所述的电压调节器,其特征在于,
所述电压源具备:
电流源,产生具有正的温度系数的电流;以及
电阻,在其中流动基于所述电流源所产生的电流的电流,输出所述具有正的温度系数的电压。
4.根据权利要求2所述的电压调节器,其特征在于,
所述电压源由被向输入端子提供恒定电压的源极跟随器构成。
CN201811189526.3A 2017-10-13 2018-10-12 电压调节器 Active CN109669501B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-199589 2017-10-13
JP2017199589A JP6912350B2 (ja) 2017-10-13 2017-10-13 ボルテージレギュレータ

Publications (2)

Publication Number Publication Date
CN109669501A CN109669501A (zh) 2019-04-23
CN109669501B true CN109669501B (zh) 2022-06-21

Family

ID=66096167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811189526.3A Active CN109669501B (zh) 2017-10-13 2018-10-12 电压调节器

Country Status (5)

Country Link
US (1) US10637344B2 (zh)
JP (1) JP6912350B2 (zh)
KR (1) KR102532834B1 (zh)
CN (1) CN109669501B (zh)
TW (1) TWI769327B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292108B2 (ja) * 2019-05-27 2023-06-16 エイブリック株式会社 ボルテージレギュレータ
KR20210131038A (ko) * 2020-04-23 2021-11-02 삼성전기주식회사 레귤레이터 회로 및 프론트 엔드 모듈
KR20220046116A (ko) * 2020-10-07 2022-04-14 삼성전자주식회사 증폭기 및 증폭기를 포함하는 전자 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297624B1 (en) * 1998-06-26 2001-10-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having an internal voltage generating circuit
US7446514B1 (en) * 2004-10-22 2008-11-04 Marvell International Ltd. Linear regulator for use with electronic circuits
CN102736657A (zh) * 2011-03-30 2012-10-17 精工电子有限公司 电压调节器
US9874889B1 (en) * 2015-07-07 2018-01-23 Marvell International Ltd. Voltage regulator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686176B2 (ja) * 1996-08-06 2005-08-24 株式会社ルネサステクノロジ 定電流発生回路及び内部電源電圧発生回路
JP4582705B2 (ja) 2005-03-17 2010-11-17 株式会社リコー ボルテージレギュレータ回路
JP2007250007A (ja) * 2007-06-18 2007-09-27 Fujitsu Ltd 半導体集積回路
CN100589058C (zh) * 2007-12-27 2010-02-10 北京中星微电子有限公司 电流限制电路及包括其的电压调节器和dc-dc转换器
US7633280B2 (en) 2008-01-11 2009-12-15 Texas Instruments Incorporated Low drop voltage regulator with instant load regulation and method
JP5082908B2 (ja) * 2008-02-13 2012-11-28 富士通セミコンダクター株式会社 電源回路及びその過電流保護回路、並びに電子機器
CN102063139B (zh) * 2009-11-12 2013-07-17 登丰微电子股份有限公司 温度系数调整电路及温度补偿电路
JP6234823B2 (ja) * 2013-03-06 2017-11-22 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ
JP6261349B2 (ja) * 2014-01-22 2018-01-17 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ
JP6457887B2 (ja) * 2015-05-21 2019-01-23 エイブリック株式会社 ボルテージレギュレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297624B1 (en) * 1998-06-26 2001-10-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having an internal voltage generating circuit
US7446514B1 (en) * 2004-10-22 2008-11-04 Marvell International Ltd. Linear regulator for use with electronic circuits
CN102736657A (zh) * 2011-03-30 2012-10-17 精工电子有限公司 电压调节器
US9874889B1 (en) * 2015-07-07 2018-01-23 Marvell International Ltd. Voltage regulator

Also Published As

Publication number Publication date
US10637344B2 (en) 2020-04-28
KR20190041937A (ko) 2019-04-23
TWI769327B (zh) 2022-07-01
JP2019074866A (ja) 2019-05-16
KR102532834B1 (ko) 2023-05-15
CN109669501A (zh) 2019-04-23
TW201923503A (zh) 2019-06-16
JP6912350B2 (ja) 2021-08-04
US20190115821A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6541250B2 (ja) 低ドロップアウト電圧レギュレータおよび方法
JP5594980B2 (ja) 非反転増幅回路及び半導体集積回路と非反転増幅回路の位相補償方法
EP2952995B1 (en) Linear voltage regulator utilizing a large range of bypass-capacitance
US8742819B2 (en) Current limiting circuitry and method for pass elements and output stages
KR101586525B1 (ko) 전압 조정기
US9348350B2 (en) Voltage regulator
EP2824531B1 (en) Method and circuit for controlled gain reduction of a gain stage
CN109669501B (zh) 电压调节器
US20040233771A1 (en) Stack element circuit
JP2008108009A (ja) 基準電圧発生回路
US10571942B2 (en) Overcurrent limiting circuit, overcurrent limiting method, and power supply circuit
US10520972B2 (en) Bandgap reference circuit
US20150277458A1 (en) Voltage regulator
TWI548209B (zh) 差動運算放大器以及帶隙參考電壓產生電路
CN107783588B (zh) 一种推挽式快速响应ldo电路
CN107666294B (zh) 放大电路
CN109960309B (zh) 电流生成电路
JP2017091316A (ja) 安定化電源回路
KR101362474B1 (ko) Cmos 서브밴드갭 기준발생기
US10007283B2 (en) Voltage regulator
JP2011118865A (ja) 過電流保護回路及び定電圧電源回路
JP7192075B2 (ja) 電流検出アンプ
JP2014204236A (ja) バイアス回路、増幅器
JP5876807B2 (ja) 低ドロップアウト電圧レギュレータ回路
Vanama et al. Design of a programmable low power low drop-out regulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Nagano

Patentee after: ABLIC Inc.

Address before: Chiba County, Japan

Patentee before: ABLIC Inc.

CP02 Change in the address of a patent holder