CN109647366A - 一种溶胶-凝胶法制备光电催化氧化钛电极的方法 - Google Patents

一种溶胶-凝胶法制备光电催化氧化钛电极的方法 Download PDF

Info

Publication number
CN109647366A
CN109647366A CN201811533202.7A CN201811533202A CN109647366A CN 109647366 A CN109647366 A CN 109647366A CN 201811533202 A CN201811533202 A CN 201811533202A CN 109647366 A CN109647366 A CN 109647366A
Authority
CN
China
Prior art keywords
sol
electrode
titanium net
gel
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811533202.7A
Other languages
English (en)
Inventor
尹荔松
向成承
周克省
蓝键
马思琪
涂驰周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN201811533202.7A priority Critical patent/CN109647366A/zh
Publication of CN109647366A publication Critical patent/CN109647366A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • C25B11/0775Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide of the rutile type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种溶胶‑凝胶法制备光电催化氧化钛电极的方法,该溶胶‑凝胶法制备光电催化氧化钛电极的方法所制得的氧化钛电极的晶粒尺寸均匀、细小,晶化程度很高,膜层质量好,膜层厚度均匀,且能适合大面积的涂膜;整体工艺方法简单,所需设备少,效率高。

Description

一种溶胶-凝胶法制备光电催化氧化钛电极的方法
技术领域
本发明涉及氧化钛薄膜电极工艺的技术领域,尤其涉及一种溶胶-凝胶法制备光电催化氧化钛电极的方法。
背景技术
溶胶通常是指固体分散在液体中形成的胶体溶液。凝胶是在溶胶聚沉过程中的特定条件下,形成的一种介于固态和液态间的冻状物质,是由胶粒组成的三维空间网状结构,网络了全部或者部分介质,是一种相当稠厚的物质。溶胶-凝胶(Sol-gel)法是制备负载膜的一种重要方法。其基本原理是:将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成稳定的溶胶,然后采用浸渍涂层、旋转涂层或者喷涂法把溶胶溶液涂覆在基材上,使其自然干燥成为凝聚膜,凝胶膜经过一定温度烧结生成具有一定孔径分布和性能的无机膜。
溶胶-凝胶法包括以下几个过程:(1)溶胶的制备。有两种方法制备溶胶:一是先将部分或全部组分用适当沉淀剂先沉淀出来经解凝,使原来团聚的沉淀颗粒分散成原始颗粒。因这种原始颗粒的大小一般在溶胶体系中胶核的大小范围,因而可制得溶胶。另一种方法是从同样的盐溶液出发,通过对沉淀过程的仔细控制,使首先形成的颗粒不致团聚为大颗粒而沉淀,从而直接得到胶体溶胶。(2)溶胶-凝胶转化:溶胶中含大量的水,凝胶化过程中,使体系失去流动性,形成一种网状的骨架结构。实现胶凝作用的途径有两个:一是化学法,通过控制溶胶中的电解质浓度:二是物理法,迫使胶粒间相互靠近,克服斥力,实现胶凝化。(3)凝胶干燥:在一定条件下(如加热)使溶剂蒸发。干燥过程中凝胶结构变化很大。
溶胶-凝胶工艺具有如下优点:(1)可以通过简单廉价的设备和简单的工艺在大的、形貌复杂的衬底表面形成涂层;(2)可以获得高度均匀的多组分氧化物涂层和特定的组份不均匀涂层;(3)热处理过程所需的温度低;(4)可制备其他方法可能不适合的特殊材料,如有机-无机复合涂层等;(5)化学计量比准确,可大范围内调节成份;(6)可以获狭窄粒径分布、纳米级粒子尺寸的涂层;(7)很容易引入微量元素,掺杂改性;(8)可通过多种方法改变薄膜的表面结构和性能。
但是也存在着一些缺点,如无机膜膜层质量比较差,存在开裂和褶皱现象。目前,大多数商业具有光催化性质的氧化钛薄膜一般是采用溶胶-凝胶法制备的。
而现有技术的溶胶-凝胶制得的氧化钛薄膜通常是以金属有机醇盐为原料,通过水解与缩聚反应而制得溶胶,并进一步缩聚而得到凝胶。水解反应与缩聚反应谁能占主导地位取决于水解和缩聚反应速率的相对大小及水解反应进行的程度。该水解反应是一个放热反应,且反应温度升高,将会使颗粒粒径增大,因此反应温度不宜过高。现有的方法虽然有其它方法不可相比的优点,而且具有良好的光催化活性,但是它缺乏机械耐久力,还有大面积镀膜时,很难保证薄膜厚度的均一性,且限制了大面积基片镀膜的产生。
发明内容
本发明的目的是为了克服上述现有技术的缺点,提供一种溶胶-凝胶法制备光电催化氧化钛电极的方法,该溶胶-凝胶法制备光电催化氧化钛电极的方法所制得的氧化钛电极的晶粒尺寸均匀、细小,晶化程度很高,膜层质量好,膜层厚度均匀,且能适合大面积的涂膜;整体工艺方法简单,所需设备少,效率高。
本发明解决其技术问题所采用的技术方案是:一种溶胶-凝胶法制备光电催化氧化钛电极的方法,包括如下步骤:
(1)将钛网钛网切割成7.5cm×2.8cm,用砂纸打磨后再用去污粉清洗表面,用蒸馏水漂洗并烘干,将钛网依次放入丙酮中作超声波清洗20min和放入无水乙醇中超声清洗20min,再一次用蒸馏水清洗,将清洗好的钛网吹干备用;
(2)将Ti(OBu)4和冰醋酸溶于乙醇溶剂中,均匀混合搅拌配制成A溶液;将蒸馏水、盐酸溶于乙醇溶剂中配制成B溶液;
(3)将B溶液滴入或倒入A溶液中,置于40-60℃水浴中充分搅拌,形成性能稳定的透明溶胶,然后透明溶胶在室温下静置陈化24h后,得到TiO2溶胶;
(4)将处理好的钛网缓慢垂直浸入TiO2溶胶中1h,然后以2mm/s的速率均匀稳定地将钛网提出液面,钛网表面挂上一薄层厚度均匀的湿凝胶膜,然后立即放入80℃的恒温干燥箱中干燥10mins,取出自然冷却;
(5)重复步骤(4)数次,形成对钛网涂膜数次,然后送入马福炉锻烧,升温至500℃恒温退火2h,升温速率保持2℃/min,最后马福炉中自然冷却至室温,得到氧化钛电极。
进一步的,所述的步骤(5)中重复步骤(4)的次数为5次。涂膜次数为5次时,薄膜的催化性能达到最高。
进一步的,所制得的氧化钛电极的晶粒为15nm。
因钛醇盐极易与水反应,可在瞬间生成沉淀。为此,采用冰醋酸为鳌合剂以缓解钛醇盐的剧烈水解,抑制沉淀的生成。盐酸在钛酸四丁酯的水解缩聚反应过程中起到催化反应和稳定溶胶的作用。溶胶是由于静电的相互作用而形成的,向水解缩聚体系中加入胶溶剂时,H+吸附在水解缩聚产物的表面,反应离子在液相中重新分布从而在粒子表面形成双电层,双电层的存在使粒子间产生相互排斥作用。当排斥力大于粒子间的吸引力时,聚集的粒子分散成小粒子形成溶胶。
综上所述,本发明的溶胶-凝胶法制备光电催化氧化钛电极的方法所制得的氧化钛电极的晶粒尺寸均匀、细小,晶化程度很高,膜层质量好,膜层厚度均匀,且能适合大面积的涂膜;整体工艺方法简单,所需设备少,效率高。
附图说明
图1为溶胶-凝胶法在500℃退火温度制备TiO2薄膜的XRD图谱。
具体实施方式
实施例1
本实施例1所描述的一种溶胶-凝胶法制备光电催化氧化钛电极的方法,包括如下步骤:
(1)将钛网钛网切割成7.5cm×2.8cm,用砂纸打磨后再用去污粉清洗表面,用蒸馏水漂洗并烘干,将钛网依次放入丙酮中作超声波清洗20min和放入无水乙醇中超声清洗20min,再一次用蒸馏水清洗,将清洗好的钛网吹干备用;
(2)将Ti(OBu)4和冰醋酸溶于乙醇溶剂中,均匀混合搅拌配制成A溶液;将蒸馏水、盐酸溶于乙醇溶剂中配制成B溶液;
(3)将B溶液滴入或倒入A溶液中,置于40-60℃水浴中充分搅拌,形成性能稳定的透明溶胶,然后透明溶胶在室温下静置陈化24h后,得到TiO2溶胶;
(4)将处理好的钛网缓慢垂直浸入TiO2溶胶中1h,然后以2mm/s的速率均匀稳定地将钛网提出液面,钛网表面挂上一薄层厚度均匀的湿凝胶膜,然后立即放入80℃的恒温干燥箱中干燥10mins,取出自然冷却;
(5)重复步骤(4)5次,形成对钛网涂膜5次,因为涂膜次数为5次时,薄膜的催化性能达到最高。然后送入马福炉锻烧,升温至500℃恒温退火2h,升温速率保持2℃/min,最后马福炉中自然冷却至室温,得到氧化钛电极。
在本实施例中,所制得的氧化钛电极的晶粒为15nm。
因钛醇盐极易与水反应,可在瞬间生成沉淀。为此,采用冰醋酸为鳌合剂以缓解钛醇盐的剧烈水解,抑制沉淀的生成。盐酸在钛酸四丁酯的水解缩聚反应过程中起到催化反应和稳定溶胶的作用。溶胶是由于静电的相互作用而形成的,向水解缩聚体系中加入胶溶剂时,H+吸附在水解缩聚产物的表面,反应离子在液相中重新分布从而在粒子表面形成双电层,双电层的存在使粒子间产生相互排斥作用。当排斥力大于粒子间的吸引力时,聚集的粒子分散成小粒子形成溶胶。
如图1所示,可以发现出它与标准的锐钛矿相的衍射图谱完全一致,在2θ为25.3°、39°、48°、53.8°、55°、63°、75°等位置,均有清晰而且尖锐的衍射峰,且衍射峰比较宽,而这些衍射角处的峰正好是锐钛矿型TiO2的特征衍射峰。说明溶胶-凝胶法制备的经过500℃恒温退火后的TiO2薄膜晶面结构为锐钛矿结构,而且晶粒尺寸比较细小。
氧化钛电极薄膜的平均粒径d可由最强衍射峰(101)面的半高宽,运用Scherrer公式d=kλ/(βcosθ)求得平均晶粒尺寸约为15nm。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术方案作任何形式上的限制。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明的技术方案的范围内。

Claims (3)

1.一种溶胶-凝胶法制备光电催化氧化钛电极的方法,其特征在于,包括如下步骤:
(1)将钛网钛网切割成7.5cm×2.8cm,用砂纸打磨后再用去污粉清洗表面,用蒸馏水漂洗并烘干,将钛网依次放入丙酮中作超声波清洗20min和放入无水乙醇中超声清洗20min,再一次用蒸馏水清洗,将清洗好的钛网吹干备用;
(2)将Ti(OBu)4和冰醋酸溶于乙醇溶剂中,均匀混合搅拌配制成A溶液;将蒸馏水、盐酸溶于乙醇溶剂中配制成B溶液;
(3)将B溶液滴入或倒入A溶液中,置于40-60℃水浴中充分搅拌,形成性能稳定的透明溶胶,然后透明溶胶在室温下静置陈化24h后,得到TiO2溶胶;
(4)将处理好的钛网缓慢垂直浸入TiO2溶胶中1h,然后以2mm/s的速率均匀稳定地将钛网提出液面,钛网表面挂上一薄层厚度均匀的湿凝胶膜,然后立即放入80℃的恒温干燥箱中干燥10mins,取出自然冷却;
(5)重复步骤(4)数次,形成对钛网涂膜数次,然后送入马福炉锻烧,升温至500℃恒温退火2h,升温速率保持2℃/min,最后马福炉中自然冷却至室温,得到氧化钛电极。
2.根据权利要求1所述的一种溶胶-凝胶法制备光电催化氧化钛电极的方法,其特征在于,所述的步骤(5)中重复步骤(4)的次数为5次。
3.根据权利要求2所述的一种溶胶-凝胶法制备光电催化氧化钛电极的方法,其特征在于,所制得的氧化钛电极的晶粒为15nm。
CN201811533202.7A 2018-12-14 2018-12-14 一种溶胶-凝胶法制备光电催化氧化钛电极的方法 Withdrawn CN109647366A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811533202.7A CN109647366A (zh) 2018-12-14 2018-12-14 一种溶胶-凝胶法制备光电催化氧化钛电极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811533202.7A CN109647366A (zh) 2018-12-14 2018-12-14 一种溶胶-凝胶法制备光电催化氧化钛电极的方法

Publications (1)

Publication Number Publication Date
CN109647366A true CN109647366A (zh) 2019-04-19

Family

ID=66114307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811533202.7A Withdrawn CN109647366A (zh) 2018-12-14 2018-12-14 一种溶胶-凝胶法制备光电催化氧化钛电极的方法

Country Status (1)

Country Link
CN (1) CN109647366A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401115B2 (ja) 2019-02-28 2023-12-19 国立研究開発法人科学技術振興機構 電極触媒およびアミン化合物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401115B2 (ja) 2019-02-28 2023-12-19 国立研究開発法人科学技術振興機構 電極触媒およびアミン化合物の製造方法

Similar Documents

Publication Publication Date Title
Nozawa et al. Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process
CN1844001B (zh) 一种具有光催化自洁净功能的TiO2/PI杂化膜及其制备方法
Phillips et al. Nanocrystalline Precursors for the Co‐Assembly of Crack‐Free Metal Oxide Inverse Opals
JPH1053437A (ja) アモルファス型過酸化チタンのコーティング方法
CN108295836B (zh) 一种核壳结构ato/二氧化硅/二氧化钛复合材料的制备方法
JP4619601B2 (ja) 光触媒性コーティング組成物および光触媒性薄膜を有する製品
Falaras et al. Roughness and fractality of nanostructured TiO 2 films prepared via sol-gel technique
CN101585552B (zh) 由TiO2纳米晶水溶胶制备TiO2多孔薄膜的方法
CN109647366A (zh) 一种溶胶-凝胶法制备光电催化氧化钛电极的方法
CN110002768B (zh) 紧密排布的复合二氧化硅纳米球阵列结构及仿蛾眼减反结构和制备方法
CN102503163A (zh) 一种在可见光下具有超亲水特性二氧化钛膜的制备方法
JPH02500268A (ja) チタンセラミック膜の製造方法
KR101147453B1 (ko) 가지형 공중합체를 템플레이트로 이용한 메조기공 이산화티타늄의 제조방법 및 이를 이용한 염료감응형 태양전지
JP2010024121A (ja) 中空無機粒子とその製造方法、着色剤および塗料
Yuan et al. Bioinspired synthesis of continuous titania coat with tunable nanofiber-based network structure on linear polyethylenimine-covered substrates
JP2001262008A (ja) チタニア塗布液及びその製造方法、並びにチタニア膜及びその形成方法
US8106101B2 (en) Method for making single-phase anatase titanium oxide
CN109455759B (zh) 一种具有低折射率及高催化活性的纳米中空二氧化钛微球及其制备方法
JP4482679B2 (ja) 任意の表面特性及び表面形状を有する基体表面へのシリカ薄膜の製造方法及び複合構造体
KR20120076043A (ko) 분무 건조법을 이용한 실리카 중공입자 및 그 제조방법과 실리카-티타니아 복합 중공입자 및 그 제조방법
JP2014084246A (ja) アナターゼ型酸化チタン粒子分散液の製造方法及びアナターゼ型酸化チタン薄膜
JPH054839A (ja) ゾルゲル法による薄膜の作製方法
KR101302720B1 (ko) 두 가지 크기의 실리카 나노입자를 함유한 내스크래치성 실리카 보호막 형성용 코팅 조성물 및 이의 제조방법
CN113717558A (zh) 一种钾水玻璃用光催化特种涂料及其制备方法
JP2001029795A (ja) 光触媒用酸化チタン塗膜形成性組成物及びその製法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190419

WW01 Invention patent application withdrawn after publication